
Computer Graphics
CMU 15-462/15-662

Dynamics and Time
Integration

Added motion to our model
Interpolate keyframes
Still a lot of work!
Today: physically-based animation
- often less manual labor
- often more compute-intensive
Leverage tools from physics
- dynamical descriptions
- numerical integration
Payoff: beautiful, complex behavior from simple models
Widely-used techniques in modern film (and games!)

 CMU 15-462/662

Last time: animation

 CMU 15-462/662

Dynamical Description of Motion

“Dynamics is concerned with the study of forces and their
effect on motion, as opposed to kinematics, which studies the
motion of objects without reference to its causes.”

—Sir Wiki Pedia, 2015

“A change in motion is proportional to the motive force
impressed and takes place along the straight line in which
that force is impressed.”

—Sir Isaac Newton, 1687

(Q: Is keyframe interpolation dynamic, or kinematic?)

 CMU 15-462/662

The Animation Equation
Already saw the rendering equation
What’s the animation equation?

force

mass

acceleration

 CMU 15-462/662

The “Animation Equation,” revisited
Well actually there are some more equations...
Let’s be more careful:
- Any system has a configuration
- It also has a velocity
- And some kind of mass
- There are probably some forces
- And also some constraints
E.g., could write Newton’s 2nd law as
Makes two things clear:
- acceleration is 2nd time derivative of configuration
- ultimately, we want to solve for the configuration q

 CMU 15-462/662

Generalized Coordinates
Often describing systems with many, many moving pieces
E.g., a collection of billiard balls, each with position xi

Collect them all into a single vector of generalized coordinates:

Can think of q as a single point moving along a trajectory in Rn
This way of thinking naturally maps to the way we actually solve
equations on a computer: all variables are often “stacked” into a
big long vector and handed to a solver.
(…So why not write things down this way in the first place?)

 CMU 15-462/662

Generalized Velocity
Not much more to say about generalized velocity: it’s the time
derivative of the generalized coordinates!

All of life (and physics) is just
traveling along a curve...

 CMU 15-462/662

Ordinary Differential Equations
Many dynamical systems can be described via an ordinary
differential equation (ODE) in generalized coordinates:

velocity functionchange in configuration over time

ODE doesn’t have to describe mechanical phenomenon, e.g.,

“rate of growth is proportional to value”

Solution?
Describes exponential decay (a < 1), or really great stock (a > 1)
“Ordinary” means “involves derivatives in time but not space”
We’ll talk about spatial derivatives (PDEs) in another lecture...

 CMU 15-462/662

Dynamics via ODEs
Another key example: Newton’s 2nd law!

“Second order” ODE since we take two time derivatives
Can also write as a system of two first order ODEs, by
introducing new “dummy” variable for velocity:

Splitting things up this way will make it easy to talk about
solving these equations numerically (among other things)

 CMU 15-462/662

Simple Example: Throwing a Rock
Consider a rock* of mass m tossed under force of gravity g
Easy to write dynamical equations, since only force is gravity:

*Yes, this rock is spherical and has uniform density.

or

Solution:

(What do we need a computer for?!)

 CMU 15-462/662

Slightly Harder Example: Pendulum
Mass on end of a bar, swinging under gravity
What are the equations of motion?
Same as “rock” problem, but constrained
Could use a “force diagram”
- You probably did this for many hours in

high school/college
- Let’s do something new & different!

 CMU 15-462/662

Lagrangian Mechanics
Beautifully simple recipe:
1. Write down kinetic energy
2. Write down potential energy
3. Write down Lagrangian
4. Dynamics then given by Euler-Lagrange equation

Why is this useful?
- often easier to come up with (scalar) energies than forces
- very general, works in any kind of generalized coordinates
- helps develop nice class of numerical integrators (symplectic)

Great reference: Sussman & Wisdom, “Structure and Interpretation of Classical Mechanics”

Joe Lagrange

becomes (generalized)
“MASS TIMES ACCELERATION” becomes (generalized) “FORCE”

 CMU 15-462/662

Lagrangian Mechanics - Example
Generalized coordinates for pendulum?

Kinetic energy (mass m)?

Potential energy?

Euler-Lagrange equations? (from here, just “plug and chug”—even a computer could do it!)

just one coordinate:
angle with the vertical direction

 CMU 15-462/662

Solving the Pendulum
Great, now we have a nice simple equation for the pendulum:

For small angles (e.g., clock pendulum) can approximate as

“harmonic oscillator”

In general, there is no closed form solution!
Hence, we must use a numerical approximation
...And this was (almost) the simplest system we can think of!
(What if we want to animate something more interesting?)

