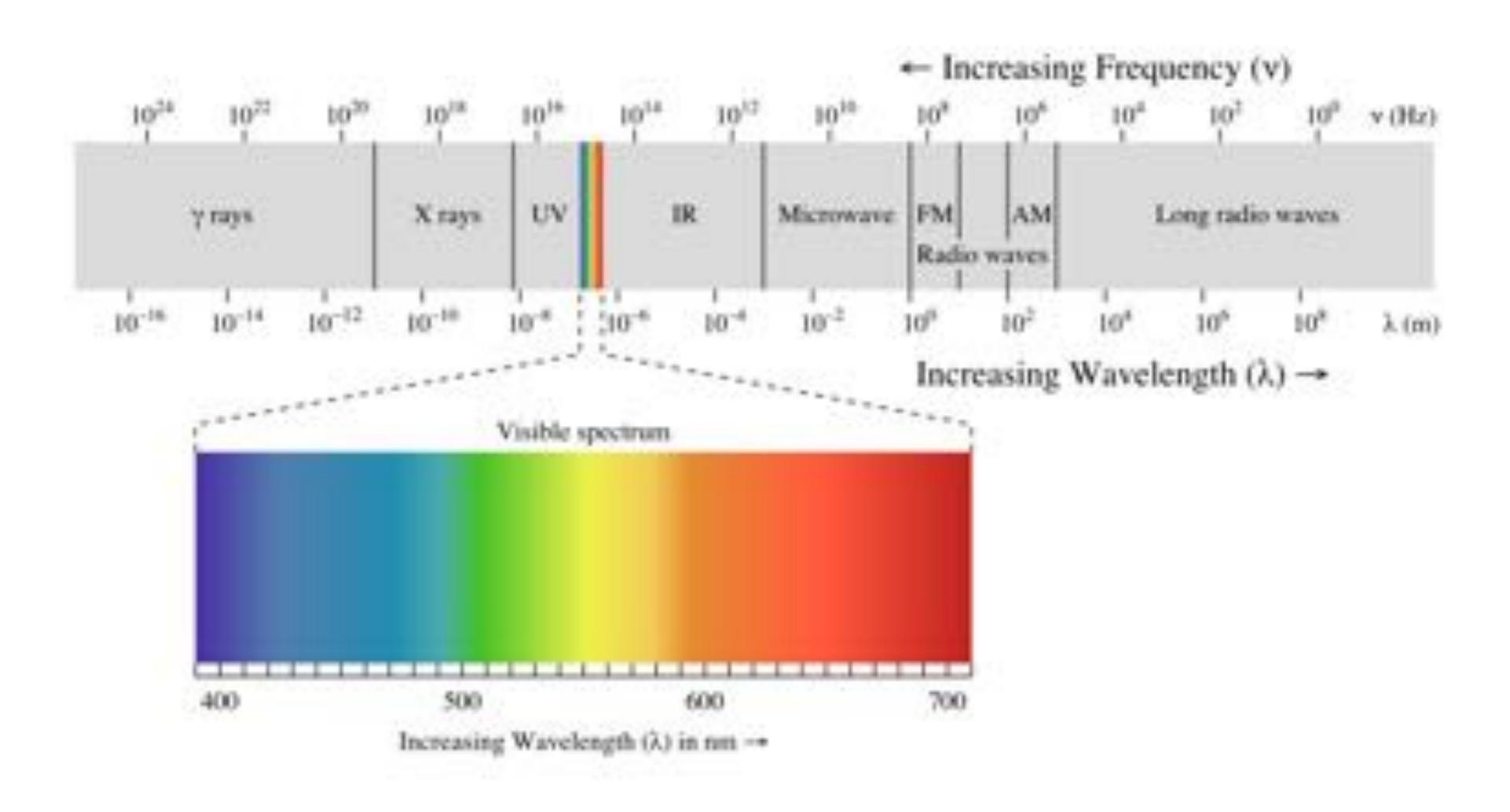
Radiometry

Computer Graphics CMU 15-462/15-662

Last time we discussed light & color



How do we quantify measurements of light?

Radiometry

- System of units and measures for measuring EM radiation (light)
- Geometric optics model of light
 - Photons travel in straight lines
 - Represented by rays
 - Wavelength << size of objects
 - No diffraction, interference, ...
- LOTS of terminology!
 - Focus first on concepts
 - Terminology comes second

Names don't constitute knowledge!

(Richard Feynman)

What do we want to measure (and why?)

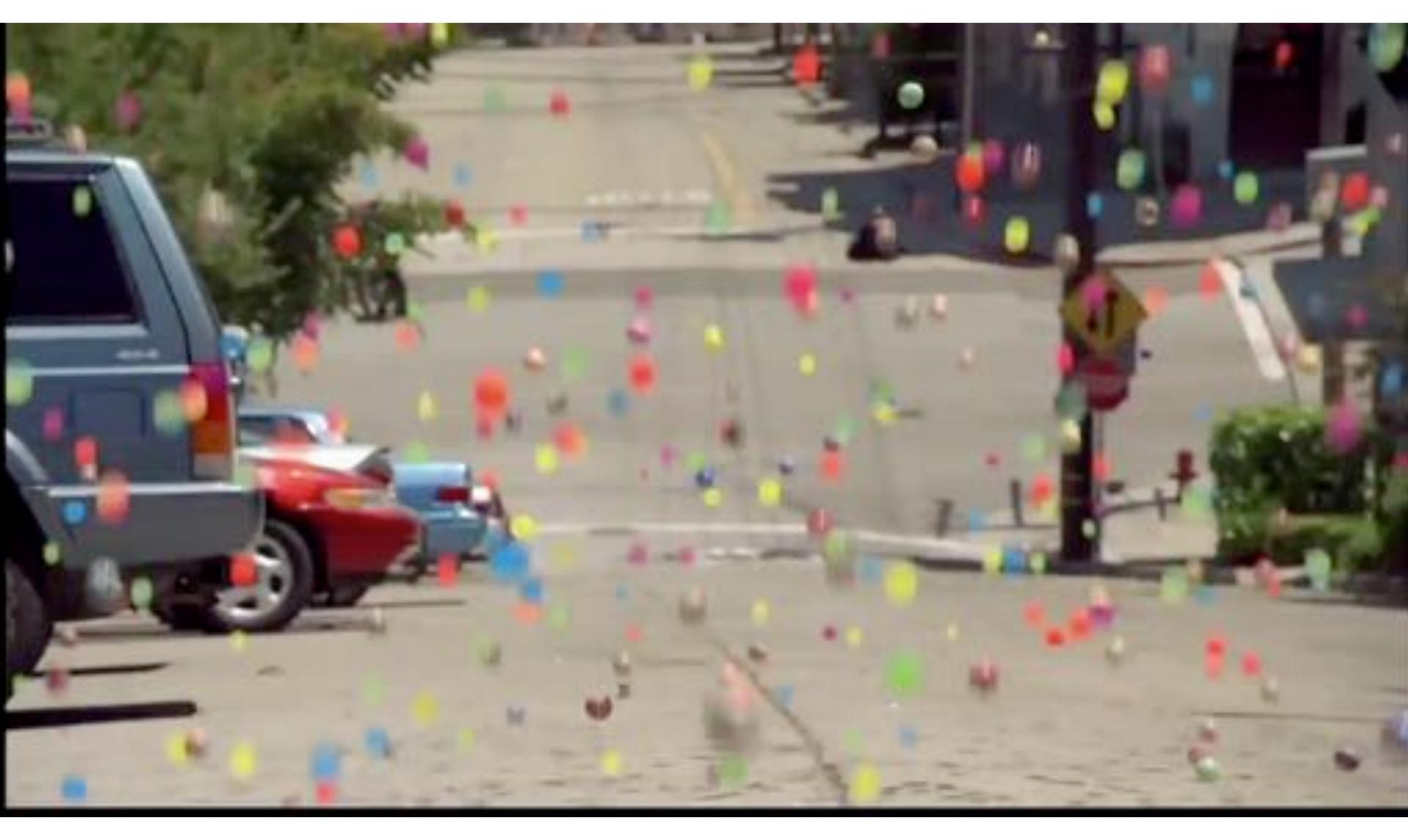
- Many physical processes convert energy into photons
 - E.g., incandescent lightbulb turns heat into light (blackbody radiation)
 - Nuclear fusion in stars (sun!) generates photons
 - Etc.
- Each photon carries a small amount of energy
- Want some way of recording "how much energy"
- Energy of photons hitting an object ~ "brightness"
 - Film, eyes, CCD sensor, sunburn, solar panels, ...
 - Need this information to make accurate (and beautiful!) images
- Simplifying assumption: "steady state" process
 - How long does it take for lighting to reach steady state?

