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Dynamics and Time 
Integration



Added motion to our model 
Interpolate keyframes 
Still a lot of work! 
Today: physically-based animation 
- often less manual labor 
- often more compute-intensive 
Leverage tools from physics 
- dynamical descriptions 
- numerical integration 
Payoff: beautiful, complex behavior from simple models 
Widely-used techniques in modern film (and games!)
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Last time: animation
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Dynamical Description of Motion

“Dynamics is concerned with the study of forces and their 
effect on motion, as opposed to kinematics, which studies the 
motion of objects without reference to its causes.”

—Sir Wiki Pedia, 2015

“A change in motion is proportional to the motive force 
impressed and takes place along the straight line in which 
that force is impressed.”

—Sir Isaac Newton, 1687

(Q: Is keyframe interpolation dynamic, or kinematic?)
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The Animation Equation
Already saw the rendering equation 
What’s the animation equation?

force

mass

acceleration
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The “Animation Equation,” revisited
Well actually there are some more equations... 
Let’s be more careful: 
- Any system has a configuration 
- It also has a velocity 
- And some kind of mass 
- There are probably some forces 
- And also some constraints 
E.g., could write Newton’s 2nd law as 
Makes two things clear: 
- acceleration is 2nd time derivative of configuration 
- ultimately, we want to solve for the configuration q
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Generalized Coordinates
Often describing systems with many, many moving pieces 
E.g., a collection of billiard balls, each with position xi 

Collect them all into a single vector of generalized coordinates:  

Can think of q as a single point moving along a trajectory in Rn 
This way of thinking naturally maps to the way we actually solve 
equations on a computer: all variables are often “stacked” into a 
big long vector and handed to a solver. 
(…So why not write things down this way in the first place?)
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Generalized Velocity
Not much more to say about generalized velocity: it’s the time 
derivative of the generalized coordinates!

All of life (and physics) is just 
traveling along a curve...
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Ordinary Differential Equations
Many dynamical systems can be described via an ordinary 
differential equation (ODE) in generalized coordinates:

velocity functionchange in configuration over time

ODE doesn’t have to describe mechanical phenomenon, e.g.,

“rate of growth is proportional to value”

Solution? 
Describes exponential decay (a < 1), or really great stock (a > 1) 
“Ordinary” means “involves derivatives in time but not space” 
We’ll talk about spatial derivatives (PDEs) in another lecture...
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Dynamics via ODEs
Another key example: Newton’s 2nd law!

“Second order” ODE since we take two time derivatives 
Can also write as a system of two first order ODEs, by 
introducing new “dummy” variable for velocity:

Splitting things up this way will make it easy to talk about 
solving these equations numerically (among other things)
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Simple Example: Throwing a Rock
Consider a rock* of mass m tossed under force of gravity g 
Easy to write dynamical equations, since only force is gravity:

*Yes, this rock is spherical and has uniform density.

or

Solution:

(What do we need a computer for?!)



 CMU 15-462/662

Slightly Harder Example: Pendulum
Mass on end of a bar, swinging under gravity 
What are the equations of motion? 
Same as “rock” problem, but constrained 
Could use a “force diagram” 
- You probably did this for many hours in 

high school/college 
- Let’s do something new & different!
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Lagrangian Mechanics
Beautifully simple recipe: 
1. Write down kinetic energy 
2. Write down potential energy 
3. Write down Lagrangian 
4. Dynamics then given by Euler-Lagrange equation

Why is this useful? 
- often easier to come up with (scalar) energies than forces 
- very general, works in any kind of generalized coordinates 
- helps develop nice class of numerical integrators (symplectic)

Great reference: Sussman & Wisdom, “Structure and Interpretation of Classical Mechanics”

Joe Lagrange

becomes (generalized) 
“MASS TIMES ACCELERATION” becomes (generalized) “FORCE”
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Lagrangian Mechanics - Example
Generalized coordinates for pendulum? 

Kinetic energy (mass m)? 

Potential energy? 