 CMU 15-462/662

Not-So-Simple Example: Double Pendulum
Blue ball swings from fixed point; green ball swings from blue one
Simple system... not-so-simple motion!
Chaotic: perturb input, wild changes to output
Must again use numerical approximation

 CMU 15-462/662

Not-So-Simple Example: n-Body Problem
Consider the Earth, moon, and sun—where do they go?
Solution is trivial for two bodies (e.g., assume one is fixed)
As soon as n ≥ 3, again get chaotic solutions (no closed form)
What if we want to simulate entire galaxies?

Credit: Governato et al / NASA

 CMU 15-462/662

For animation, we want to simulate
these kinds of phenomena!

 CMU 15-462/662

Example: Flocking

 CMU 15-462/662

Simulated Flocking as an ODE
Each bird is a particle
Subject to very simple forces:
- attraction to center of neighbors
- repulsion from individual neighbors
- alignment toward average trajectory of neighbors
Solve large system of ODEs (numerically!)
Emergent complex behavior (also seen in fish, bees, ...)

attraction repulsion alignment

Credit: Craig Reynolds (see http://www.red3d.com/cwr/boids/)

http://www.red3d.com/cwr/boids/

 CMU 15-462/662

Particle Systems
More generally, model phenomena as
large collection of particles
Each particle has a behavior described
by (physical or non-physical) forces
Extremely common in graphics/games
- easy to understand
- simple equation for each particle
- easy to scale up/down
May need many particles to capture
certain phenomena (e.g., fluids)
- may require fast hierarchical data

structure (kd-tree, BVH, ...)
- often better to use continuum model

 CMU 15-462/662

Example: Crowds

Where are the bottlenecks in a building plan?

 CMU 15-462/662

Example: Crowds + “Rock” Dynamics

 CMU 15-462/662

Example: Particle-Based Fluids

(Fluid: particles or continuum?)

 CMU 15-462/662

Example: Granular Materials

Bell et al, “Particle-Based Simulation of Granular Materials”

 CMU 15-462/662

Example: Molecular Dynamics

(model of melting ice crystal)

 CMU 15-462/662

Example: Cosmological Simulation

Tomoaki et al - v2GC simulation of dark matter (~1 trillion particles)

 CMU 15-462/662

Example: Mass-Spring System
Connect particles x1, x2 by a spring of length L0
Potential energy is given by

stiffness current length

rest length

Connect up many springs to describe interesting phenomena
Extremely common in graphics/games
- easy to understand
- simple equation for each particle
Often good reasons for using continuum model (PDE)

 CMU 15-462/662

Example: Mass Spring System

 CMU 15-462/662

Example: Mass Spring + Character

 CMU 15-462/662

Example: Hair

 CMU 15-462/662

Ok, I’m convinced.
So how do we solve these

things numerically?

 CMU 15-462/662

Numerical Integration
Key idea: replace derivatives with differences
In ODE, only need to worry about derivative in time
Replace time-continuous function q(t) with samples qk in

“time step,” i.e., interval of
time between qk and qk+1

new configuration
(unknown—want to solve for this!) current configuration

(known)

Wait... where do we
evaluate the velocity
function? At the new
or old configuration?

starts out slow...

...gradually moves faster & faster!
 CMU 15-462/662

Forward Euler
Simplest scheme: evaluate velocity at current configuration
New configuration can then be written explicitly in terms of
known data:

new configuration current configuration velocity at current time

Very intuitive: walk a tiny bit in the direction of the velocity
Unfortunately, not very stable—consider pendulum:

Where did all this extra
energy come from?

 CMU 15-462/662

Forward Euler - Stability Analysis
Let’s consider behavior of forward Euler for simple linear ODE:

Forward Euler approximation is

Which means after n steps, we have

Importantly: u should decay (exact solution is u(t)=e - at)

Decays only if |1-τa| < 1, or equivalently, if τ < 2/a
In practice: need very small time steps if a is large (“stiff system”)

starts out slow...

...and eventually stops moving completely.
 CMU 15-462/662

Backward Euler
Let’s try something else: evaluate velocity at next configuration
New configuration is then implicit, and we must solve for it:

new configuration current configuration velocity at next time

Much harder to solve, since in general f can be very nonlinear!
Pendulum is now stable... perhaps too stable?

Where did all the
energy go?