What does light propagation look like?

Can't see it with the naked eye!

Instead, repeat same experiment many times, take "snapshot" at slightly different offsets each time.

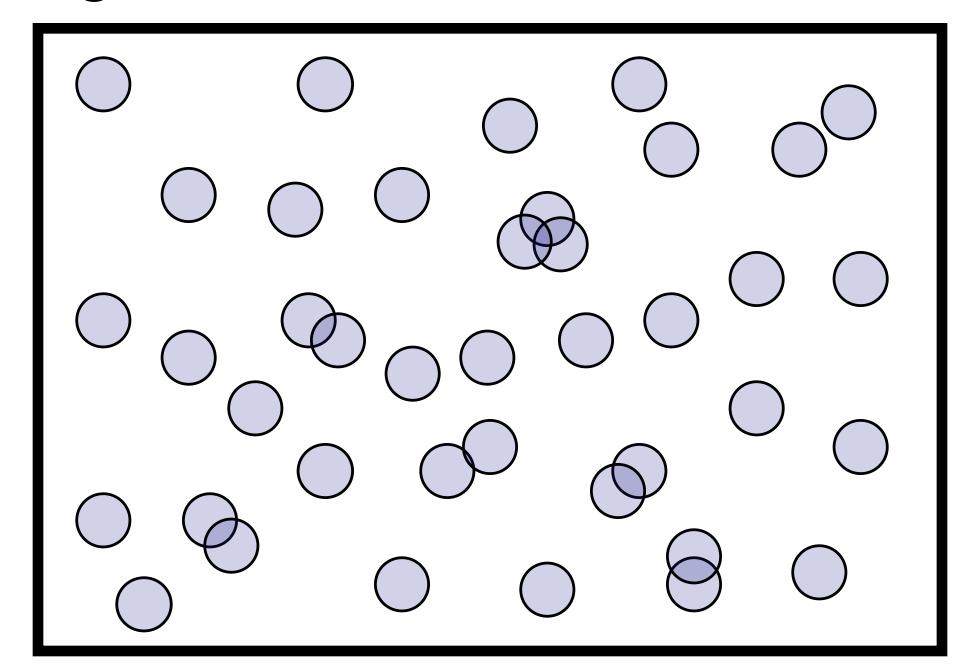
Imagine every photon is a little rubber ball hitting the scene:



How can we record this process? What information should we store?

Radiant energy is "total # of hits"

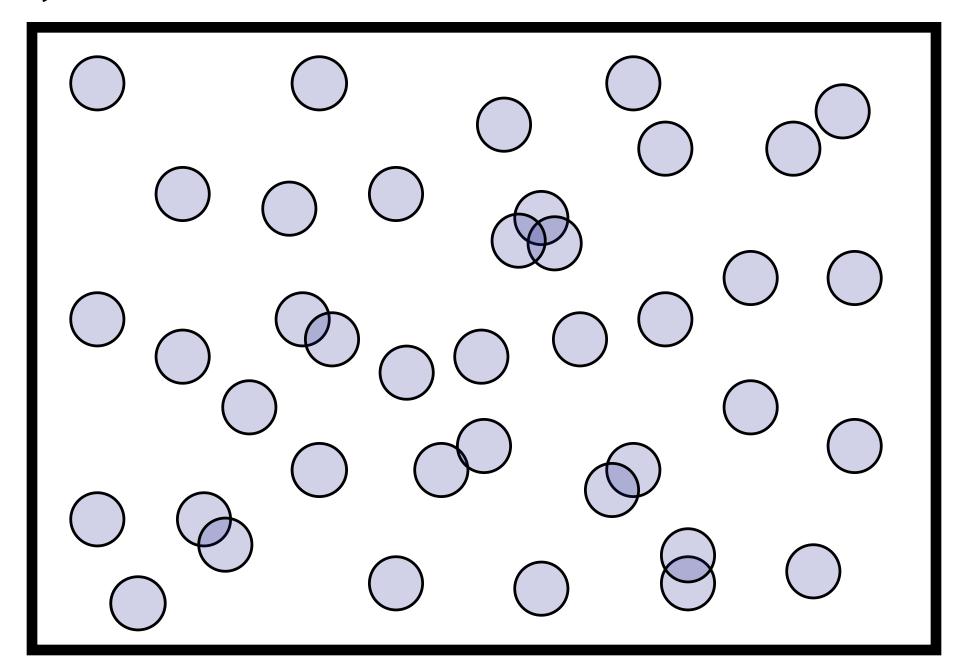
- One idea: just store the total number of "hits" that occur anywhere in the scene, over the complete duration of the scene.
- Morally, this quantity captures the total energy of all the photons hitting the scene*.



"Radiant energy": 40

Radiant flux is "hits per second"*

- For illumination phenomena at the level of human perception, usually safe to assume equilibrium is reached immediately.
- So, rather than record total energy over some (arbitrary)
 duration, may make more sense to record total hits per second

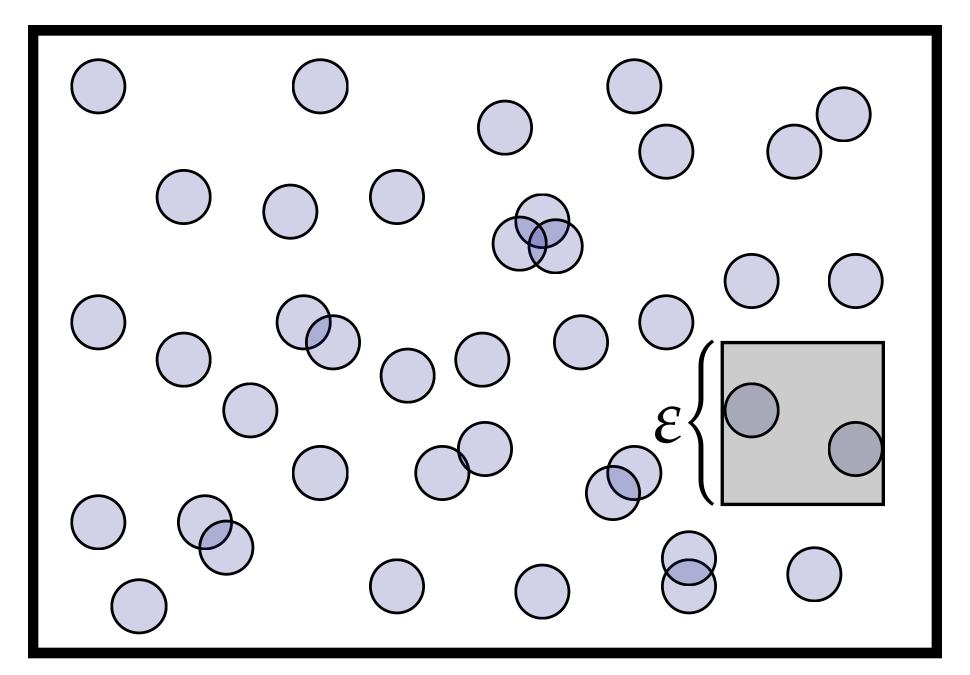


(Takes Keynote .05s to display each "hit"!)

