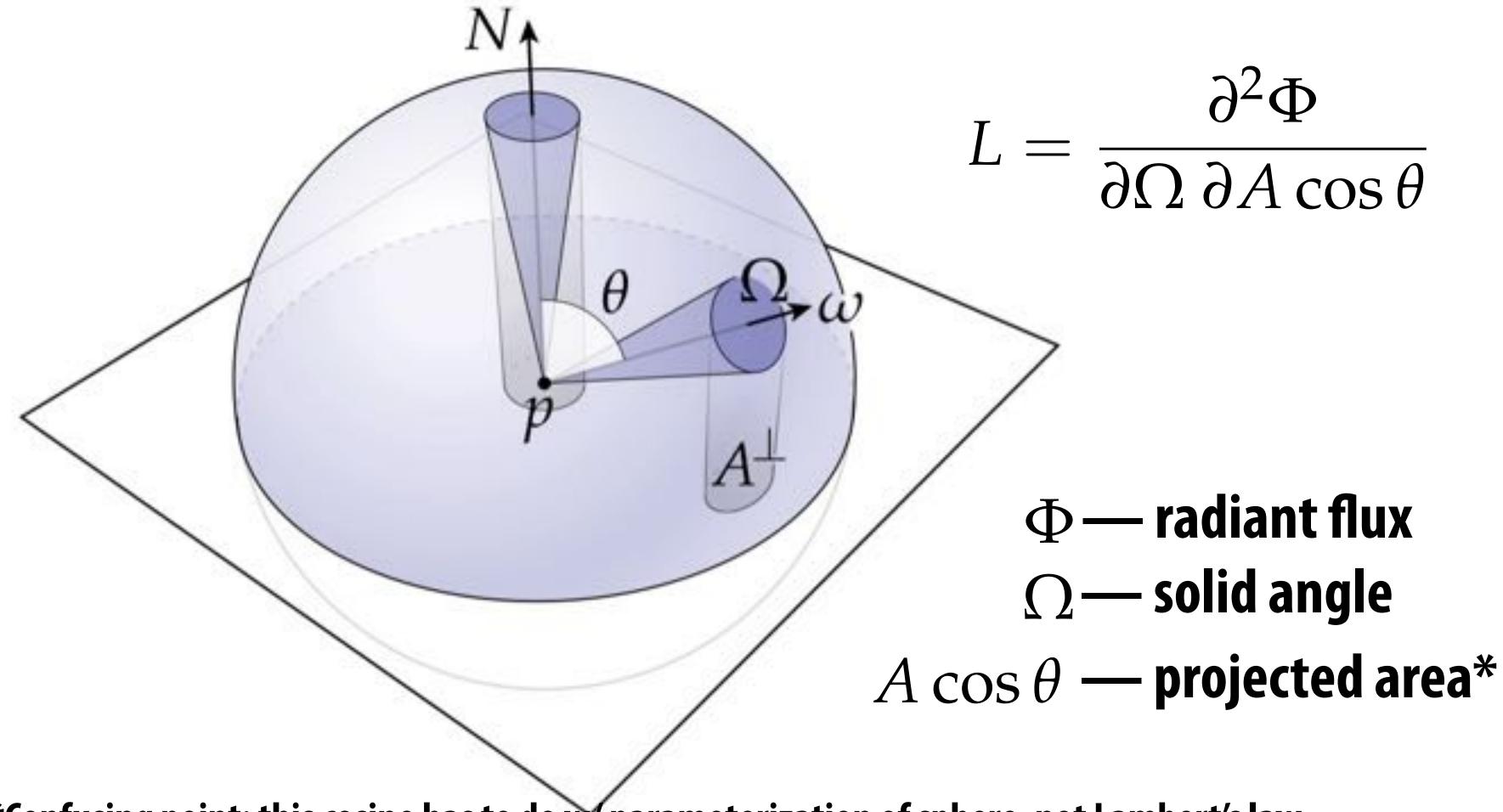
The Rendering Equation

Computer Graphics CMU 15-462/15-662

Review: What is radiance?

Radiance at point p in direction N is radiant energy ("#hits") per unit time, per solid angle, per unit area perpendicular to N.



*Confusing point: this cosine has to do w/ parameterization of sphere, not Lambert's law

Intuition: Radiance and Irradiance

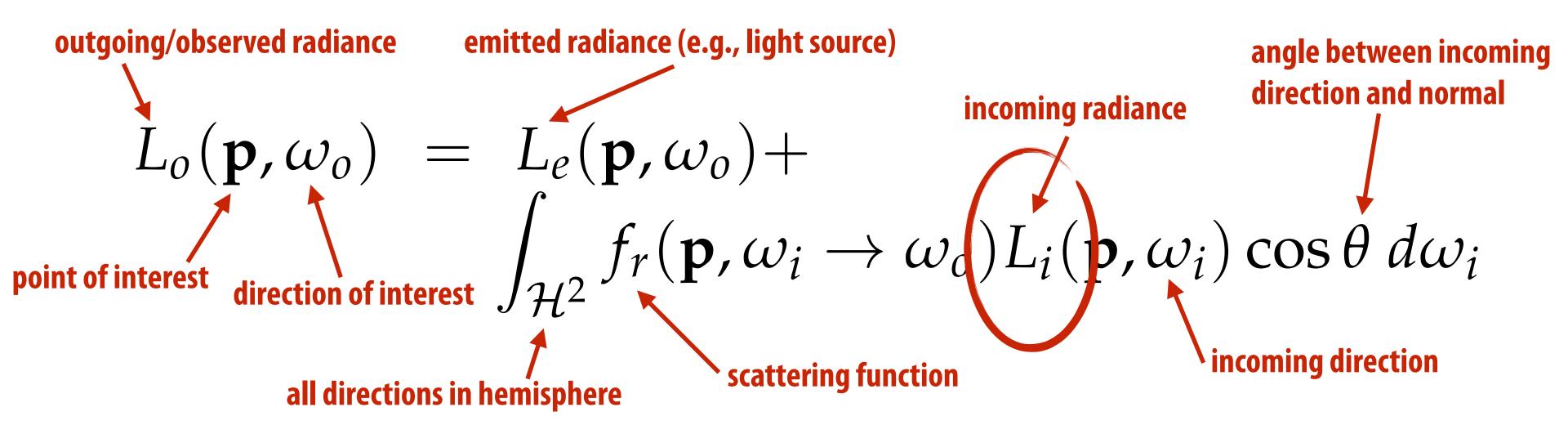
Incident vs. Exitant Radiance

INCIDENT

In both cases: intensity of illumination is highly dependent on direction (not just location in space or moment in time).

The Rendering Equation

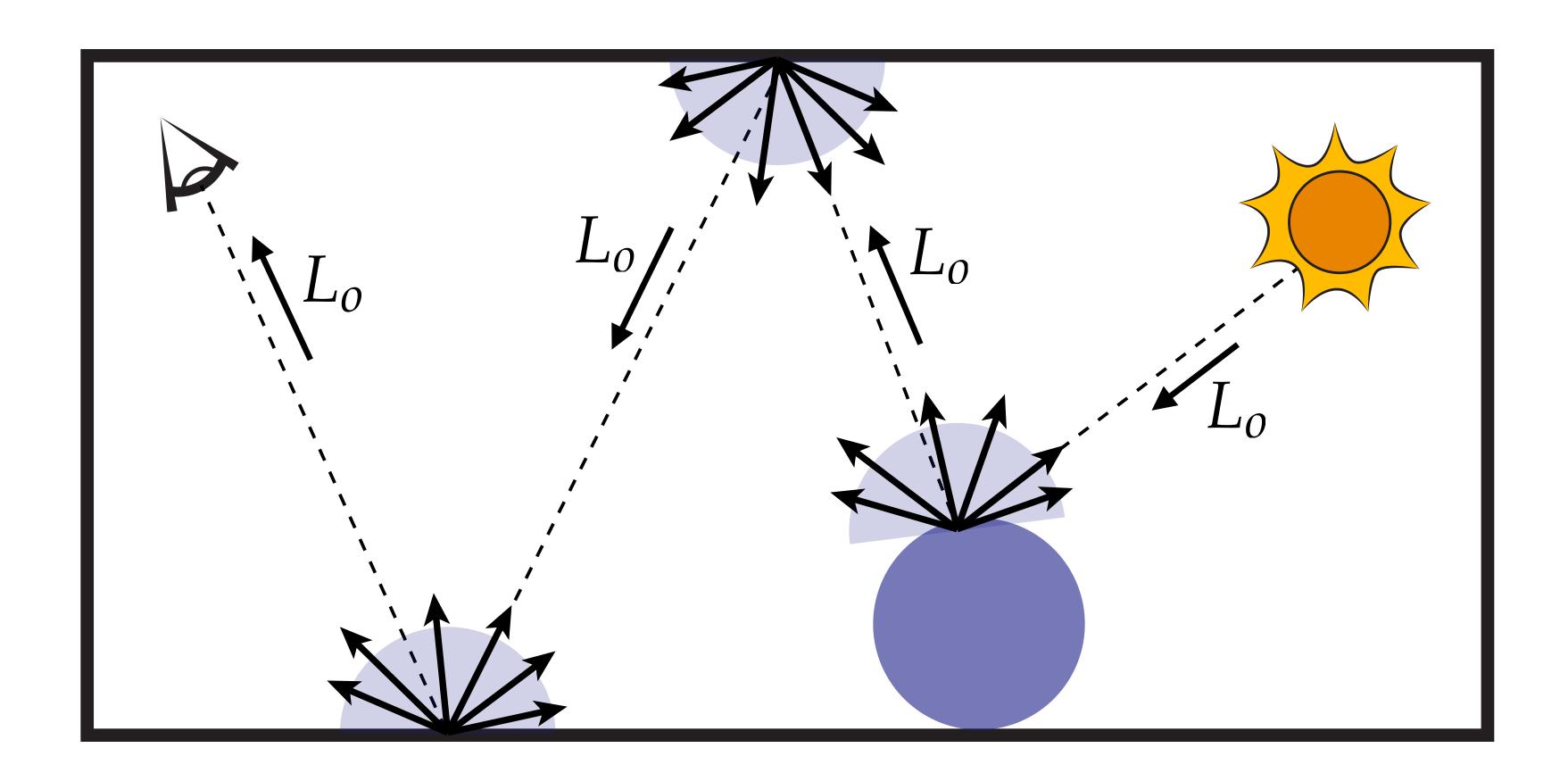
- Core functionality of photorealistic renderer is to estimate radiance at a given point p, in a given direction $ω_0$
- Summed up by the rendering equation (Kajiya):



Key challenge: to evaluate incoming radiance, we have to compute yet another integral. I.e., rendering equation is recursive.