Euler-Lagrange equations? (from here, just “plug and chug”—even a computer could do it!)

just one coordinate: 
angle with the vertical direction
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Solving the Pendulum
Great, now we have a nice simple equation for the pendulum:

For small angles (e.g., clock pendulum) can approximate as

“harmonic oscillator”

In general, there is no closed form solution! 
Hence, we must use a numerical approximation 
...And this was (almost) the simplest system we can think of! 
(What if we want to animate something more interesting?)
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Not-So-Simple Example: Double Pendulum
Blue ball swings from fixed point; green ball swings from blue one 
Simple system... not-so-simple motion! 
Chaotic: perturb input, wild changes to output 
Must again use numerical approximation
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Not-So-Simple Example: n-Body Problem
Consider the Earth, moon, and sun—where do they go? 
Solution is trivial for two bodies (e.g., assume one is fixed) 
As soon as n ≥ 3, again get chaotic solutions (no closed form) 
What if we want to simulate entire galaxies?

Credit: Governato et al / NASA
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For animation, we want to simulate 
these kinds of phenomena!
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Example: Flocking
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Simulated Flocking as an ODE
Each bird is a particle 
Subject to very simple forces: 
- attraction to center of neighbors 
- repulsion from individual neighbors 
- alignment toward average trajectory of neighbors 
Solve large system of ODEs (numerically!) 
Emergent complex behavior (also seen in fish, bees, ...)

attraction repulsion alignment

Credit: Craig Reynolds (see http://www.red3d.com/cwr/boids/)

http://www.red3d.com/cwr/boids/
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Particle Systems
More generally, model phenomena as 
large collection of particles 
Each particle has a behavior described 
by (physical or non-physical) forces 
Extremely common in graphics/games 
- easy to understand 
- simple equation for each particle 
- easy to scale up/down 
May need many particles to capture 
certain phenomena (e.g., fluids) 
- may require fast hierarchical data 

structure (kd-tree, BVH, ...) 
- often better to use continuum model
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Example: Crowds

Where are the bottlenecks in a building plan?
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Example: Crowds + “Rock” Dynamics
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Example: Particle-Based Fluids

(Fluid: particles or continuum?)
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Example: Granular Materials

Bell et al, “Particle-Based Simulation of Granular Materials”
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Example: Molecular Dynamics

(model of melting ice crystal)
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Example: Cosmological Simulation

Tomoaki et al - v2GC simulation of dark matter (~1 trillion particles)
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Example: Mass-Spring System
Connect particles x1, x2 by a spring of length L0 
Potential energy is given by

stiffness current length

rest length

Connect up many springs to describe interesting phenomena 
Extremely common in graphics/games 
- easy to understand 
- simple equation for each particle 
Often good reasons for using continuum model (PDE)
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Example: Mass Spring System
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Example: Mass Spring + Character
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Example: Hair
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Ok, I’m convinced. 
So how do we solve these 

things numerically?
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Numerical Integration
Key idea: replace derivatives with differences 
In ODE, only need to worry about derivative in time 
Replace time-continuous function q(t) with samples qk in 

“time step,” i.e., interval of 
time between qk and qk+1

new configuration 
(unknown—want to solve for this!) current configuration 

(known)

Wait... where do we 
evaluate the velocity 
function?  At the new 
or old configuration?



starts out slow...

...gradually moves faster & faster!
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Forward Euler
Simplest scheme: evaluate velocity at current configuration 
New configuration can then be written explicitly in terms of 
known data:

new configuration current configuration velocity at current time

Very intuitive: walk a tiny bit in the direction of the velocity 
Unfortunately, not very stable—consider pendulum:

Where did all this extra 
energy come from?
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Forward Euler - Stability Analysis
Let’s consider behavior of forward Euler for simple linear ODE:

Forward Euler approximation is

Which means after n steps, we have

Importantly: u should decay (exact solution is u(t)=e - at)

Decays only if |1-τa| < 1, or equivalently, if τ < 2/a 
In practice: need very small time steps if a is large (“stiff system”)



starts out slow...

...and eventually stops moving completely.
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Backward Euler
Let’s try something else: evaluate velocity at next configuration 
New configuration is then implicit, and we must solve for it:

new configuration current configuration velocity at next time

Much harder to solve, since in general f can be very nonlinear! 
Pendulum is now stable... perhaps too stable?

Where did all the 
energy go?
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Backward Euler - Stability Analysis
Again consider a simple linear ODE:

Backward Euler approximation is

Which means after n steps, we have

Remember: u should decay (exact solution is u(t)=e - at)

Decays if |1+τa| > 1, which is always true! 
⇒Backward Euler is unconditionally stable for linear ODEs



starts out slow...