Estimate of "radiant flux": 40 hits/2s = 20 hits/s

Irradiance is "#hits per second, per unit area"

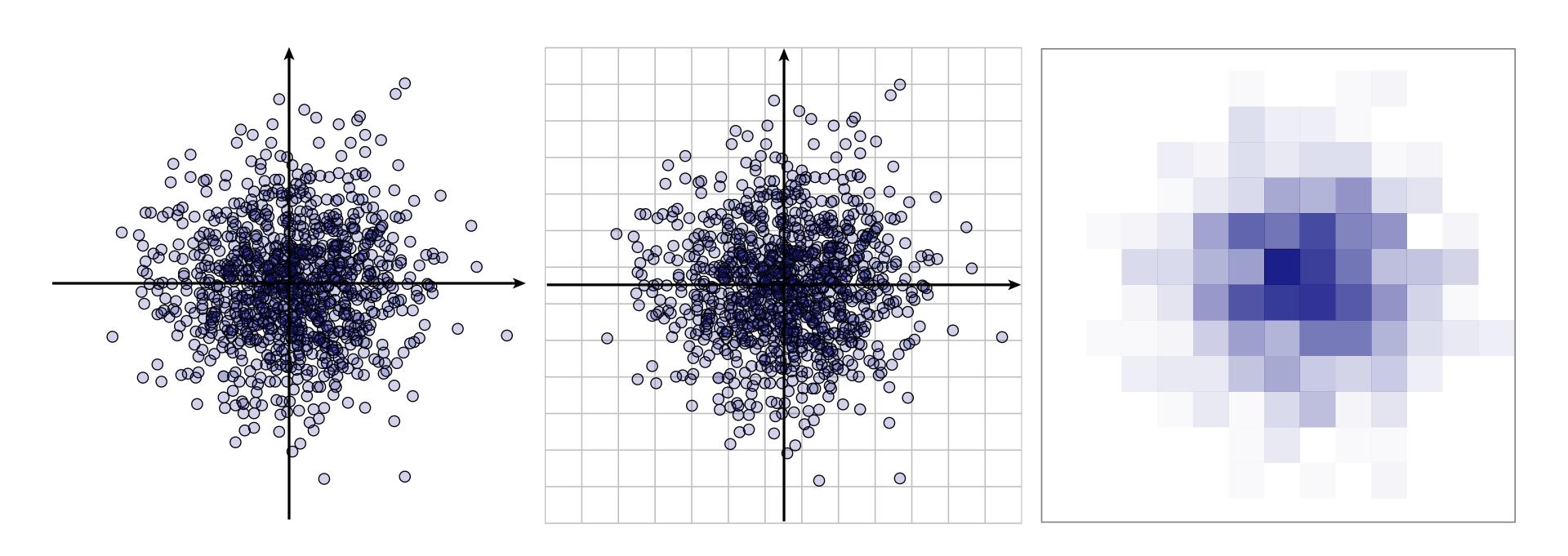
- Typically we want to get more specific than just the total
- To make images, also need to know where hits occurred
- So, compute hits per second in some "really small" area, divided by area:



Estimate of "radiant energy density": 2/ε²

Image generation as irradiance estimation

■ From this point of view, our goal in image generation is to estimate the irradiance at each point of an image (or perhaps the total radiant flux per pixel...):



Recap so far...

Radiant Energy

(total number of hits)

Radiant Energy Density (hits per unit area)

Radiant Flux (total hits per second)

Radiant Flux Density
a.k.a. *Irradiance*(hits per second per unit area)

Ok, but how about some units...

Measuring illumination: radiant energy

- How can we be more precise about the amount of energy?
- Said we were just going to count "the number of hits," but do all hits contribute same amount of energy?
- Energy of a single photon:

Planck's constant
$$hc$$

$$Q = \frac{hc}{\lambda}$$
wavelength (color!)

$$h\approx 6.626\times 10^{-34}~\rm J\cdot s$$
 (Joules times seconds) $c\approx 3.00\times 10^8~\rm m/s$ (meters per second) $\lambda\approx 390\text{--}700\times 10^{-9}~\rm m$ (visible)



Q: What are units for a photon?

$$\frac{(J \times s)(m/s)}{m} = J$$

Aside: Units are a powerful debugging tool!

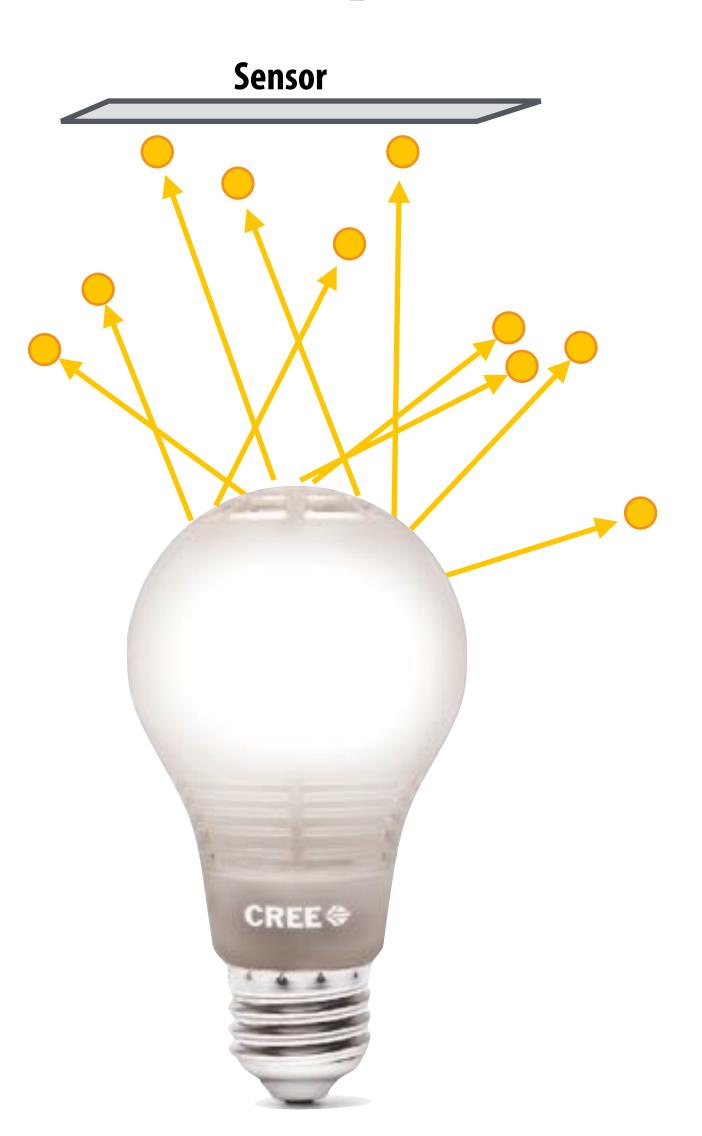
Measuring illumination: radiant flux (power)

Flux: energy per unit time (Watts) received by the sensor (or emitted by the light)

$$\Phi = \lim_{\Delta \to 0} \frac{\Delta Q}{\Delta t} = \frac{\mathrm{d}Q}{\mathrm{d}t} \quad \begin{bmatrix} \mathbf{J} \\ \mathbf{s} \end{bmatrix}$$
 "Watts"

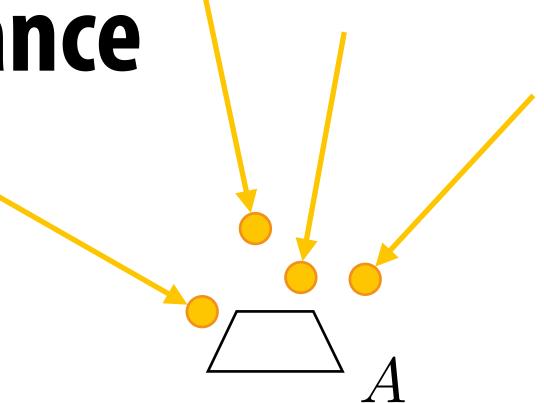
Can also go the other direction: time integral of flux is total radiant energy

$$Q = \int_{t_0}^{t_1} \Phi(t) dt$$
(Units?)