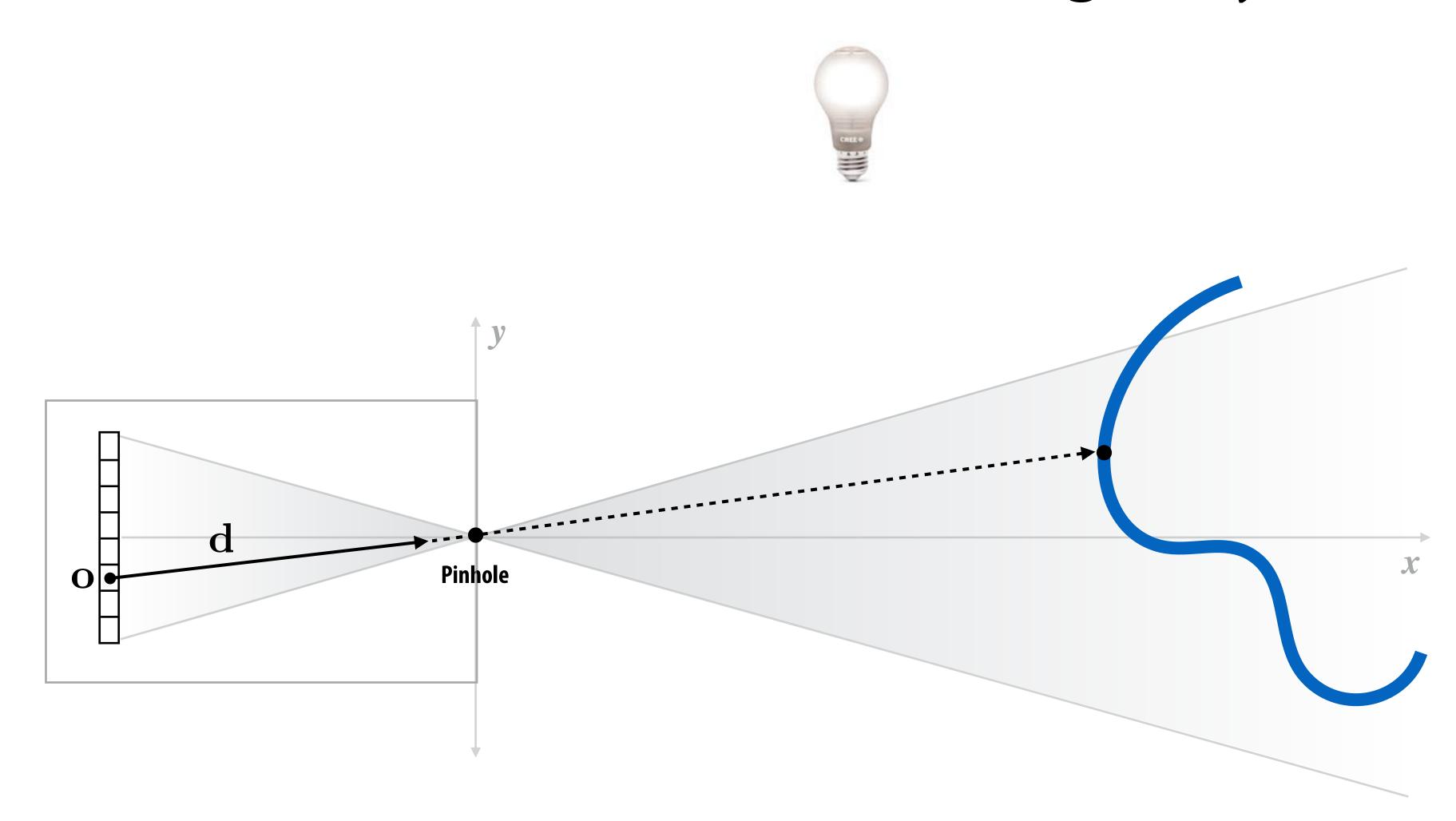
Recursive Raytracing

■ Basic strategy: recursively evaluate rendering equation!



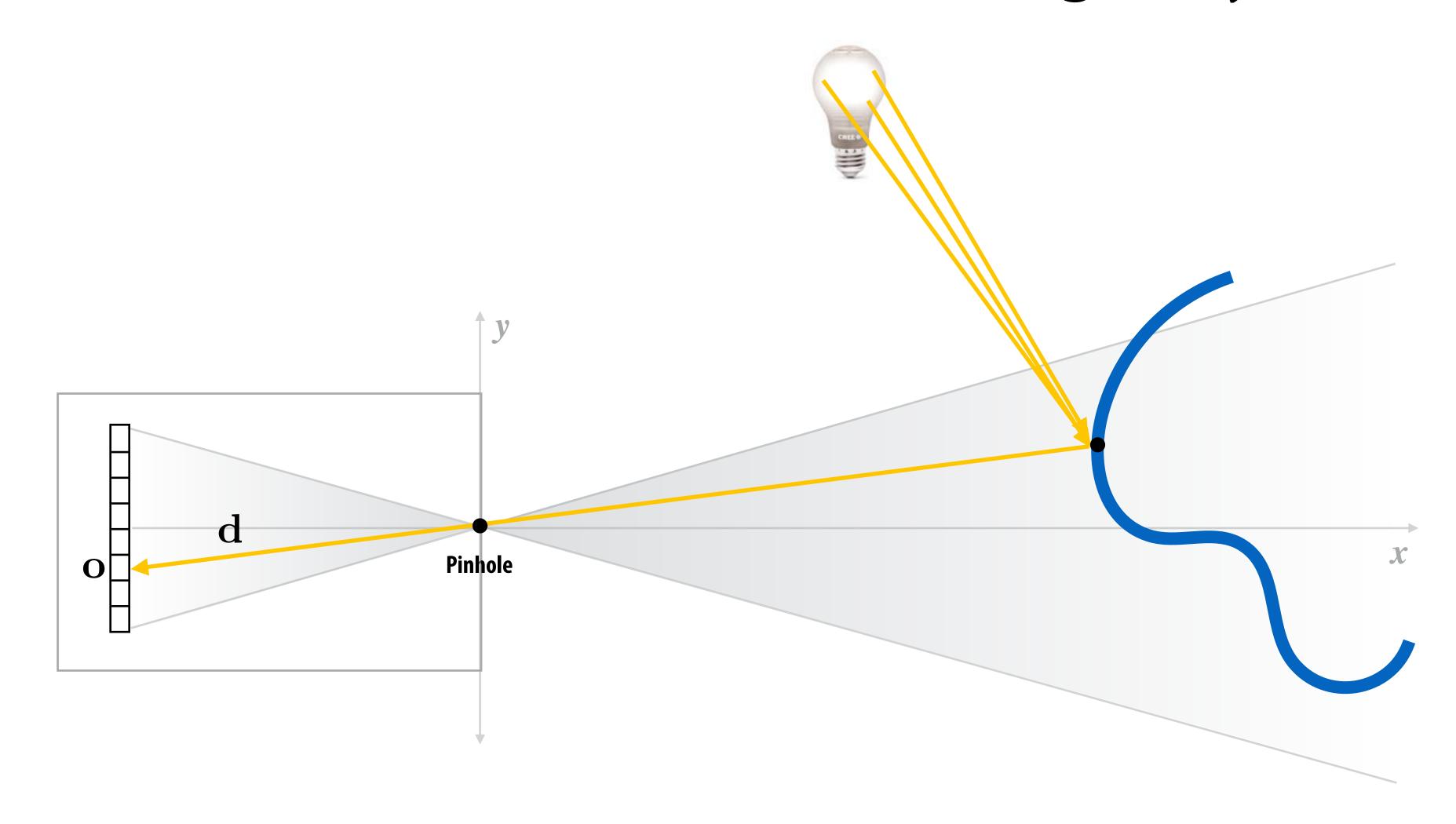
(This is why you're writing a ray tracer—rasterizer isn't enough!)

Renderer measures radiance along a ray

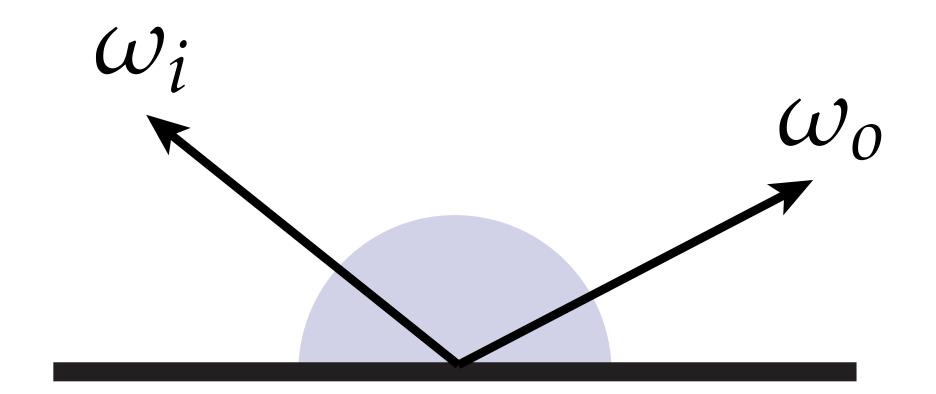


At each "bounce," want to measure radiance traveling in the direction opposite the ray direction.

Renderer measures radiance along a ray



Radiance entering camera in direction d = light from scene light sources that is reflected off surface in direction d.



How does reflection of light affect the outgoing radiance?

$$L_o(\mathbf{p}, \omega_o) = \int_{\mathcal{H}^2} f_r(\mathbf{p}, \omega_i, \omega_o) \mathbf{L}_i(\mathbf{p}, \omega_i) \cos \theta \, d \, \omega_i$$

Reflection models

- Reflection is the process by which light incident on a surface interacts with the surface such that it leaves on the incident (same) side without change in frequency
- Choice of reflection function determines surface appearance

Some basic reflection functions

Ideal specular
Perfect mirror

- Glossy specular
 Majority of light distributed in reflection direction
- Retro-reflective
 Reflects light back toward source

Diagrams illustrate how incoming light energy from given direction is reflected in various directions.