...and keeps on ticking.
 CMU 15-462/662

Symplectic Euler
Backward Euler was stable, but we also saw (empirically) that it 
exibits numerical damping (damping not found in original eqn.) 
Nice alternative is symplectic Euler 
- update velocity using current configuration 
- update configuration using new velocity

Easy to implement; used often in practice (or leapfrog, Verlet, ...) 
Pendulum now conserves energy almost exactly, forever:

(Proof? The analysis 
is not quite as easy...)
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Numerical Integrators
Barely scratched the surface 
Many different integrators 
Why? Because many notions of “good”: 
- stability 
- accuracy 
- consistency/convergence 
- conservation, symmetry, ... 
- computational efficiency (!) 
No one “best” integrator—pick the right tool for the job! 
Could do (at least) an entire course on time integration... 
Great book: Hairer, Lubich, Wanner



Computer Graphics 
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Intoduction to 
Optimization (Part 1 of 2)



Use dynamics to drive motion 
Complexity from simple models 
Technique: numerical integration 
- formulate equations of motion 
- take little steps forward in time 
- general, powerful tool 
Today: numerical optimization 
- another general, powerful tool 
- basic idea: “ski downhill” to get a better solution 
- used everywhere in graphics (not just animation) 
- image processing, geometry, rendering, ...
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Last time: physically-based animation



...but wait, what about the coastline?
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What is an optimization problem?
Natural human desire: find the best solution among all 
possibilities (subject to certain constraints) 
E.g., cheapest flight, shortest route, tastiest restaurant ... 
Has been studied since antiquity, e.g., isoperimetric problem:

“The first optimization problem known in history was 
practically solved by Dido, a clever Phoenician princess, 
who left her Tyrian home and emigrated to North Africa, 
with all her property and a large retinue, because her 
brother Pygmalion murdered her rich uncle and husband 
Acerbas, and plotted to defraud her of the money which 
he left.  On landing in a bay about the middle of the north 
coast of Africa she obtained a grant from Hiarbas, the 
native chief of the district, of as much land as she could 
enclose with an ox-hide.  She cut the ox-hide into an 
exceedingly long strip, and succeeded in enclosing 
between it and the sea a very valuable territory on which 
she build Carthage.”

—Lord Kelvin, 1893

“Obvious” solution is a circle...
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Optimization in Graphics

Sumit Jain, Yuting Ye, and C. Karen Liu, “Optimization-based Interactive Motion 
Synthesis”

http://www.cc.gatech.edu/graphics/projects/Sumit/homepage/projects/phoward/index.html
http://www.cc.gatech.edu/graphics/projects/Sumit/homepage/projects/phoward/index.html
http://www.cc.gatech.edu/graphics/projects/Sumit/homepage/projects/phoward/index.html
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Optimization in Graphics

Niloy J. Mitra, Leonidas Guibas, Mark Pauly, “Symmetrization”

http://www.cc.gatech.edu/graphics/projects/Sumit/homepage/projects/phoward/index.html
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Optimization in Graphics

Moritz Bächer, Emily Whiting, Bernd Bickel, Olga Sorkine-Hornung, 
“Spin-It: Optimizing Moment of Inertia for Spinnable Objects”

http://baecher.info/
http://www.cs.dartmouth.edu/~emily/
http://graphics.ethz.ch/~bickelb/
http://igl.ethz.ch/people/sorkine/
http://www.cc.gatech.edu/graphics/projects/Sumit/homepage/projects/phoward/index.html
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Optimization in Graphics

Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt & Takeo Igarashi, 
“Pteromys: Interactive Design and Optimization of Free-formed Free-flight Model Airplanes”
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Continuous vs. Discrete Optimization
DISCRETE: 
- domain is a discrete set (e.g., finite or integers) 
- Example: best vegetable to put in a stew 

- Basic strategy? Try them all! (exponential) 
- sometimes clever strategy (e.g., MST) 
- more often, NP-hard (e.g., TSP) 

CONTINUOUS: 
- domain is not discrete (e.g., real numbers) 
- Example: best temperature to cook an egg 
- still many (NP-)hard problems, but also large classes of 

“easy” problems (e.g., convex)

file:///Users/keenan/Desktop/soup.svg
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Optimization Problem in Standard Form
Can formulate most continuous optimization problems this way:
“objective”: how much does solution x cost?