Measuring illumination: irradiance

- Radiant flux: time density of energy
- Irradiance: area density of flux



Given a sensor of with area A, we can consider the average flux over the entire sensor area:

$$\frac{\Phi}{A}$$

Irradiance (E) is given by taking the limit of area at a single point on the sensor:

$$E(\mathbf{p}) = \lim_{\Delta \to 0} \frac{\Delta \Phi(\mathbf{p})}{\Delta A} = \frac{\mathrm{d}\Phi(\mathbf{p})}{\mathrm{d}A} \left[\frac{\mathrm{W}}{\mathrm{m}^2} \right]$$

Recap, with units

Radiant Energy

(total number of hits)

Joules (J)

Radiant Flux

(total hits per second)

Joules per second (J/s) = Watts (W)

Radiant Energy Density

(hits per unit area)

Joules per square meter (J/m²)

Radiant Flux Density a.k.a. *Irradiance*

(hits per second per unit area)

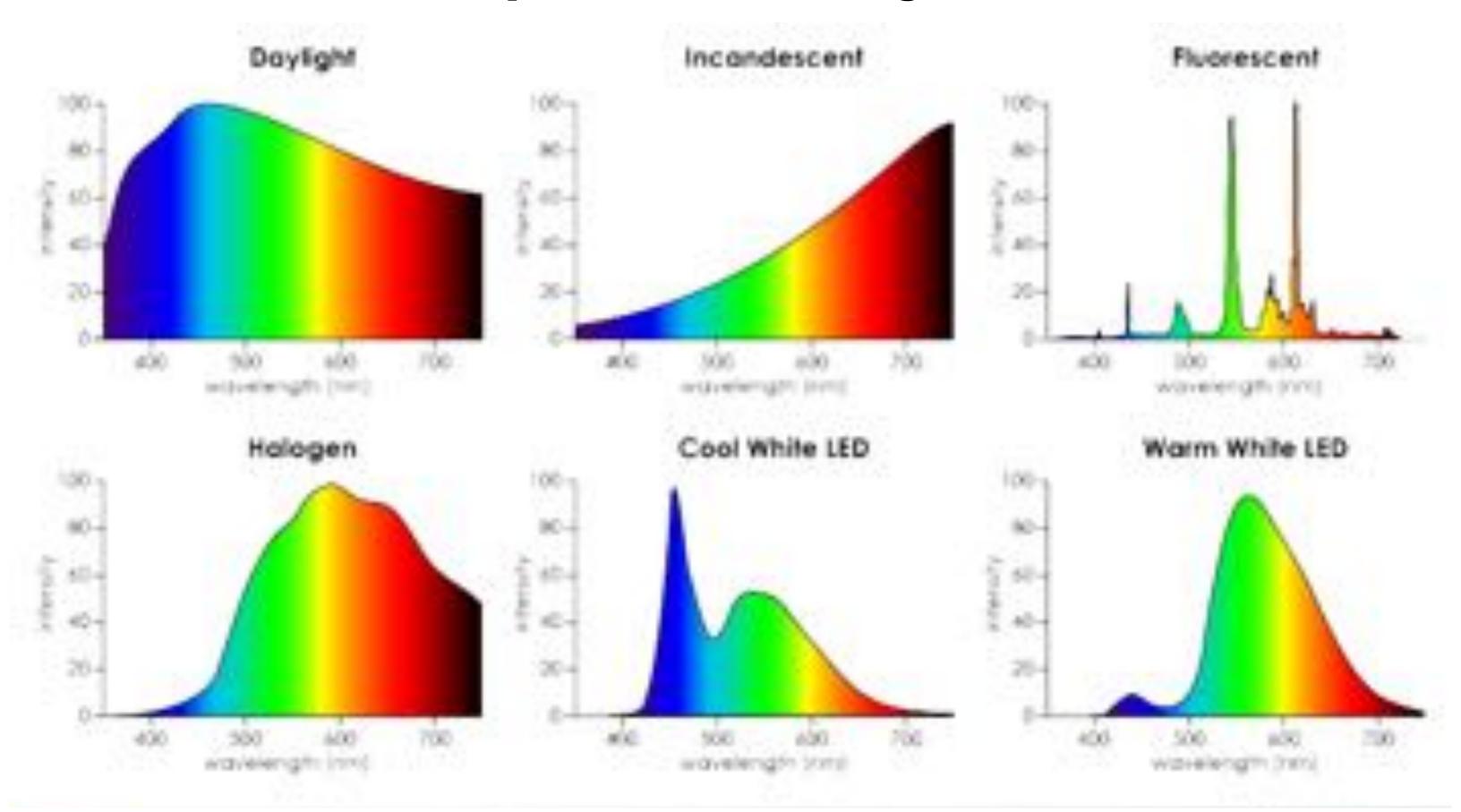
Watts per square meter (W/m²)

What about color?

How might we quantify, say, the "amount of green?"

Spectral power distribution

Describes irradiance per unit wavelength (units?)

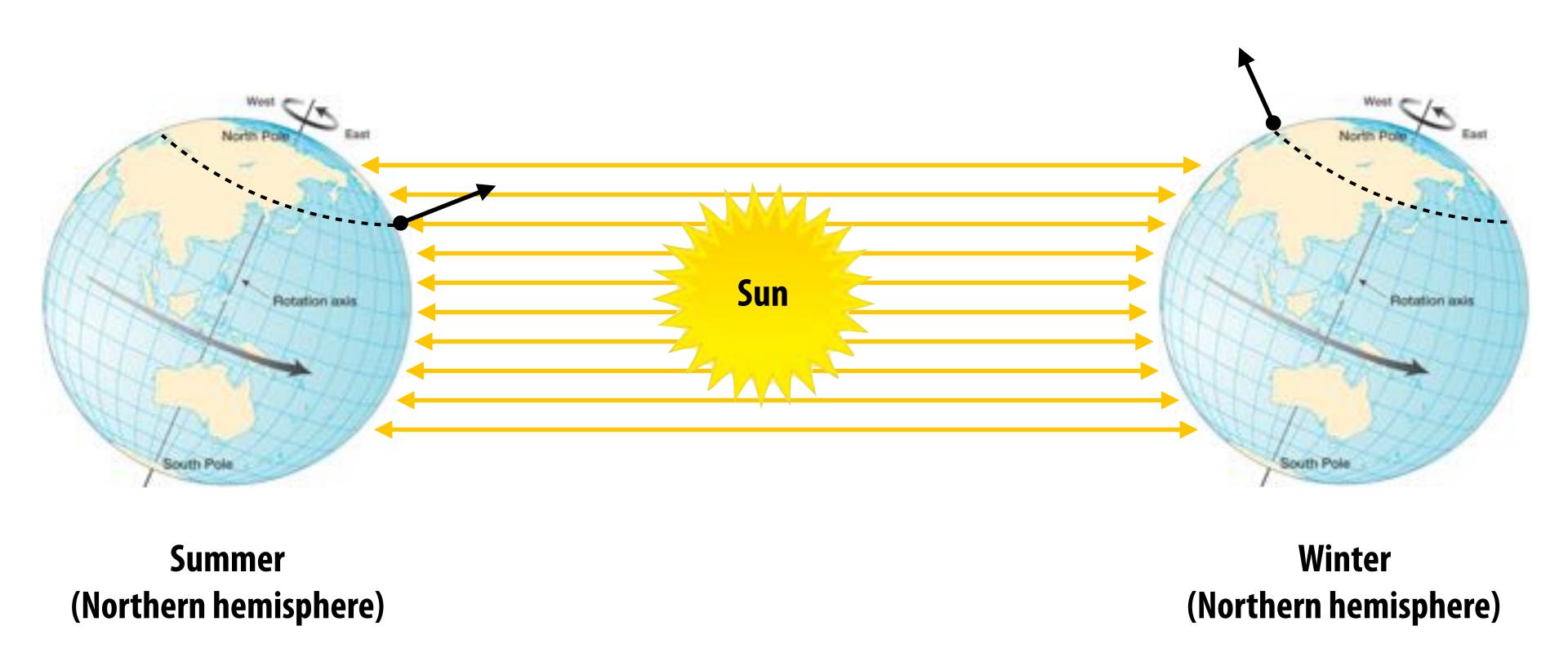


Energy per unit time per unit area per unit wavelength...