Materials: diffuse

Materials: plastic

Materials: red semi-gloss paint

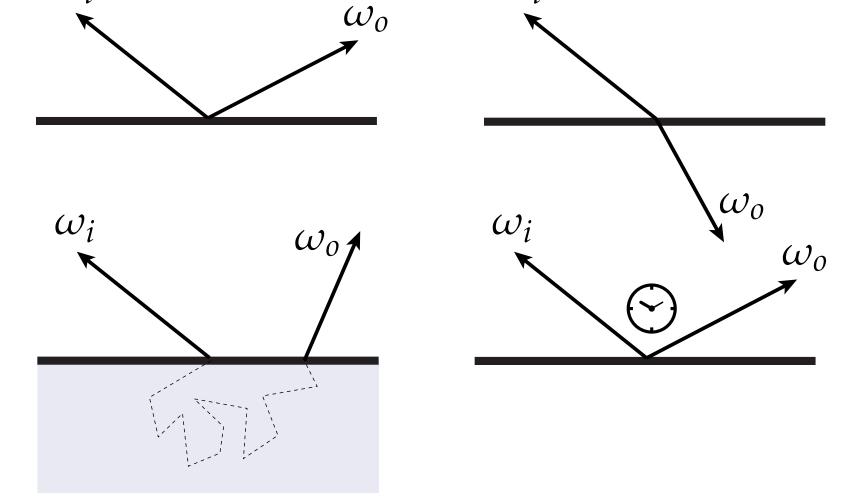
Materials: Ford mystic lacquer paint

Materials: mirror

Materials: gold

Models of Scattering

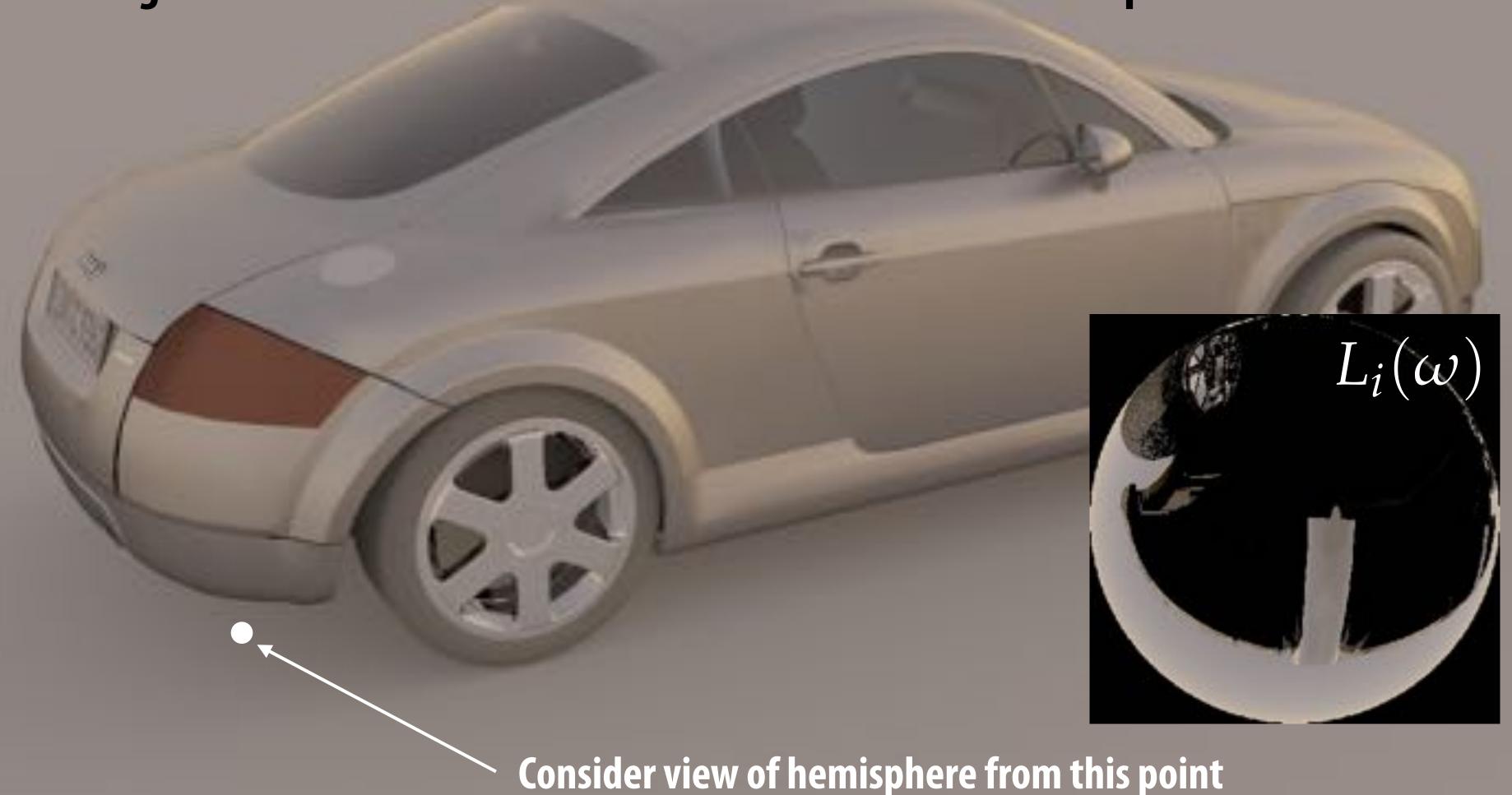
- How can we model "scattering" of light?
- Many different things that could happen to a photon:
 - bounces off surface
 - transmitted through surface
 - bounces around inside surface
 - absorbed & re-emitted
 - -



- What goes in must come out! (Total energy must be conserved)
- In general, can talk about "probability*" a particle arriving from a given direction is scattered in another direction

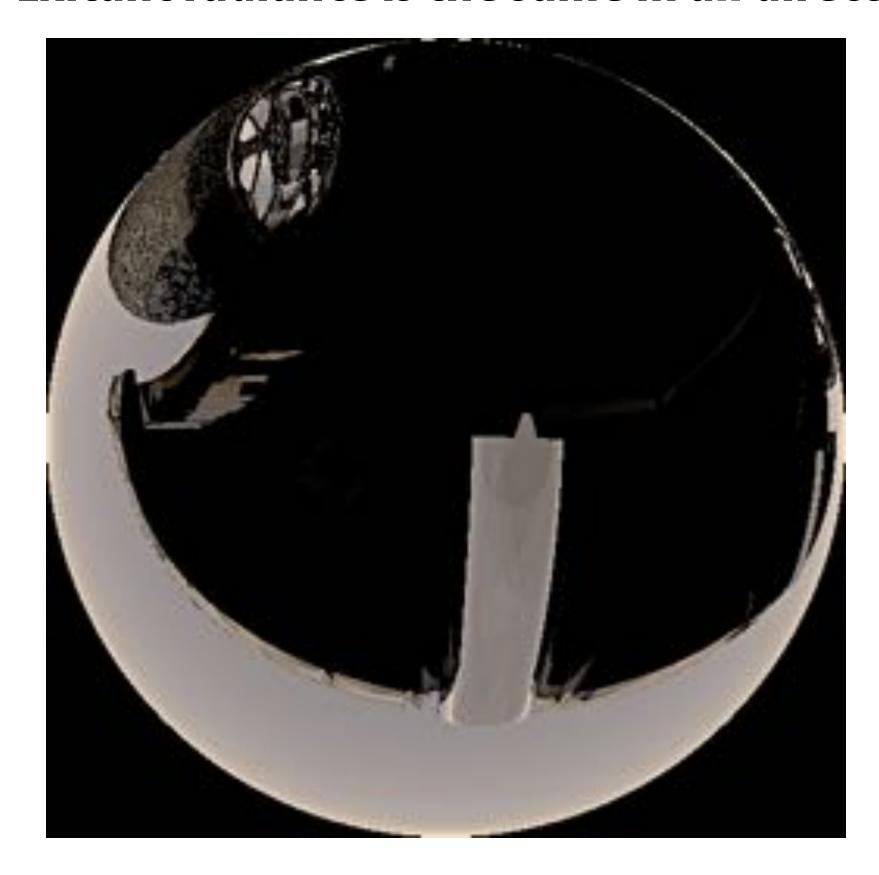
Hemispherical incident radiance

At any point on any surface in the scene, there's an incident radiance field that gives the directional distribution of illumination at the point

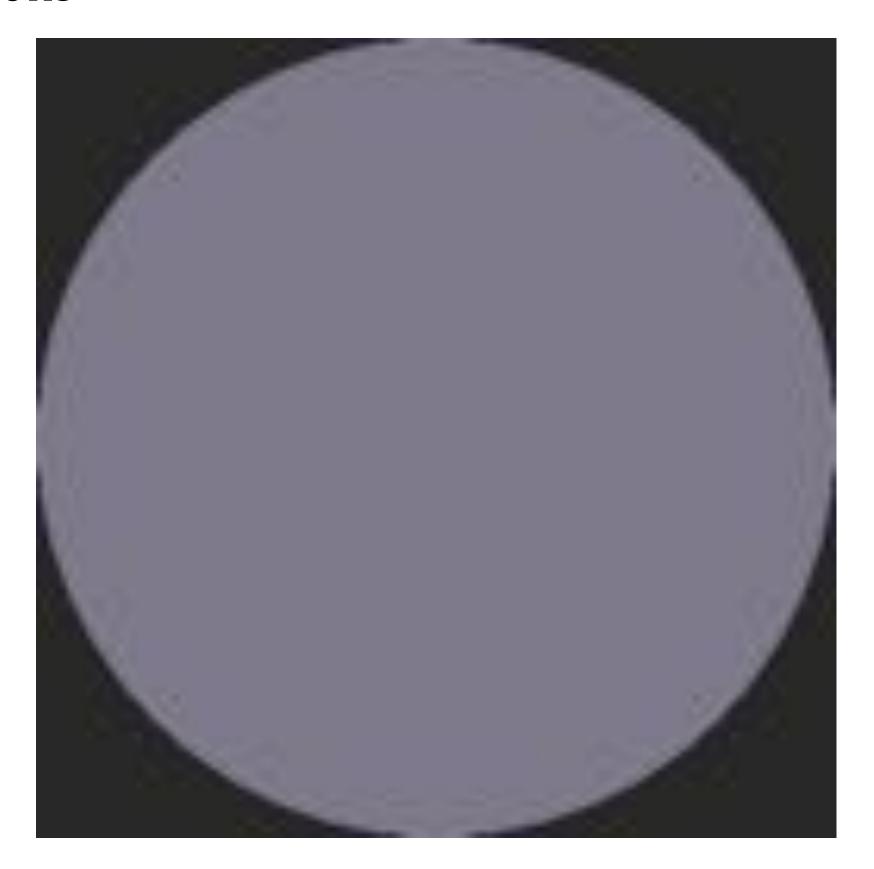


Diffuse reflection

Exitant radiance is the same in all directions



Incident radiance



Exitant radiance

Ideal specular reflection

Incident radiance is "flipped around normal" to get exitant radiance

Incident radiance

Exitant radiance

Plastic

Incident radiance gets "flipped and blurred"

Incident radiance

Exitant radiance

Copper

More blurring, plus coloration (nonuniform absorption across frequencies)

Incident radiance

Exitant radiance

Scattering off a surface: the BRDF

- "Bidirectional reflectance distribution function"
- Encodes behavior of light that "bounces off" surface
- Given incoming direction ω_i , how much light gets scattered in

any given outgoing direction ω_0 ?

Describe as distribution $f_r(\omega_i \rightarrow \omega_o)$

$$f_r(\omega_i \to \omega_o) \ge 0$$

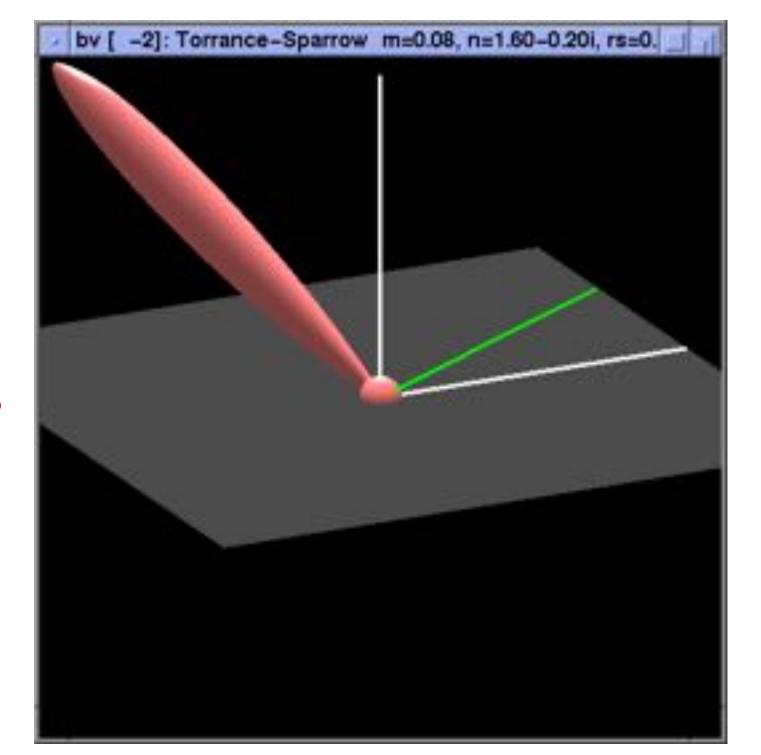
why less than or equal?

$$\int_{\mathcal{H}^2} f_r(\omega_i \to \omega_o) \cos \theta \, d\omega_i = 1$$

where did the rest of the energy go?!