 CMU 15-462/662

Backward Euler - Stability Analysis
Again consider a simple linear ODE:

Backward Euler approximation is

Which means after n steps, we have

Remember: u should decay (exact solution is u(t)=e - at)

Decays if |1+τa| > 1, which is always true!
⇒Backward Euler is unconditionally stable for linear ODEs

starts out slow...

...and keeps on ticking.
 CMU 15-462/662

Symplectic Euler
Backward Euler was stable, but we also saw (empirically) that it
exibits numerical damping (damping not found in original eqn.)
Nice alternative is symplectic Euler
- update velocity using current configuration
- update configuration using new velocity

Easy to implement; used often in practice (or leapfrog, Verlet, ...)
Pendulum now conserves energy almost exactly, forever:

(Proof? The analysis
is not quite as easy...)

 CMU 15-462/662

Numerical Integrators
Barely scratched the surface
Many different integrators
Why? Because many notions of “good”:
- stability
- accuracy
- consistency/convergence
- conservation, symmetry, ...
- computational efficiency (!)
No one “best” integrator—pick the right tool for the job!
Could do (at least) an entire course on time integration...
Great book: Hairer, Lubich, Wanner

Computer Graphics
CMU 15-462/15-662

Intoduction to
Optimization (Part 1 of 2)

Use dynamics to drive motion
Complexity from simple models
Technique: numerical integration
- formulate equations of motion
- take little steps forward in time
- general, powerful tool
Today: numerical optimization
- another general, powerful tool
- basic idea: “ski downhill” to get a better solution
- used everywhere in graphics (not just animation)
- image processing, geometry, rendering, ...

 CMU 15-462/662

Last time: physically-based animation

...but wait, what about the coastline?
 CMU 15-462/662

What is an optimization problem?
Natural human desire: find the best solution among all
possibilities (subject to certain constraints)
E.g., cheapest flight, shortest route, tastiest restaurant ...
Has been studied since antiquity, e.g., isoperimetric problem:

“The first optimization problem known in history was
practically solved by Dido, a clever Phoenician princess,
who left her Tyrian home and emigrated to North Africa,
with all her property and a large retinue, because her
brother Pygmalion murdered her rich uncle and husband
Acerbas, and plotted to defraud her of the money which
he left. On landing in a bay about the middle of the north
coast of Africa she obtained a grant from Hiarbas, the
native chief of the district, of as much land as she could
enclose with an ox-hide. She cut the ox-hide into an
exceedingly long strip, and succeeded in enclosing
between it and the sea a very valuable territory on which
she build Carthage.”

—Lord Kelvin, 1893

“Obvious” solution is a circle...

 CMU 15-462/662

Optimization in Graphics

Sumit Jain, Yuting Ye, and C. Karen Liu, “Optimization-based Interactive Motion
Synthesis”

http://www.cc.gatech.edu/graphics/projects/Sumit/homepage/projects/phoward/index.html
http://www.cc.gatech.edu/graphics/projects/Sumit/homepage/projects/phoward/index.html
http://www.cc.gatech.edu/graphics/projects/Sumit/homepage/projects/phoward/index.html

 CMU 15-462/662

Optimization in Graphics

Niloy J. Mitra, Leonidas Guibas, Mark Pauly, “Symmetrization”

http://www.cc.gatech.edu/graphics/projects/Sumit/homepage/projects/phoward/index.html

 CMU 15-462/662

Optimization in Graphics

Moritz Bächer, Emily Whiting, Bernd Bickel, Olga Sorkine-Hornung,
“Spin-It: Optimizing Moment of Inertia for Spinnable Objects”

http://baecher.info/
http://www.cs.dartmouth.edu/~emily/
http://graphics.ethz.ch/~bickelb/
http://igl.ethz.ch/people/sorkine/
http://www.cc.gatech.edu/graphics/projects/Sumit/homepage/projects/phoward/index.html

 CMU 15-462/662

Optimization in Graphics

Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt & Takeo Igarashi,
“Pteromys: Interactive Design and Optimization of Free-formed Free-flight Model Airplanes”

 CMU 15-462/662

Continuous vs. Discrete Optimization
DISCRETE:
- domain is a discrete set (e.g., finite or integers)
- Example: best vegetable to put in a stew

- Basic strategy? Try them all! (exponential)
- sometimes clever strategy (e.g., MST)
- more often, NP-hard (e.g., TSP)

CONTINUOUS:
- domain is not discrete (e.g., real numbers)
- Example: best temperature to cook an egg
- still many (NP-)hard problems, but also large classes of

“easy” problems (e.g., convex)

file:///Users/keenan/Desktop/soup.svg

 CMU 15-462/662

Optimization Problem in Standard Form
Can formulate most continuous optimization problems this way:
“objective”: how much does solution x cost?