Given what we now know about radiant energy...

Why do some parts of a surface look lighter or darker?

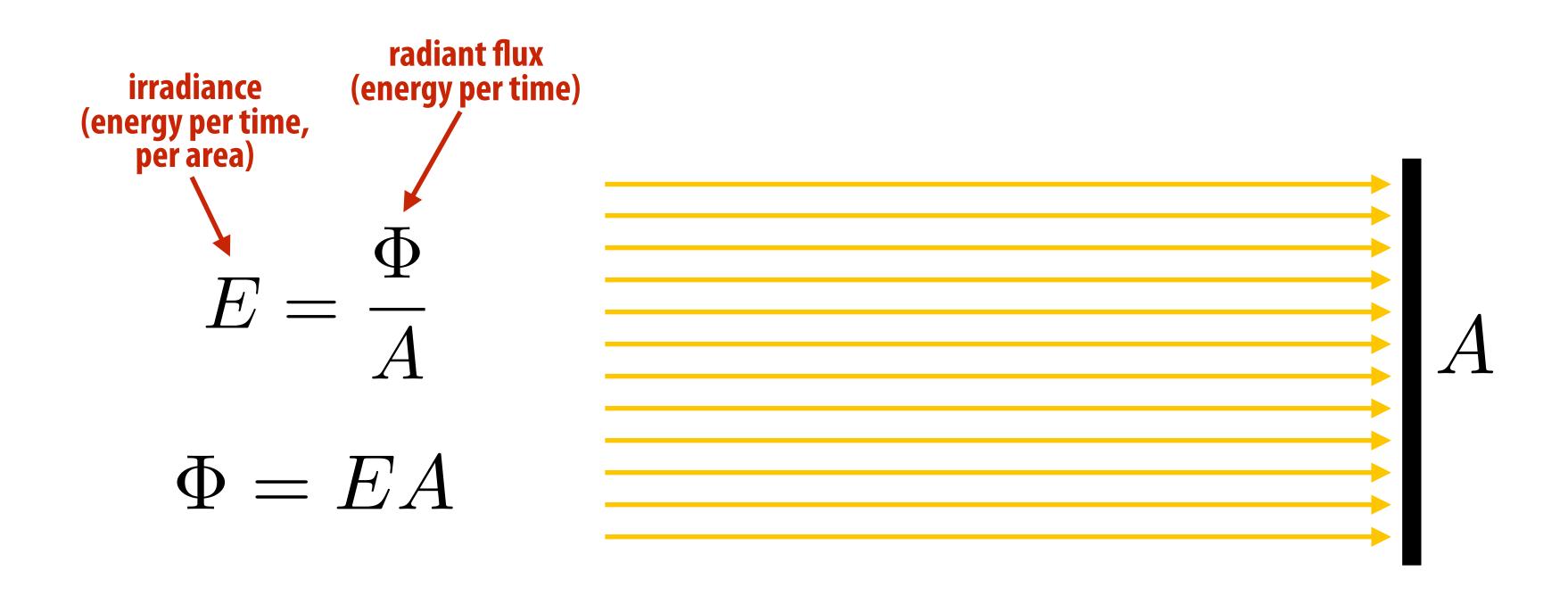
Why do we have seasons?