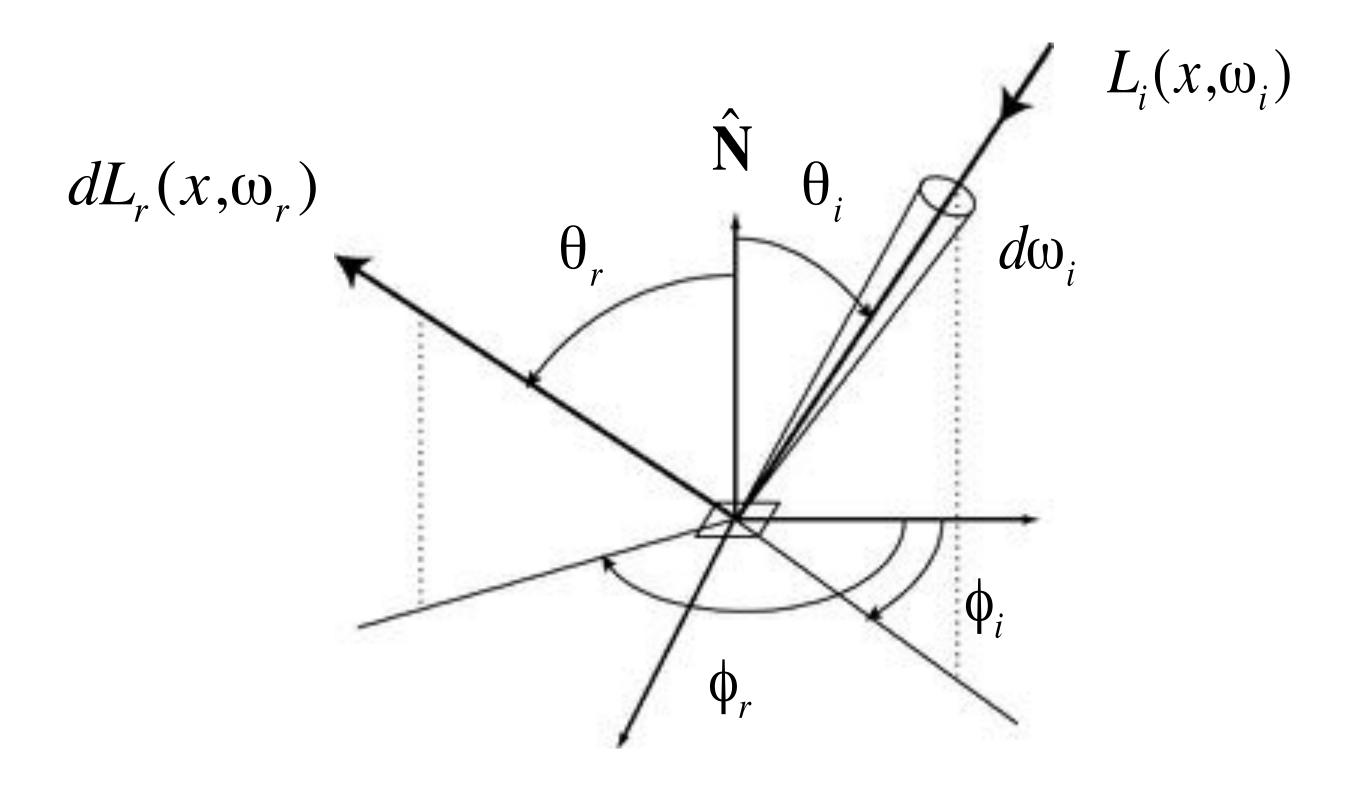
$$f_r(\omega_i \to \omega_o) = f_r(\omega_o \to \omega_i)$$

"Helmholtz reciprocity"



bv (Szymon Rusinkiewicz)

Radiometric description of BRDF

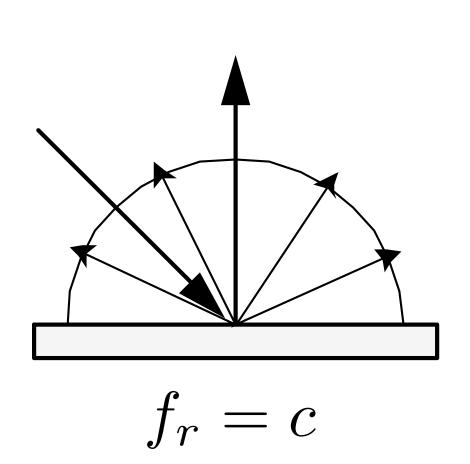


$$f_r(\omega_i \to \omega_o) = \frac{dL_o(\omega_o)}{dE_i(\omega_i)} = \frac{dL_o(\omega_o)}{dL_i(\omega_i)\cos\theta_i} \left[\frac{1}{sr}\right]$$

"For a given change in the incident irradiance, how much does the exitant radiance change?"

Example: Lambertian reflection

Assume light is equally likely to be reflected in each output direction

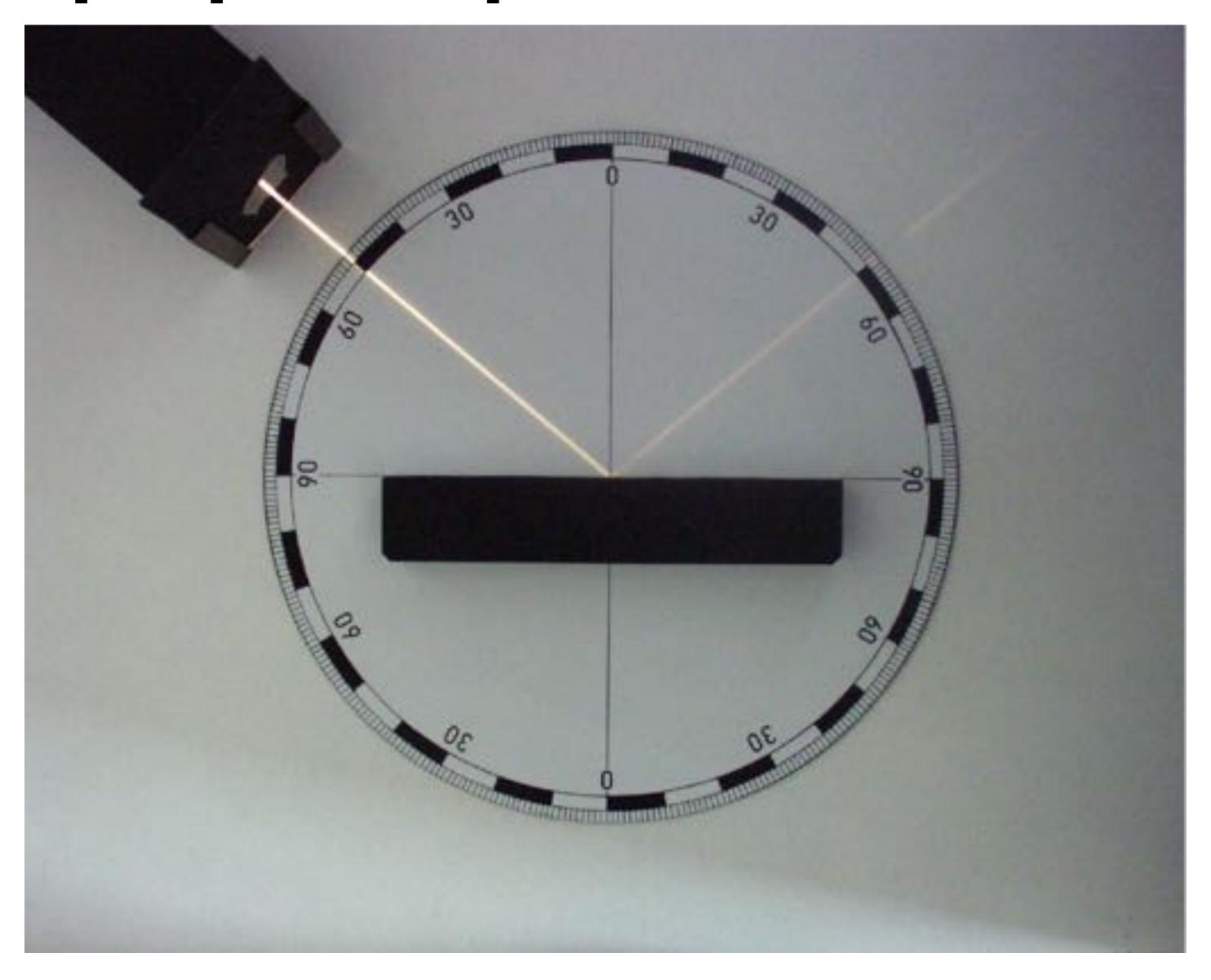


$$L_o(\omega_o) = \int_{H^2} f_r L_i(\omega_i) \cos \theta_i d\omega_i$$
$$= f_r \int_{H^2} L_i(\omega_i) \cos \theta_i d\omega_i$$
$$= f_r E$$

"albedo" (between 0 and 1)

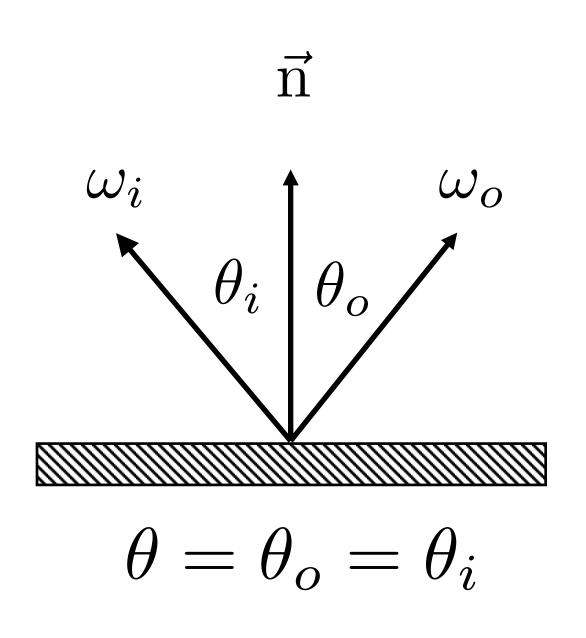
$$f_r = \frac{\rho}{\pi}$$

Example: perfect specular reflection

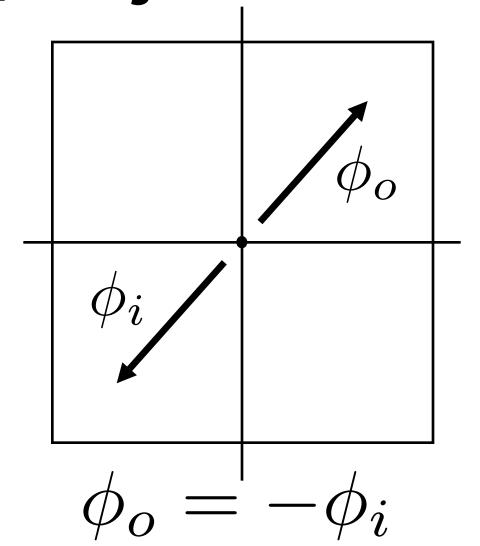


[Zátonyi Sándor]