“constraints”: what must be true about x? (“x is feasible”)

Optimal solution x* has smallest value of f0 among all feasible x 
Q: What if we want to maximize something instead? 
A: Just flip the sign of the objective! 
Q: What if we want equality constraints, rather than inequalities? 
A: Include two constraints: g(x) ≤ c and g(x) ≤ -c

often (but not always) continuous, differentiable, ...
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Local vs. Global Minima
Global minimum is absolute best among all possibilities 
Local minimum is best “among immediate neighbors”

Philosophical question: does a local minimum “solve” the problem?
Depends on the problem! (E.g., real protein folding is local minimum)
Other times, local minima can be really bad (e.g., path planning)

global minimum

local minima
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Optimization Problem, Visualized

Q: Is this an optimization problem in standard form?
Q: Where is the optimal solution?

A: Yes.
A: There are two, (0,1), (0,-1).

(0,1)

(0,-1)
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Existence & Uniqueness of Minimizers
Already saw that (global) minimizer is not unique. 
Does it always exist?  Why? 
Just consider all possibilities and take the smallest one, right?

perfectly reasonable 
optimization 
problem

clearly has no solution 
(can always pick smaller x)

WRONG!  Not all objectives are bounded from below. 
It’s like that old adage: “no matter how good you are, 
there will always be someone better than you.” 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Feasibility
Ok, but suppose the objective is bounded from below. 
Then we can just take the best feasible solution, right?

Not if there aren’t any! 
Every system of equations is an optimization problem. 
But not all problems have solutions! 
(You’ll appreciate this more as you get older.)

value of objective doesn’t depend on x; 
all feasible solutions are equally good

problem now is just finding a feasible solution—
which can be really hard (or impossible!)
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Feasibility - Example
Q: Is this problem feasible?

A: No—the two sublevel sets (points where f_i(x) ≤ 0) 
have no common points, i.e., they do not overlap.
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Existence & Uniqueness of Minimizers, cont.
Even being bounded from below is not enough:

� �

� (�)

No matter how big x is, we never achieve the lower bound (0) 
So when does a solution exist?  Two sufficient conditions: 
Extreme value theorem: continuous objective & compact domain 
Coercivity: objective goes to +∞ as we travel (far) in any direction
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Characterization of Minimizers
Ok, so we have some sense of when a minimizer might exist 
But how do we know a given point x is a minimizer?

global minimum

local minima

Checking if a point is a global minimizer is (generally) hard 
But we can certainly test if a point is a local minimum (ideas?) 
(Note: a global minimum is also a local minimum!)



...but what about this point?
find points where
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Characterization of Local Minima
Consider an objective f0: R → R.  How do you find a minimum? 
(Hint: you may have memorized this formula in high school!)

Also need to check second derivative (how?) 
Make sure it’s positive 
Ok, but what does this all mean for more general functions f0?

must also satisfy
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Optimality Conditions (Unconstrained)
In general, our objective is f0: R → Rn  (goes to Rn, not just R) 
How do we test for a local minimum? 
1st derivative becomes gradient; 2nd derivative becomes Hessian

GRADIENT 
(measures “slope”) HESSIAN 

(measures “curvature”)

Optimality conditions? positive semidefinite (PSD) 
(uTAu ≥ 0 for all u)

1st order 2nd order
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Optimality Conditions (Constrained)
What if we have constraints? 
Is gradient at minimizer still zero? 
Is Hessian at minimizer still PSD? 
Not necessarily!  (See example above) 
In general, any (local or global) minimizer must at least 
satisfy the Karush–Kuhn–Tucker (KKT) conditions:

stationarity

primal feasibility

dual feasibility

complementary slackness

...we won’t work with these in this class!  
(But good to know where to look.)
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Convex Optimization
Special class of problems that are almost always “easy” to 
solve (polynomial-time!) 
Problem convex if it has a convex domain and convex objective

Why care about convex problems in graphics? 
- can make guarantees about solution (always the best) 
- doesn’t depend on initialization (strong convexity) 
- often quite efficient, but not always

convex objective

nonconvex objective
noconvex domain

convex domain