Earth's axis of rotation: ~23.5° off axis

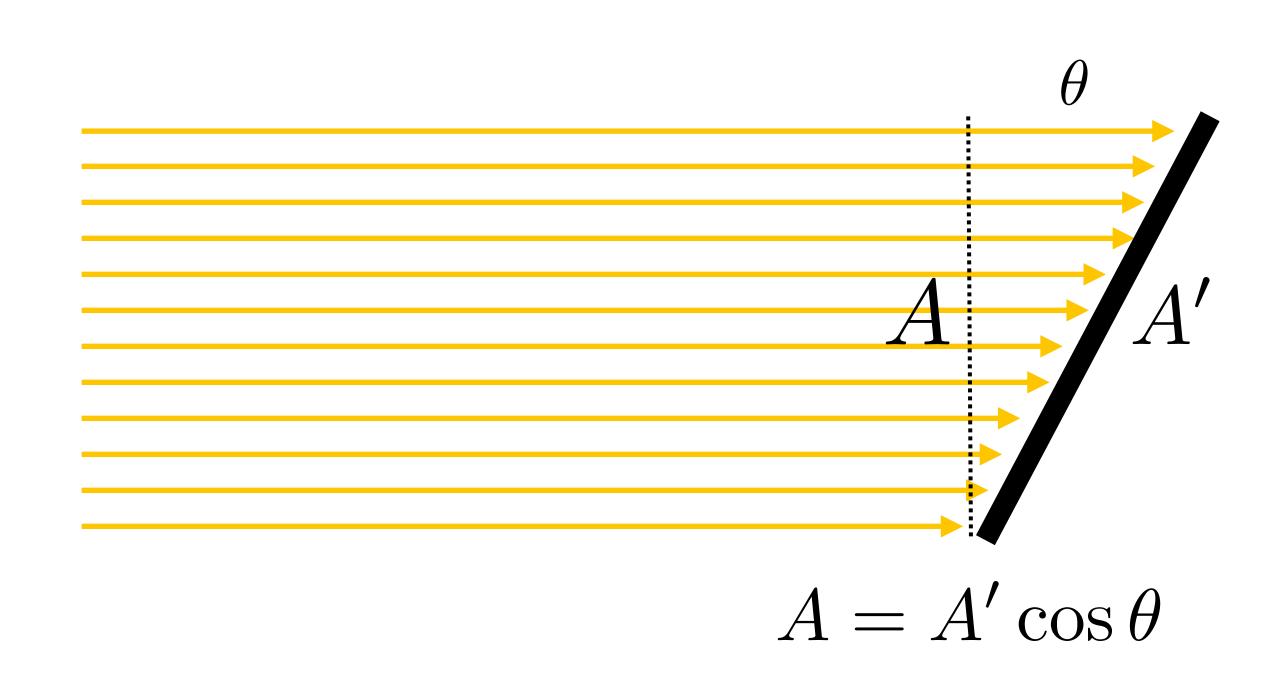
Beam power in terms of irradiance

Consider beam with flux Φ incident on surface with area A



Projected area

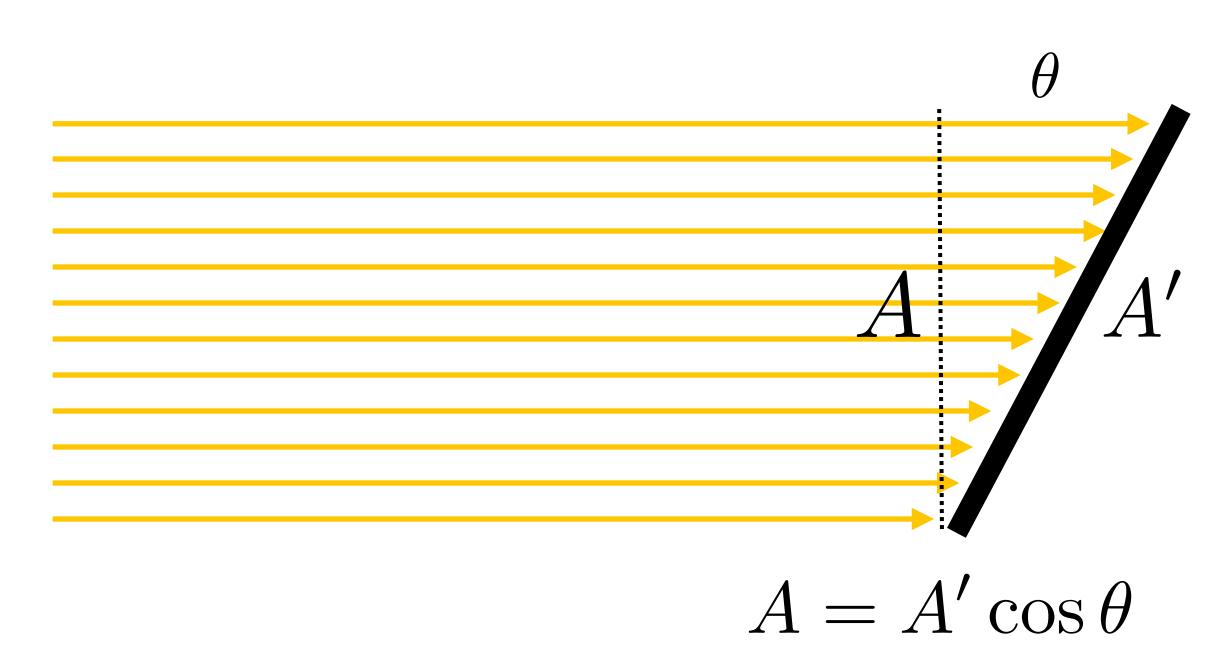
Consider beam with flux Φ incident on angled surface with area A'



A = projected area of surface relative to direction of beam

Lambert's Law

Irradiance at surface is proportional to cosine of angle between light direction and surface normal.

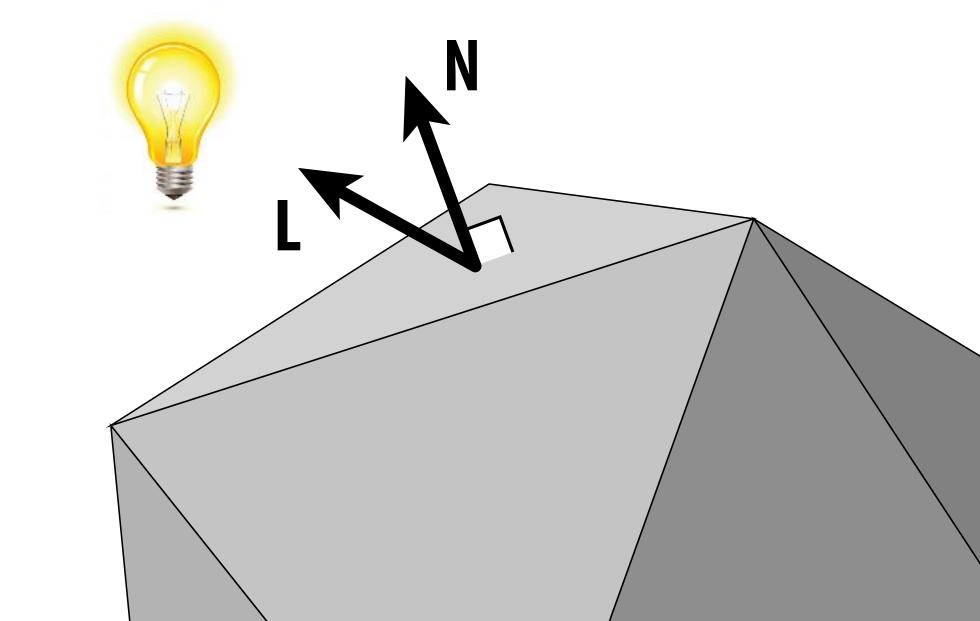


$$E = \frac{\Phi}{A'} = \frac{\Phi \cos \theta}{A}$$

"N-dot-L" lighting

 Most basic way to shade a surface: take dot product of unit surface normal (N) and unit direction to light (L)

```
double surfaceColor( Vec3 N, Vec3 L )
{
   return dot( N, L );
}
```

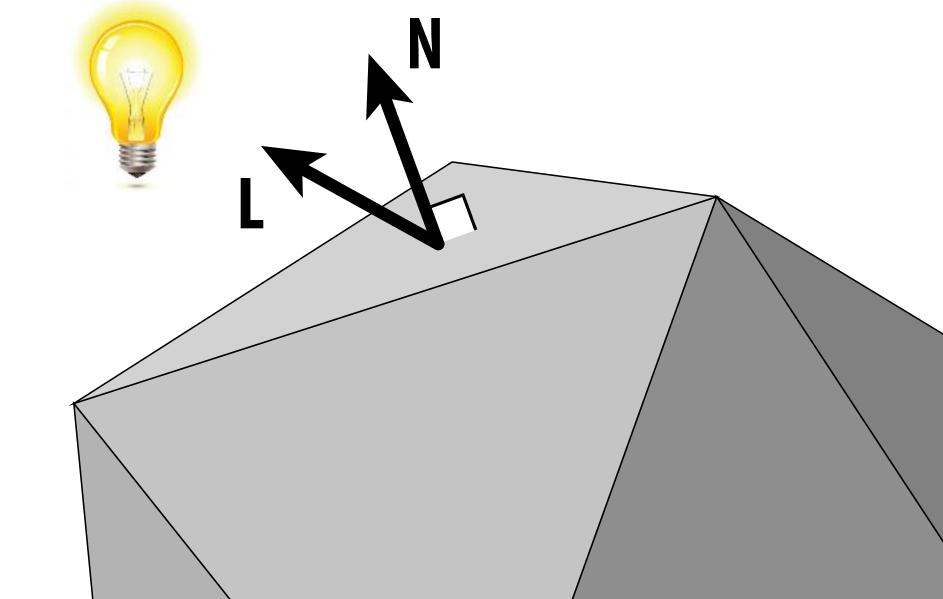


(Q: What's wrong with this code?)