Geometry of specular reflection

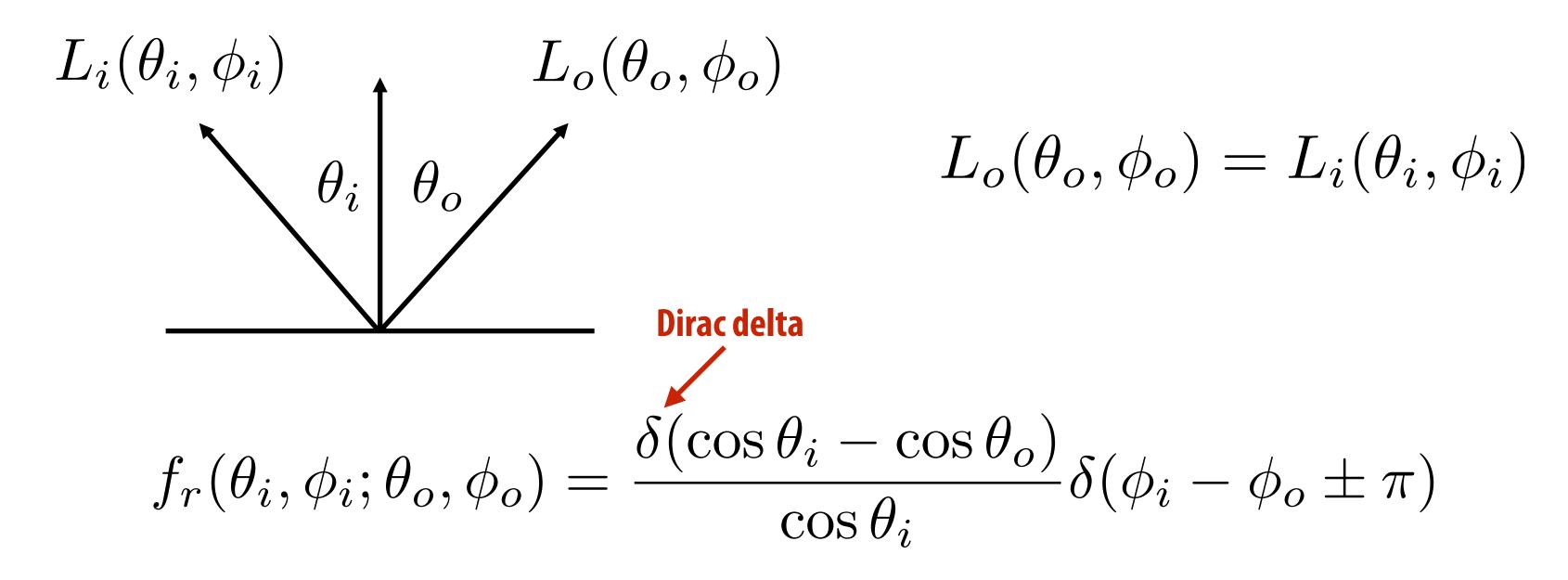


Top-down view (looking down on surface)



$$\omega_o = -\omega_i + 2(\omega_i \cdot \vec{\mathbf{n}})\vec{\mathbf{n}}$$

Specular reflection BRDF



- Strictly speaking, f_r is a distribution, not a function
- In practice, no hope of finding reflected direction via random sampling; simply pick the reflected direction!

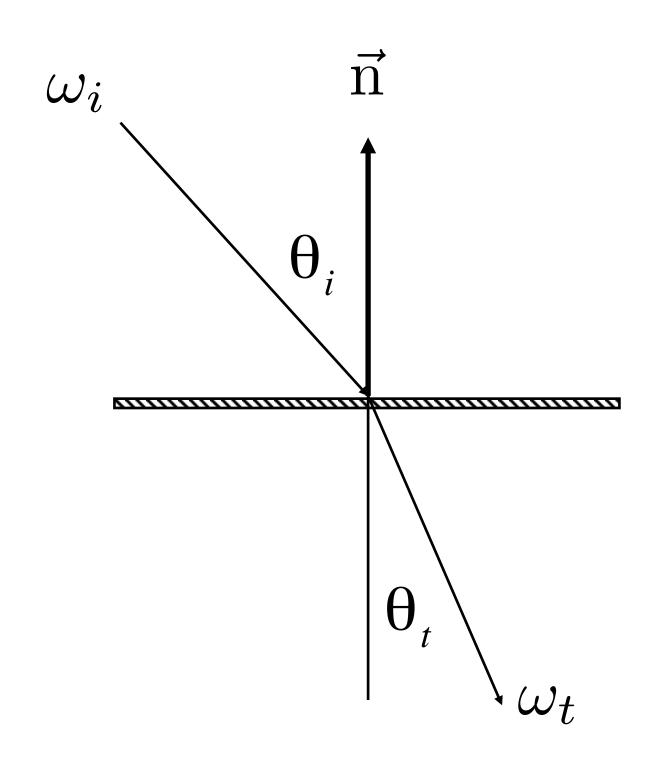
Transmission

In addition to reflecting off surface, light may be transmitted through surface.

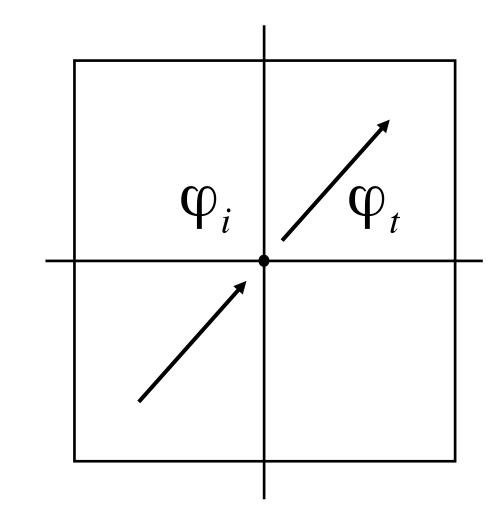
Light refracts when it enters a new medium.

Snell's Law

Transmitted angle depends on index of refraction of medium incident ray is in and index of refraction of medium light is entering.



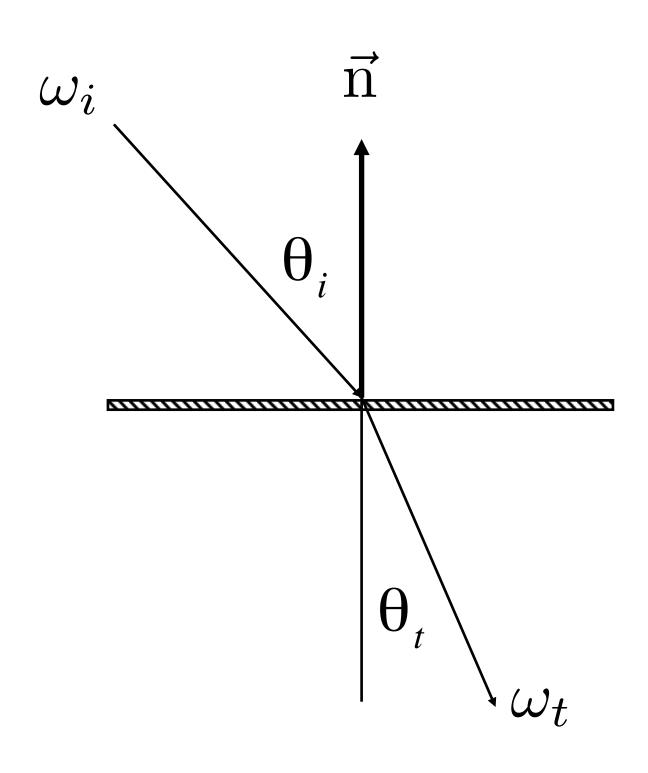
 $\eta_i \sin \theta_i = \eta_t \sin \theta_t$



Medium	η *
Vacuum	1.0
Air (sea level)	1.00029
Water (20°C)	1.333
Glass	1.5-1.6
Diamond	2.42

^{*} index of refraction is wavelength dependent (these are averages)

Law of refraction



$$\eta_i \sin \theta_i = \eta_t \sin \theta_t$$

$$\cos \theta_t = \sqrt{1 - \sin^2 \theta_t}$$

$$= \sqrt{1 - \left(\frac{\eta_i}{\eta_t}\right)^2 \sin^2 \theta_i}$$

$$= \sqrt{1 - \left(\frac{\eta_i}{\eta_t}\right)^2 (1 - \cos^2 \theta_i)}$$

Total internal reflection:

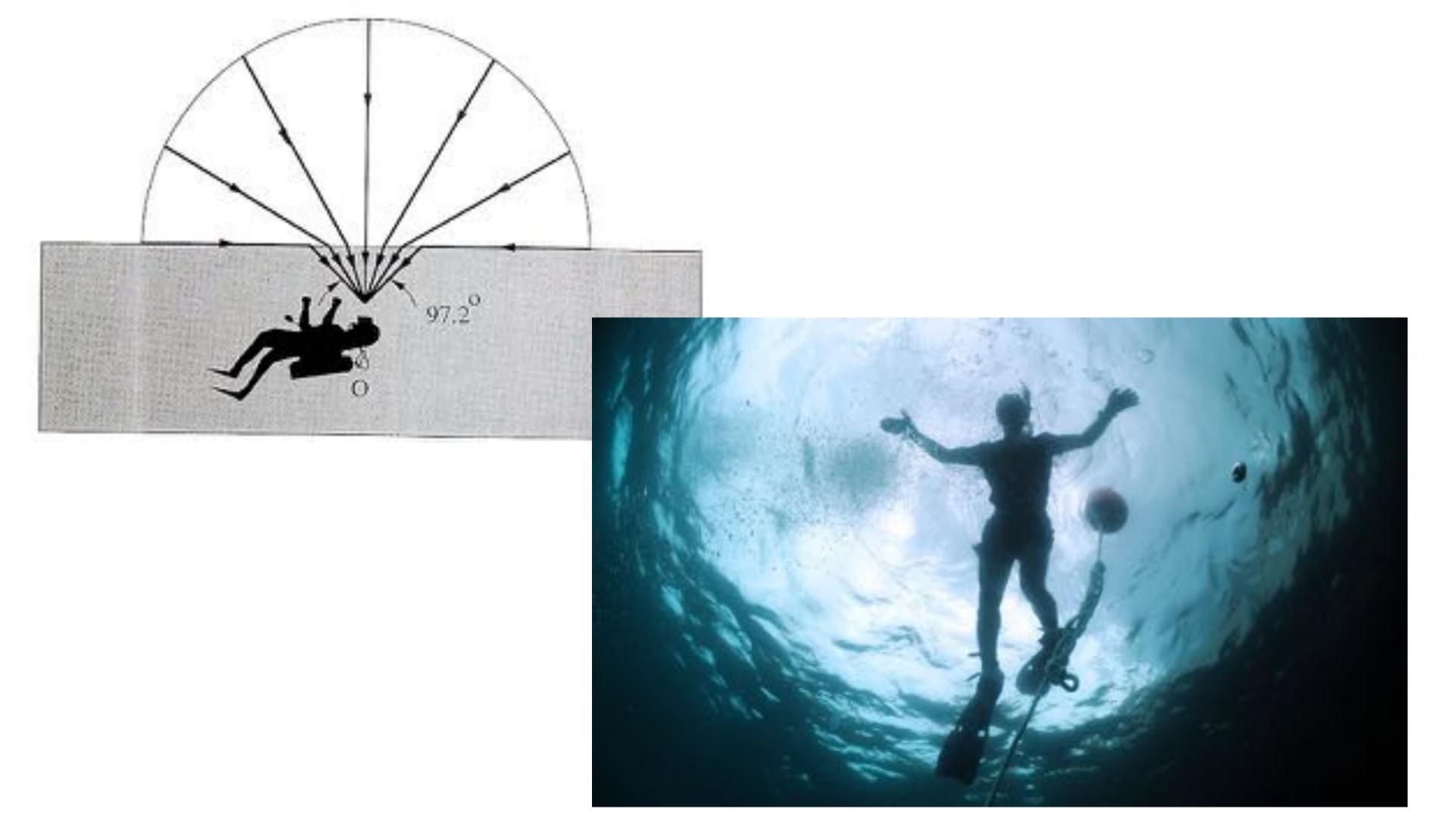
When light is moving from a more optically dense medium to a less optically dense medium: $\frac{\eta_i}{2}>1$

