Lecture 18:

Numerical Integration

Computer Graphics
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Motivation: The Rendering Equation

m Recall the rendering equation, which models light “bouncing
around the scene”:

LO(p/wO) — LE(P/W())‘|‘
fr(p, wi = wy)Li(p, w;) cos b dw;

How can we possibly evaluate this integral?
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Numerical Integration—Overview

— | EEEE

m |n graphics, many quantities we're
interested in are naturally expressed ==
as integrals (total brightness, total
area, ...)

m Forvery, very simple integrals, we can
compute the solution analytically 1., L
/0 %x dx

m For everything else, we have to
compute a numerical approximation

m Basicidea:
- integral is “area under curve”
- sample the function at many points

- Integral is approximated as
weighted sum G

fla
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Rendering: what are we integrating?

B Recall this view of the world:

Want to “sum up”—i.e., integrate!l—Iight from all directions
(But let’s start a little simpler...)
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Review: integral as “area under curve”

/a ' fla)da
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Review: fundamental theorem of calculus

/ f(2)de = F(b) — F(a)
’ d
f(z) =

@F(@




Simple case: constant function

deaz = (b—a)C
/
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Affine function: f (:13) —cr +d

[ s +1)(b - a)
£(b
f(@ -
(fla) + F0))
f(a)
r=a r =20b

Need only one sample of the function (at just the right place...)
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More general polynomials?
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Gaussian Quadrature

m For any polynomial of degree 2n-1, we can always obtain the
exact integral by sampling at a special set of n points and
taking a special weighted combination

A &
\ \
I

n=4
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Key idea so far:
To approximate an integral, we need
() quadrature points, and
(i1) weights for each point

[ fe ax~ L wfe)




Arbitrary function f(x)?

f(z)



Trapezoid rule

Approximate integral of f by approximating f with a piecewise
affine function.
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Trapezoid rule

Consider cost and accuracy of estimateas n — oo (orh — 0)
Work: O(n)
Error can be shown to be: O(»?) = O(

f(z)

1
—)
(for f(x) with continuous second derivative)
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What about a 2D function?

How should we approximate the area underneath?



Integration in 2D

Consider integrating f(z, y)using the trapezoidal rule
(apply rule twice: when integratinginxand in y)

Errors add, so error still: O( h2) Must perform much more work in 2D to get

same error bound on integral!
InK-D, let N = »n*

1
Error goes as: O ( > /k)

But work is now: O(n?)
(n X n set of measurements)
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Curse of Dimensionality

® How much does it cost to apply the trapezoid
rule as we go up in dimension?

- 1D: O(n)
- 2D: 0(n2)

- kD: O(n¥)

® For many problems in graphics (like
rendering), k is very, very big (e.g., tens or
hundreds or thousands)

m Applying trapezoid rule does not scale!
B Need a fundamentally different approach...
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Monte Carlo Integration

Credit: many of these slides were created by Matt Pharr and Pat Hanrahan MU 15-462/662



Monte Carlo Integration

So far we've discussed techniques that use
a fixed set of sample points (e.g., uniformly
spaced, or obtained by finding roots of
polynomial (Gaussian quadrature))

m  Estimate value of integral using random sampling of function !

- Value of estimate depends on random samples used

- But algorithm gives the correct value of integral “on average”

B Only requires function to be evaluated at random points on its domain

- Applicable to functions with discontinuities, functions that are

impossible to integrate directly

B Error of estimate is independent of the dimensionality of the integrand

- Depends on the number of random samples used: O (n~1/2)

Recall previous trapezoidal rule example: O (n

(dropping the n2 for simplicity)

—1/k)

(MU 15-462/662



Review: random variables

X random variable. Represents a distribution of
potential values

X ~ p(x) probability density function (PDF). Describes relative
probability of a random process choosing value

Uniform PDF: all values over a domain are equally likely

. . | ©_ ©
e.g., for an unbiased die - BRI
X takesonvalues1,2,3,4,5,6 ZTo\ o. —
p(1) = p(2) = p(3) = p(4) = p(5) = p(6) o o
\ F 4
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Discrete probability distributions

n discrete values z;

With probability p:

Requirements of a PDF: T
pi = 0

ZP@ =1
i=1
1

Six-sided die example: p; = -

Think: D; is the probability that a random measurement of _X will yield the value x;
X takes on the value ; with probability p;
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Cumulative distribution function (CDF)

(For a discrete probability distribution)

j
Cumulative PDF: P, = 'p,
1=1

where:
0< P, <1

P, =1
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How do we generate samples of a discrete
random variable (with a known PDF?)



Sampling from discrete probability

distributions
To randomly select an event, ‘:D
select z; if

P1 <& P

T

Uniform random variable € [0, 1)

(MU 15-462/662



Continuous probability distributions

Uniform distribution

(for random variable _X defined on [0,1] domain)

PDF p(z)

_PG) - Pl) 0 1
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Sampling continuous random variables
using the inversion method

Cumulative probability distribution function
P(x) = Pr(X < x)

Construction of samples:
Solve for z = P~ (¢)

Must know the formula for:
1. The integral of p(z)
2. The inverse function P~ (x)
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Example—Sampling Quadratic Distribution

X) .= — X 2
m Asatoy example, consider the simple " >0

probability distribution p(x) := 3(1-x)

over the interval [0,1] P(x) = x” — 32"+ 3x

B How do we pick random samples
distributed according to p(x)?

® First, integrate probability /O 3(1 - x)*dx =5° — 3s% +3s
distribution p(x) to get cumulative 1
distribution P(x) x=1-(1-y)3

m [nvert P(x) by solving y = P(x) for x

® Finally, plug uniformly distributed
random values y in [0,1] into this
expression
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How do we uniformly

sample the unit circle?

l.e., choose any point P=(px, py) in circle with equal probability)
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Uniformly sampling unit circle: first try

m () =uniform random angle between 0 and 27
® 7" = uniform random radius between 0 and 1
m Return point: (7 cos 6, rsin 6)

This algorithm does not produce the desired uniform sampling of
the area of a circle. Why?
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Because sampling is not uniform in area!
Points farther from center of circle are less likely to be chosen

9:27'('51 ”I":fg

=

-

S0 how should we pick samples? Well, think about
how we integrate over a disk in polar coordinates...
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Sampling a circle (via inversion in 2D)

27 1 1 27 TQ 1 D
A:/ / rdrdé’:/ rdr/ df = (—) 0 =
0 0 0 0 2 0 10

1

so that we integrate to

/ 1instead of area

p(r,0)drdf = —rdrdf — p(r,0) =

r
(s (s

p(r,0) =1p(r)p(6’) “— 7 independent / rdd N\ pdrds
p(0) = 5 f %\ \
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Uniform area sampling of a circle

RIGHT
probability is nonuniform;
samples are uniform

WRONG
probability is uniform;
samples are not!
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Uniform sampling via rejection sampling

Completely different idea: pick uniform samples in square (easy)
Then toss out any samples not in square (easy)

Efficiency of technique: area of circle / area of square
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Efficiency of Rejection Sampling

m |f the region we care ahout covers only a very small fraction of
the region we're sampling, rejection is probably a bad idea:

————————————————————————————

ke e e e e e e e e e e e e o e e e e e e mmm e e e e e m—

Smarter in this case to “warp” our
random variables to follow the spiral.

(MU 15-462/662