"N-dot-L" lighting

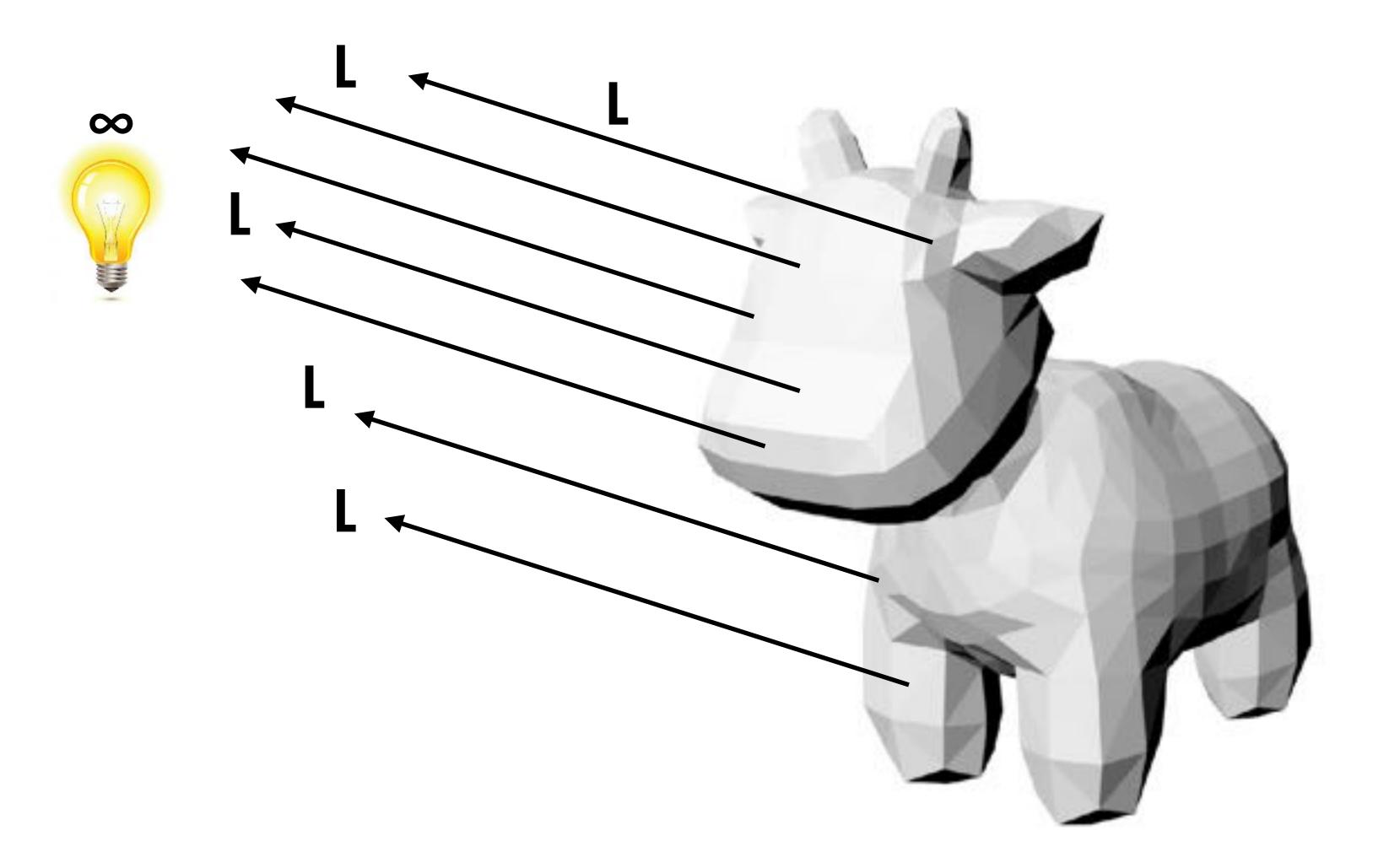
Most basic way to shade a surface: take dot product of unit surface normal (N) and unit direction to light (L)

```
double surfaceColor( Vec3 N, Vec3 L )
{
   return max( 0., dot( N, L ));
}
```



Example: "directional" lighting

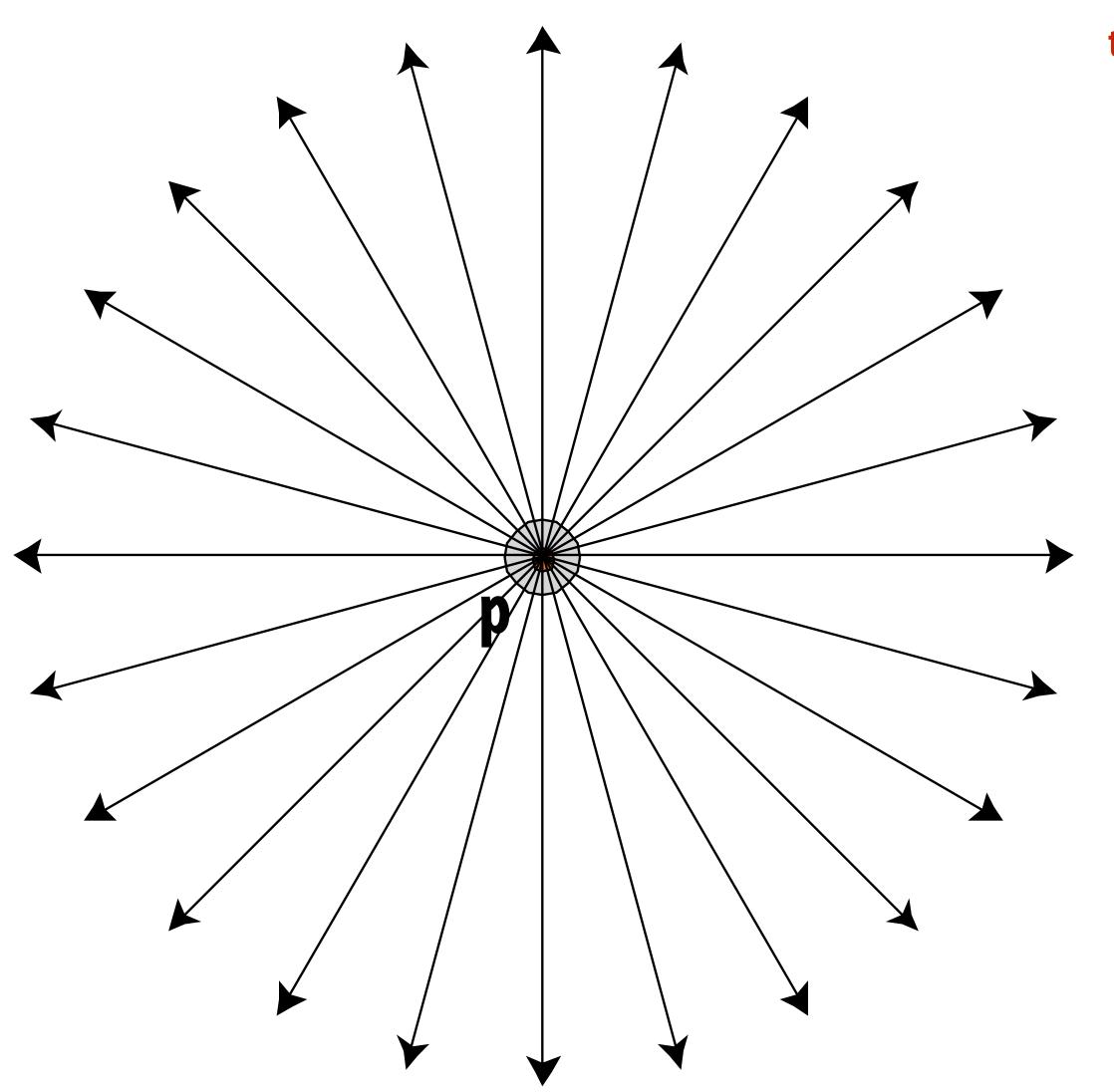
- Common abstraction: infinitely bright light source "at infinity"
- All light directions (L) are therefore identical

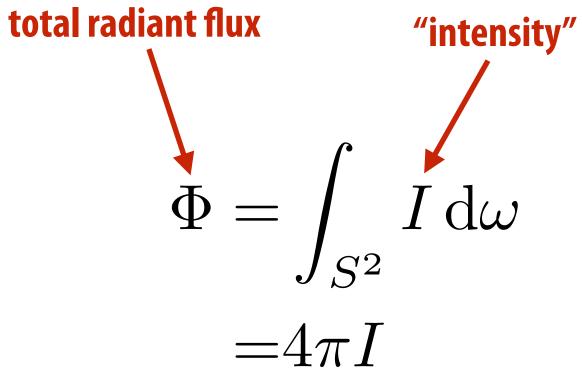


Isotropic point source

Slightly more realistic model...