Light incident on boundary from large enough angle will not exit medium.

$$1 - \left(\frac{\eta_i}{\eta_t}\right)^2 \left(1 - \cos^2 \theta_i\right) < 0$$

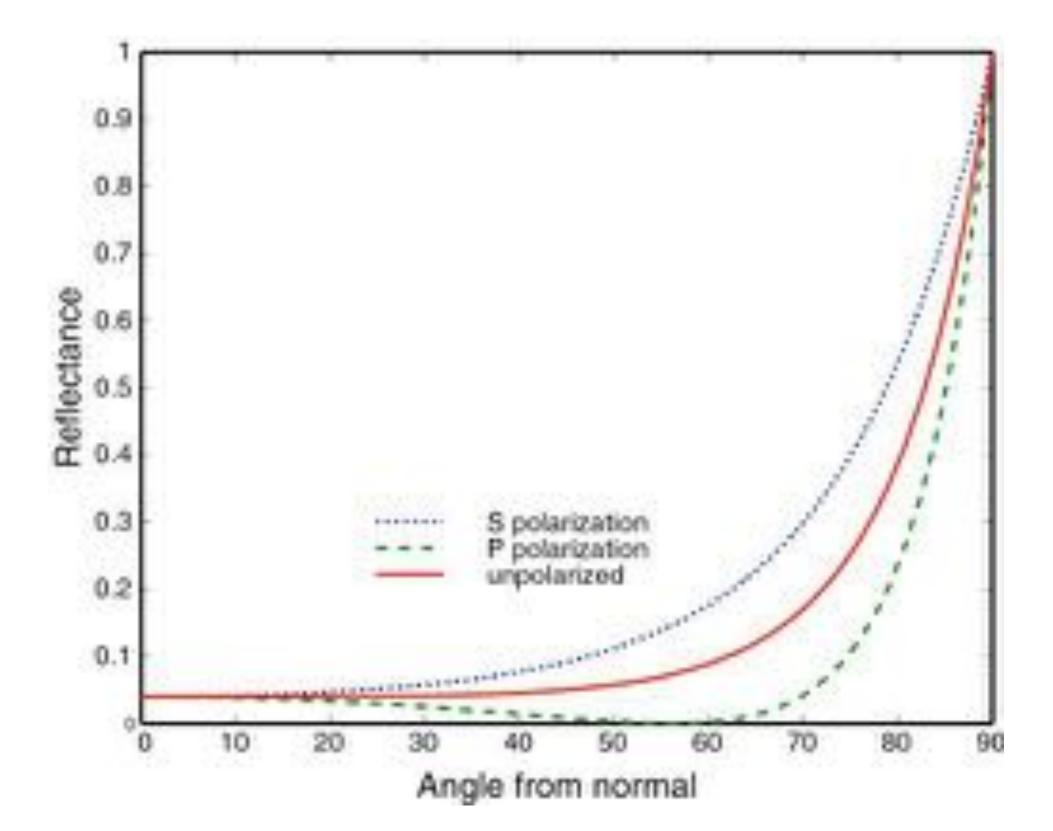
Optical manhole

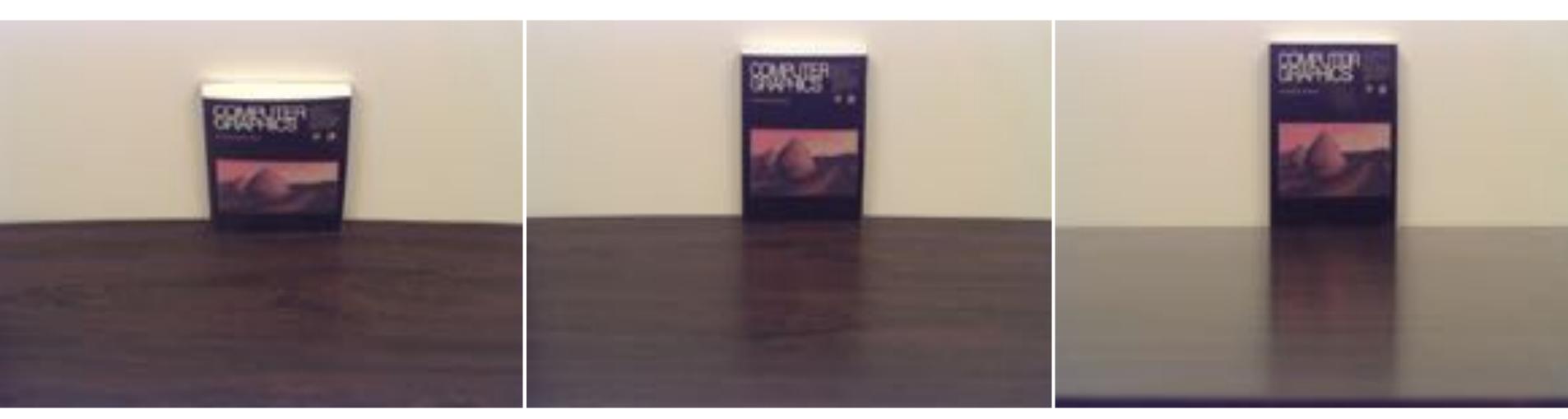
Only small "cone" visible, due to total internal reflection (TIR)



Fresnel reflection

Many real materials: reflectance increases w/ viewing angle

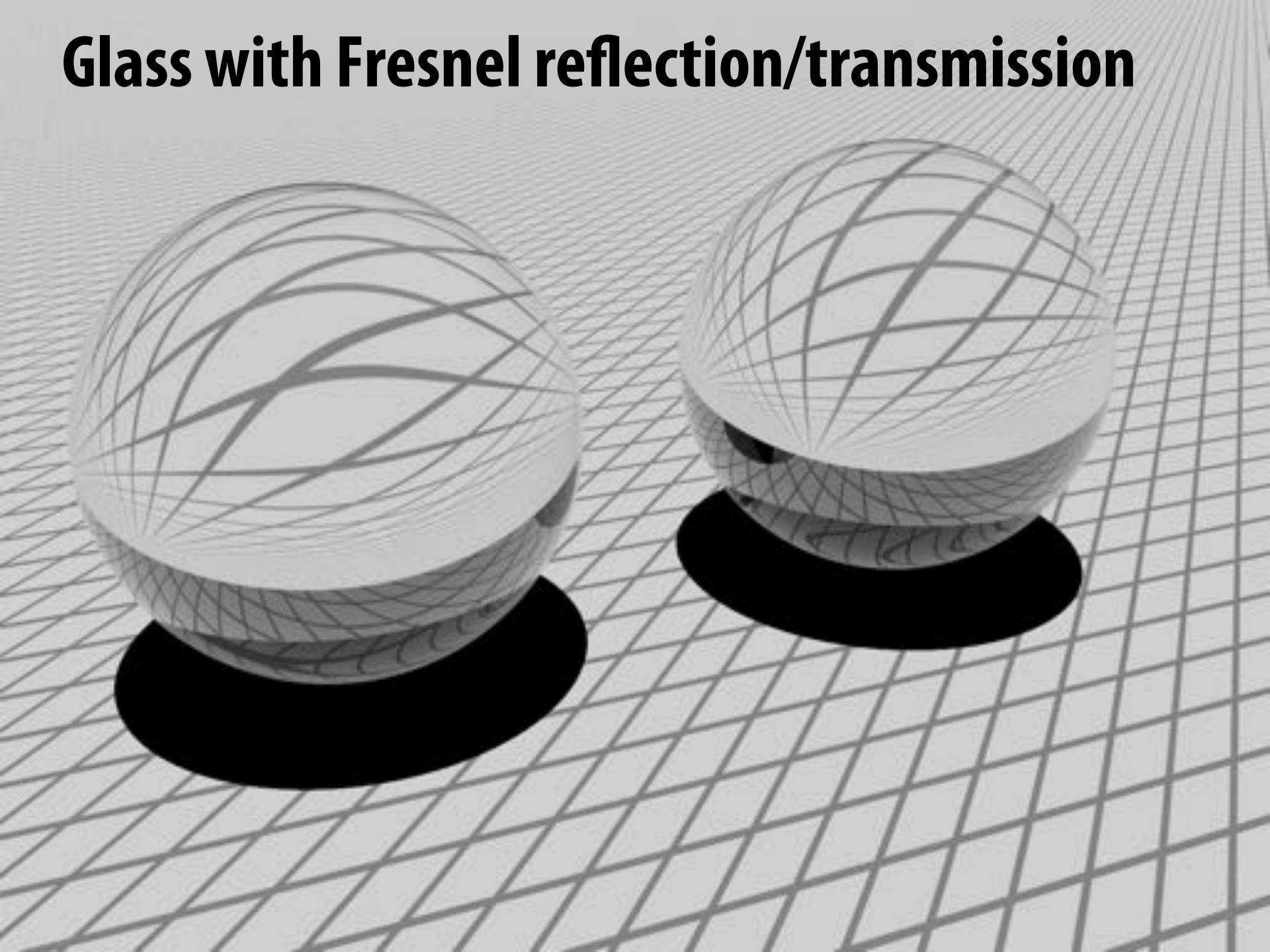




[Lafortune et al. 1997]

Snell + Fresnel: Example

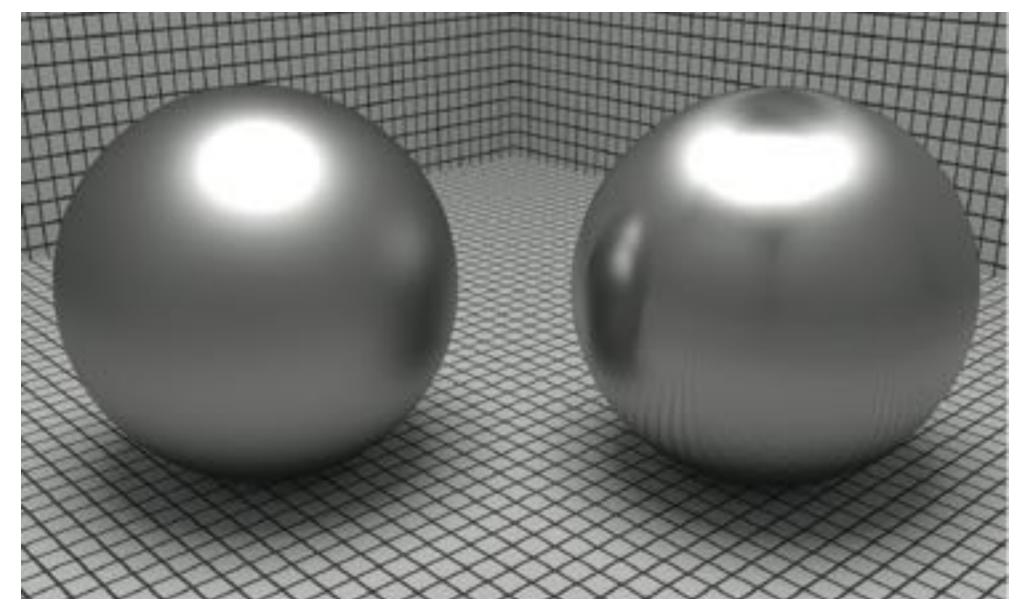
Without Fresnel (fixed reflectance/transmission)