“constraints”: what must be true about x? (“x is feasible”)

Optimal solution x* has smallest value of f0 among all feasible x
Q: What if we want to maximize something instead?
A: Just flip the sign of the objective!
Q: What if we want equality constraints, rather than inequalities?
A: Include two constraints: g(x) ≤ c and g(x) ≤ -c

often (but not always) continuous, differentiable, ...

 CMU 15-462/662

Local vs. Global Minima
Global minimum is absolute best among all possibilities
Local minimum is best “among immediate neighbors”

Philosophical question: does a local minimum “solve” the problem?
Depends on the problem! (E.g., real protein folding is local minimum)
Other times, local minima can be really bad (e.g., path planning)

global minimum

local minima

 CMU 15-462/662

Optimization Problem, Visualized

Q: Is this an optimization problem in standard form?
Q: Where is the optimal solution?

A: Yes.
A: There are two, (0,1), (0,-1).

(0,1)

(0,-1)

 CMU 15-462/662

Existence & Uniqueness of Minimizers
Already saw that (global) minimizer is not unique.
Does it always exist? Why?
Just consider all possibilities and take the smallest one, right?

perfectly reasonable
optimization
problem

clearly has no solution
(can always pick smaller x)

WRONG! Not all objectives are bounded from below.
It’s like that old adage: “no matter how good you are,
there will always be someone better than you.” 

 CMU 15-462/662

Feasibility
Ok, but suppose the objective is bounded from below.
Then we can just take the best feasible solution, right?

Not if there aren’t any!
Every system of equations is an optimization problem.
But not all problems have solutions!
(You’ll appreciate this more as you get older.)

value of objective doesn’t depend on x;
all feasible solutions are equally good

problem now is just finding a feasible solution—
which can be really hard (or impossible!)

 CMU 15-462/662

Feasibility - Example
Q: Is this problem feasible?

A: No—the two sublevel sets (points where f_i(x) ≤ 0)
have no common points, i.e., they do not overlap.

 CMU 15-462/662

Existence & Uniqueness of Minimizers, cont.
Even being bounded from below is not enough:

� �

� (�)

No matter how big x is, we never achieve the lower bound (0)
So when does a solution exist? Two sufficient conditions:
Extreme value theorem: continuous objective & compact domain
Coercivity: objective goes to +∞ as we travel (far) in any direction

 CMU 15-462/662

Characterization of Minimizers
Ok, so we have some sense of when a minimizer might exist
But how do we know a given point x is a minimizer?

global minimum

local minima

Checking if a point is a global minimizer is (generally) hard
But we can certainly test if a point is a local minimum (ideas?)
(Note: a global minimum is also a local minimum!)

...but what about this point?
find points where

 CMU 15-462/662

Characterization of Local Minima
Consider an objective f0: R → R. How do you find a minimum?
(Hint: you may have memorized this formula in high school!)

Also need to check second derivative (how?)
Make sure it’s positive
Ok, but what does this all mean for more general functions f0?

must also satisfy

 CMU 15-462/662

Optimality Conditions (Unconstrained)
In general, our objective is f0: R → Rn (goes to Rn, not just R)
How do we test for a local minimum?
1st derivative becomes gradient; 2nd derivative becomes Hessian

GRADIENT
(measures “slope”) HESSIAN

(measures “curvature”)

Optimality conditions? positive semidefinite (PSD)
(uTAu ≥ 0 for all u)

1st order 2nd order

 CMU 15-462/662

Optimality Conditions (Constrained)
What if we have constraints?
Is gradient at minimizer still zero?
Is Hessian at minimizer still PSD?
Not necessarily! (See example above)
In general, any (local or global) minimizer must at least
satisfy the Karush–Kuhn–Tucker (KKT) conditions:

stationarity

primal feasibility

dual feasibility

complementary slackness

...we won’t work with these in this class!
(But good to know where to look.)

 CMU 15-462/662

Convex Optimization
Special class of problems that are almost always “easy” to
solve (polynomial-time!)
Problem convex if it has a convex domain and convex objective

Why care about convex problems in graphics?
- can make guarantees about solution (always the best)
- doesn’t depend on initialization (strong convexity)
- often quite efficient, but not always

convex objective

nonconvex objective
noconvex domain

convex domain