Anisotropic reflection

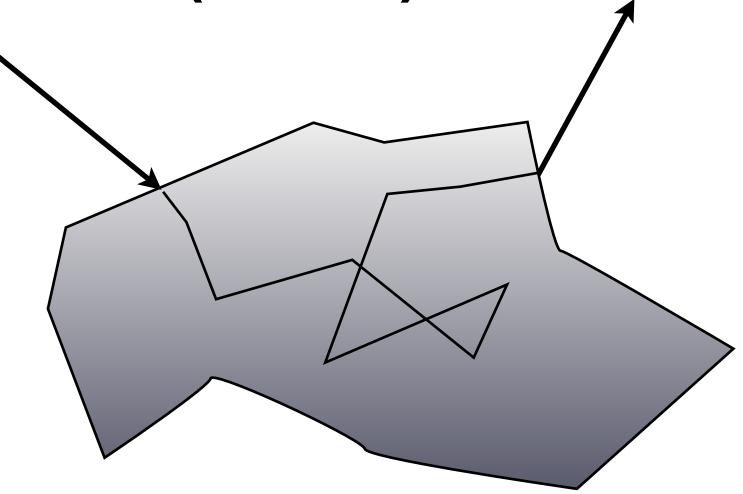
Reflection depends on azimuthal angle ϕ

Results from oriented microstructure of surface e.g., brushed metal



Subsurface scattering

- Visual characteristics of many surfaces caused by light entering at different points than it exits
 - Violates a fundamental assumption of the BRDF
 - Need to generalize scattering model (BSSRDF)



[Jensen et al 2001]

[Donner et al 2008]

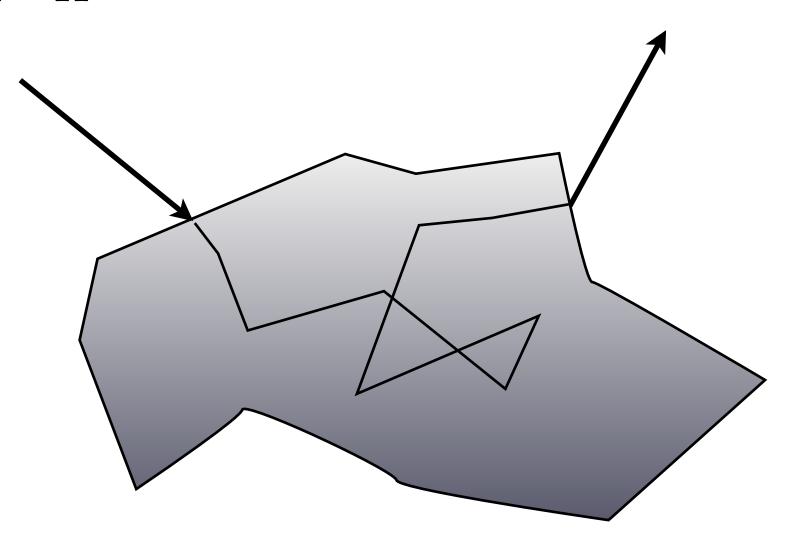
Scattering functions

Generalization of BRDF; describes exitant radiance at one point due to incident differential irradiance at another point:

$$S(x_i, \omega_i, x_o, \omega_o)$$

Generalization of reflection equation integrates over all points on the surface and all directions(!)

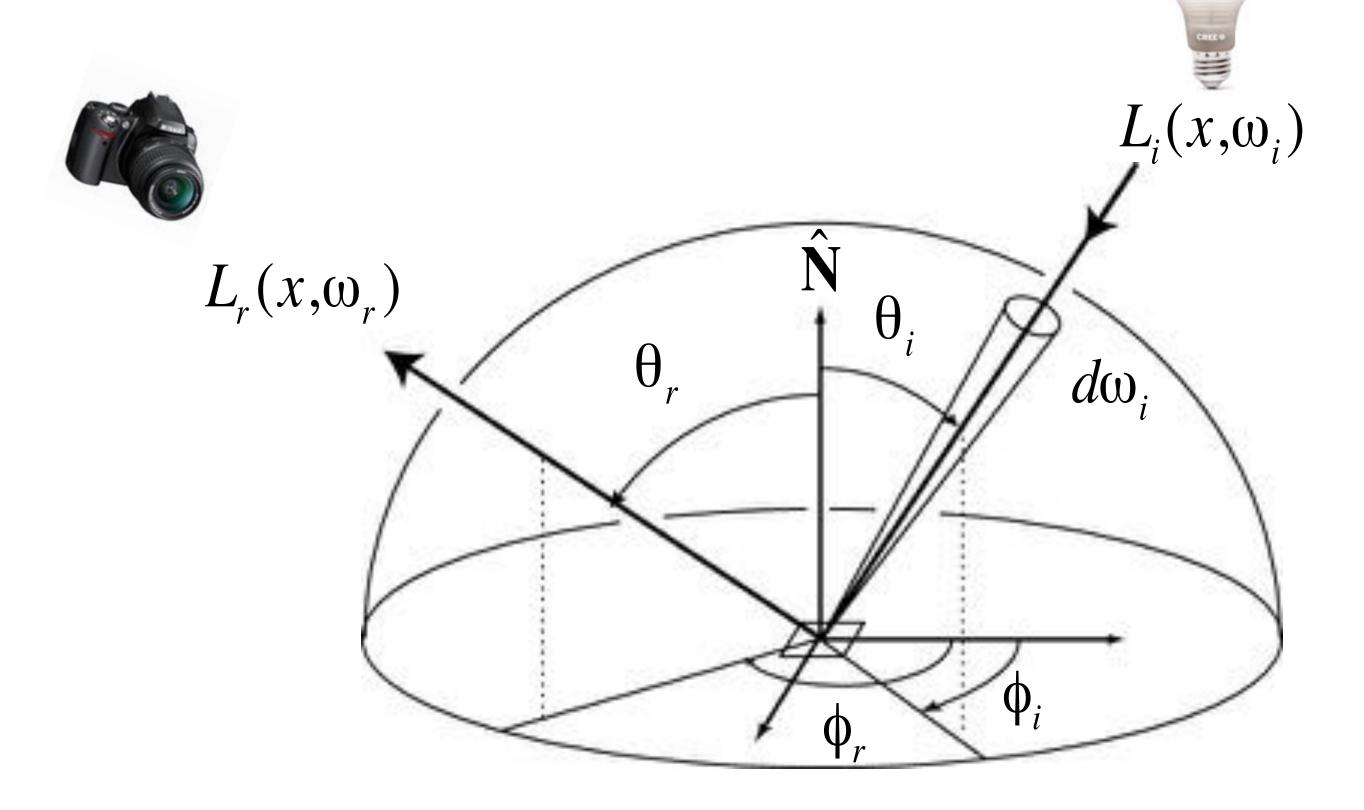
$$L(x_o, \omega_o) = \int_A \int_{H^2} S(x_i, \omega_i, x_o, \omega_o) L_i(x_i, \omega_i) \cos \theta_i d\omega_i dA$$



Ok, so scattering is complicated!

What's a (relatively simple) algorithm that can capture all this behavior?

The reflection equation



$$dL_r(\omega_r) = f_r(\omega_i \to \omega_r) dL_i(\omega_i) \cos \theta_i$$

$$L_r(\mathbf{p}, \omega_r) = \int_{H^2} f_r(\mathbf{p}, \omega_i \to \omega_r) L_i(\mathbf{p}, \omega_i) \cos \theta_i d\omega_i$$

The reflection equation

Key piece of overall rendering equation:

$$L_r(\mathbf{p}, \omega_r) = \int_{H^2} f_r(\mathbf{p}, \omega_i \to \omega_r) L_i(\mathbf{p}, \omega_i) \cos \theta_i d\omega_i$$

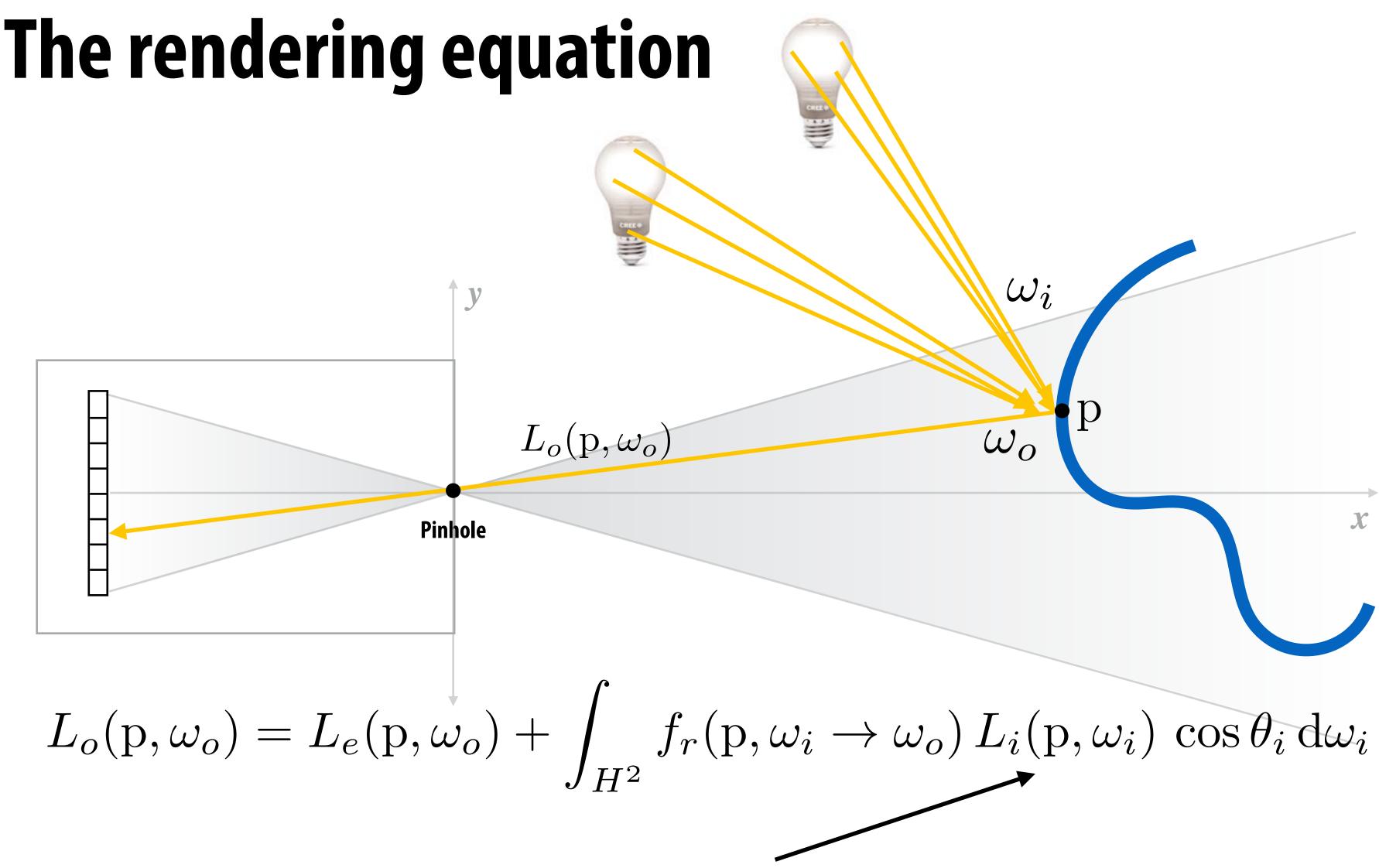
- Approximate integral via Monte Carlo integration
- lacksquare Generate directions ω_j sampled from some distribution $p(\omega)$
- **■** Compute the estimator

$$\frac{1}{N} \sum_{i=1}^{N} \frac{f_r(\mathbf{p}, \omega_j \to \omega_r) L_i(\mathbf{p}, \omega_j) \cos \theta_j}{p(\omega_j)}$$

■ To reduce variance $p(\omega)$ should match BRDF or incident radiance function

Estimating reflected light

```
// Assume:
// Ray ray hits surface at point hit p
// Normal of surface at hit point is hit n
Vector3D wr = -ray.d; // outgoing direction
Spectrum Lr = 0.;
for (int i = 0; i < N; ++i) {
   Vector3D wi; // sample incident light from this direction
   float pdf;
                      // p(wi)
   generate sample(brdf, &wi, &pdf); // generate sample according to brdf
    Spectrum f = brdf->f(wr, wi);
    Spectrum Li = trace_ray(Ray(hit_p, wi)); // compute incoming Li
   Lr += f * Li * fabs(dot(wi, hit_n)) / pdf;
return Lr / N;
```

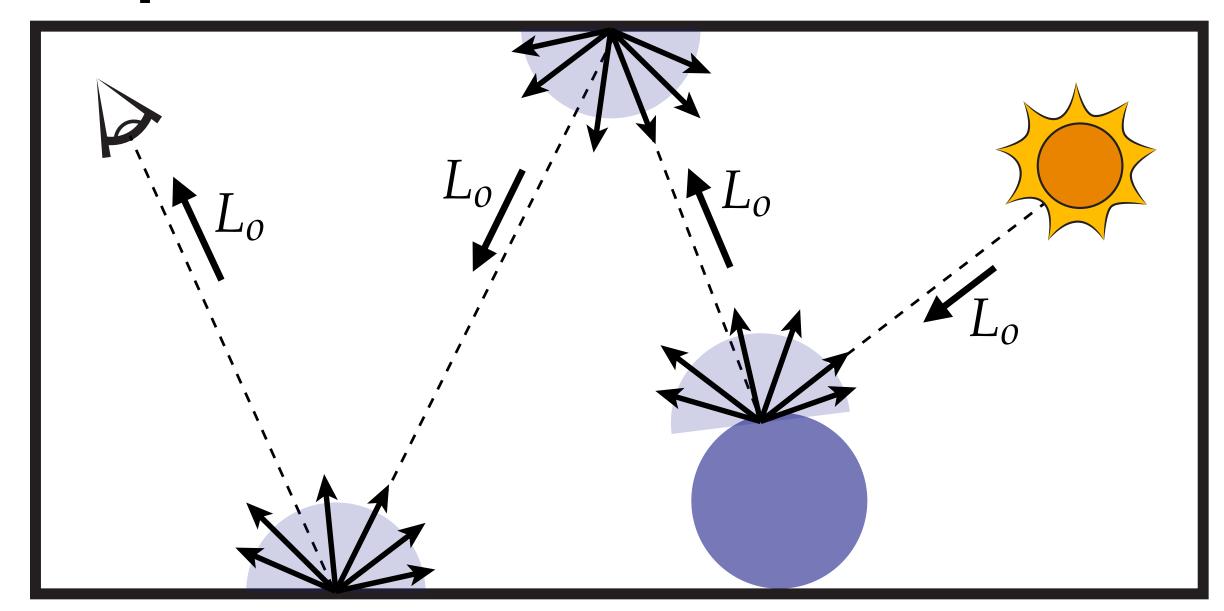


Now that we know how to handle reflection, how do we solve the full rendering equation? Have to determine incident radiance...

Key idea in (efficient) rendering: take advantage of special knowledge to break up integration into "easier" components.

Path tracing: overview

- Partition the rendering equation into direct and indirect illumination
- Use Monte Carlo to estimate each partition separately
 - One sample for each
 - Assumption: 100s of samples per pixel
- Terminate paths with Russian roulette



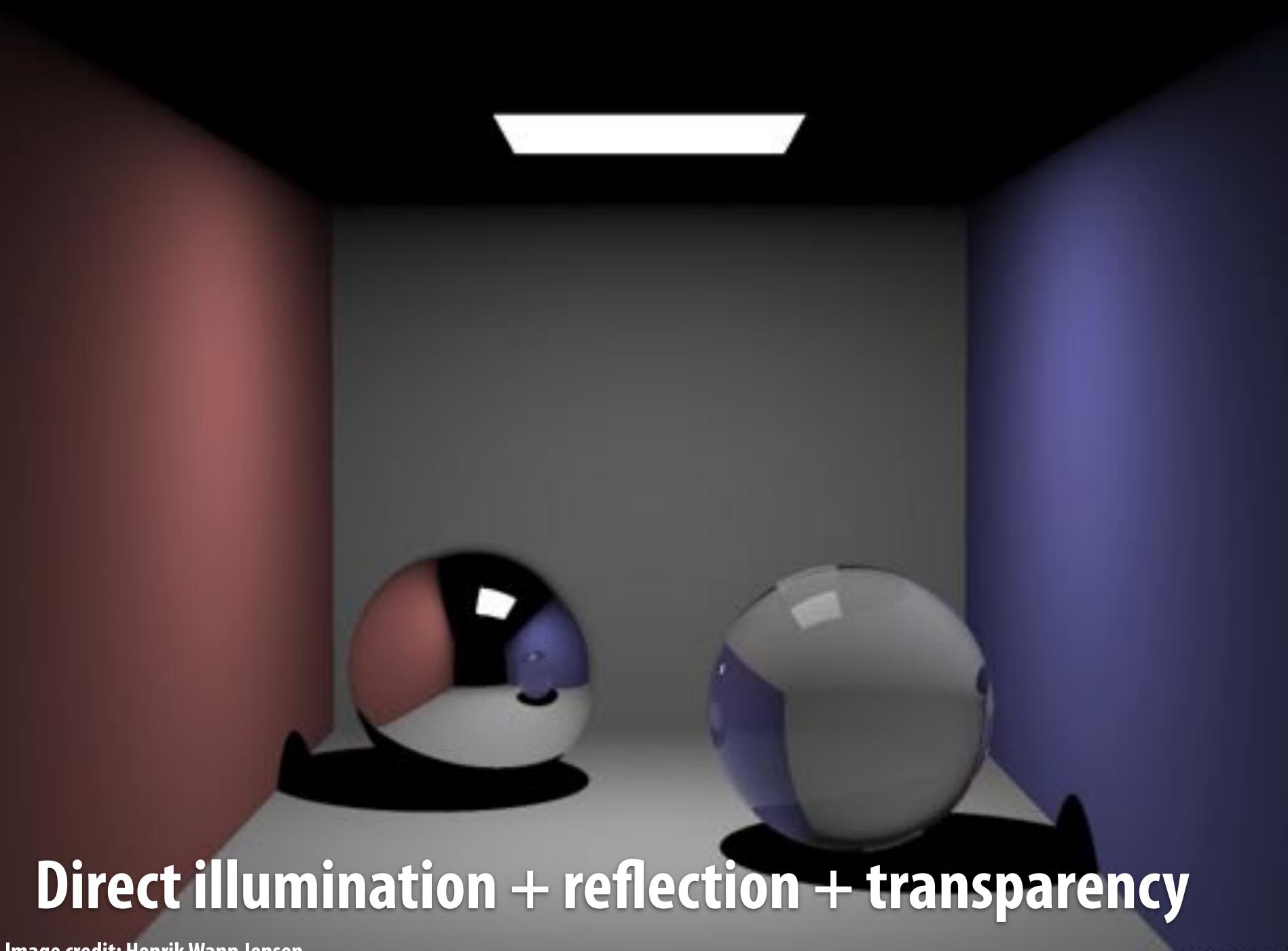
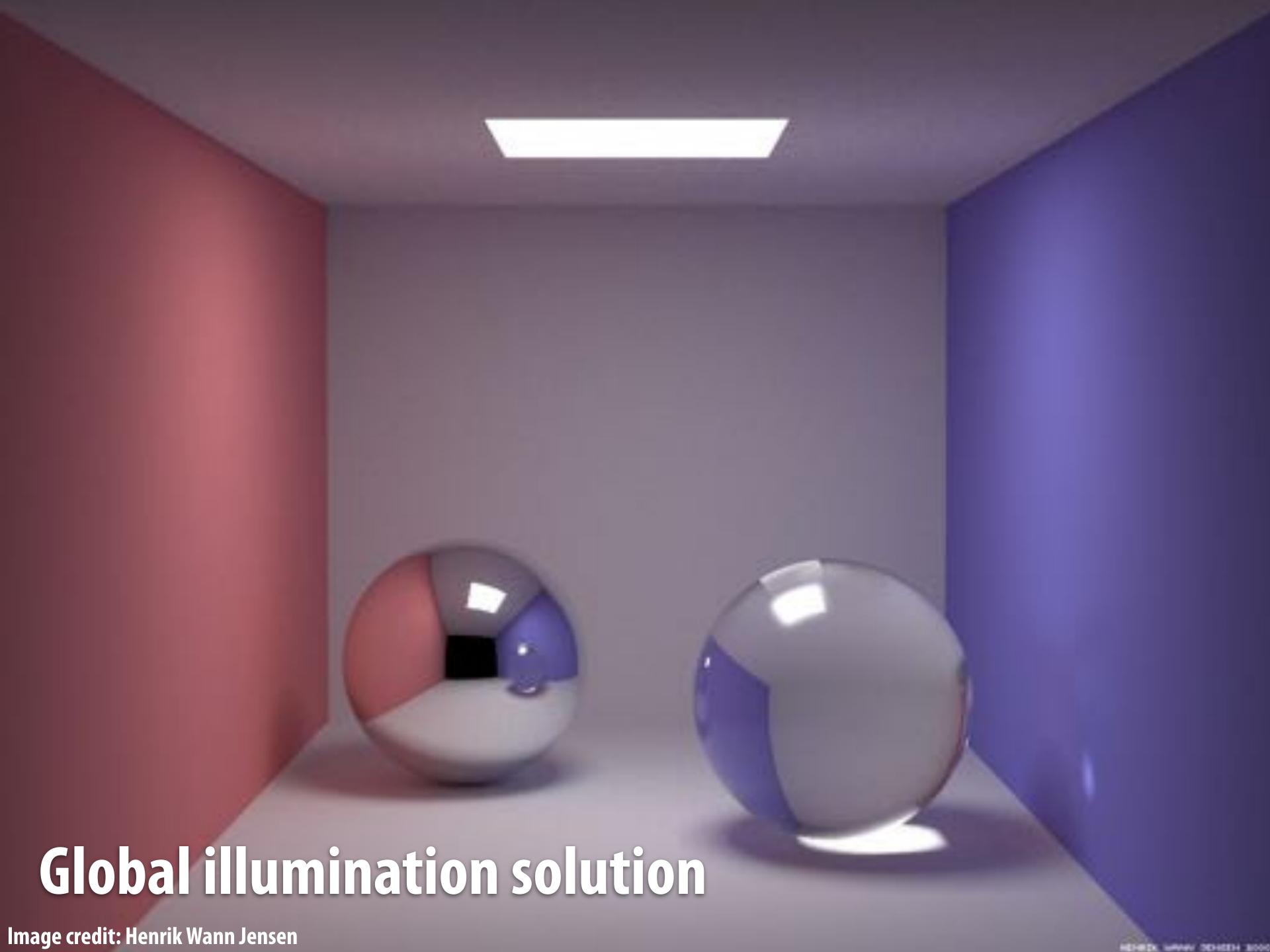


Image credit: Henrik Wann Jensen



Next Time: Monte Carlo integration

$$\int_{\Omega} f(p) dp \approx \operatorname{vol}(\Omega) \frac{1}{N} \sum_{i=1}^{N} f(X_i)$$