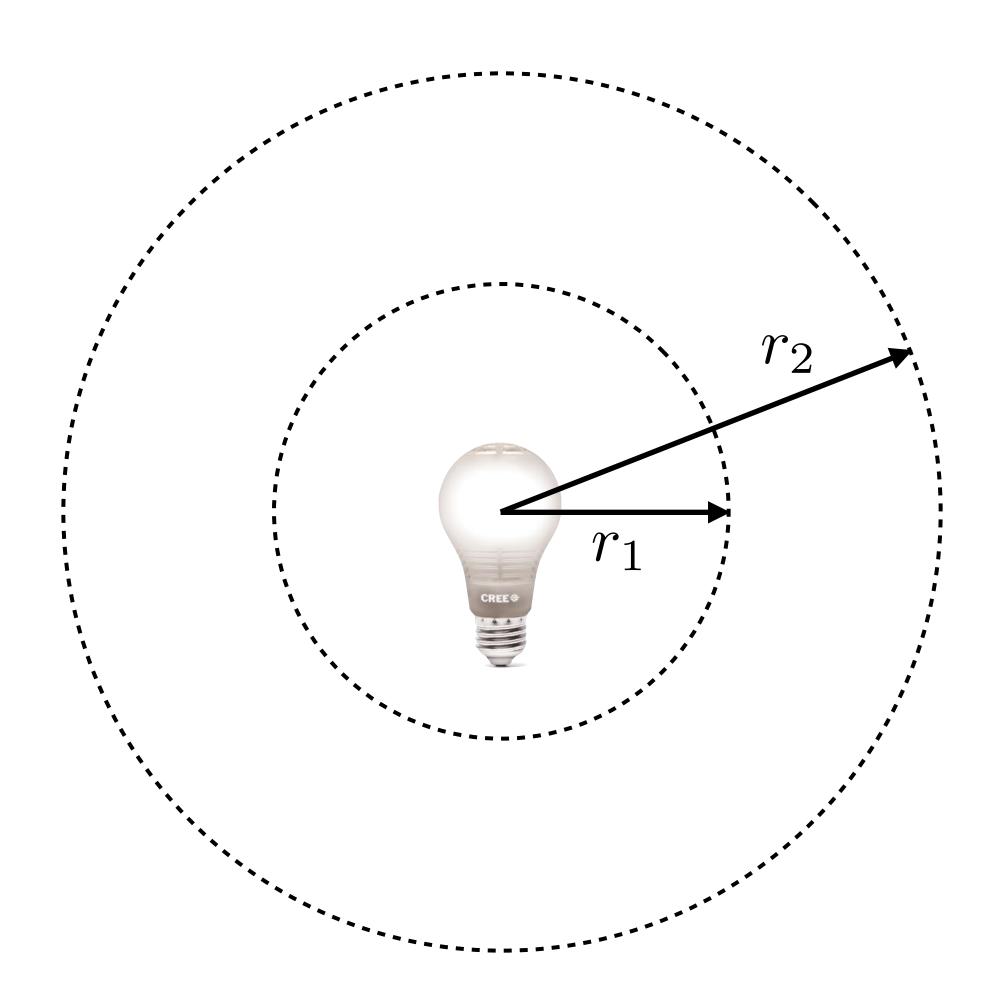
Suppose our light is such that:





$$I = \frac{\Phi}{4\pi}$$

Irradiance falloff with distance



Since same amount of energy is distributed over larger and larger spheres, has to get darker quadratically with distance.

Assume light is emitting flux ⊕ in a uniform angular distribution

Compare irradiance at surface of two spheres:

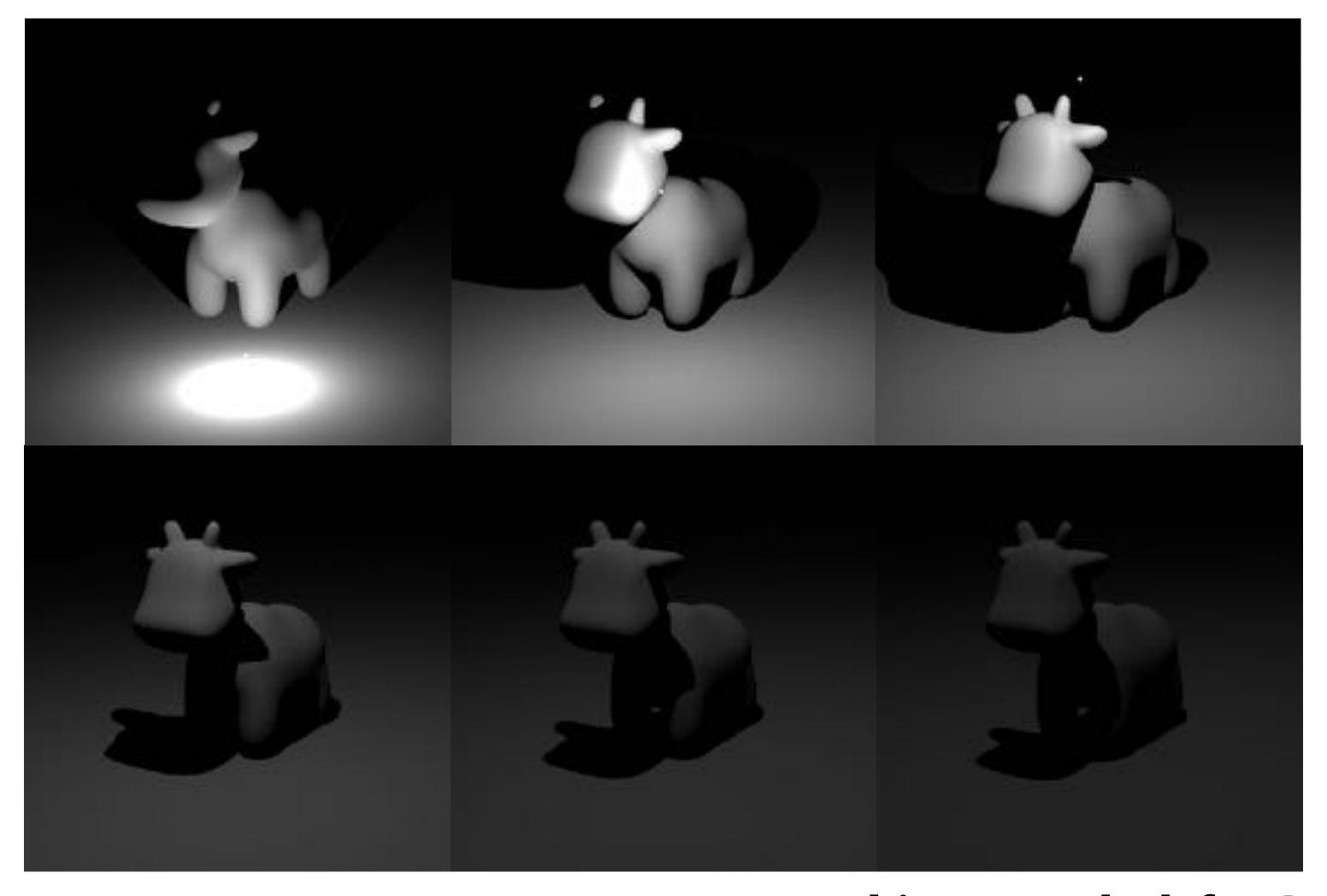
$$E_1 = \frac{\Phi}{4\pi r_1^2} \to \Phi = 4\pi r_1^2 E_1$$

$$E_2 = \frac{\Phi}{4\pi r_2^2} \to \Phi = 4\pi r_2^2 E_2$$

$$\frac{E_2}{E_1} = \frac{r_1^2}{r_2^2} = \left(\frac{r_1}{r_2}\right)^2$$

What does quadratic falloff look like?

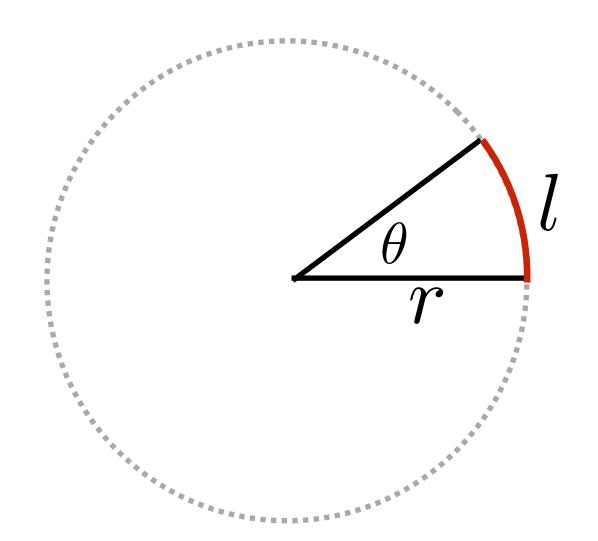
Single point light, move in 1m increments:



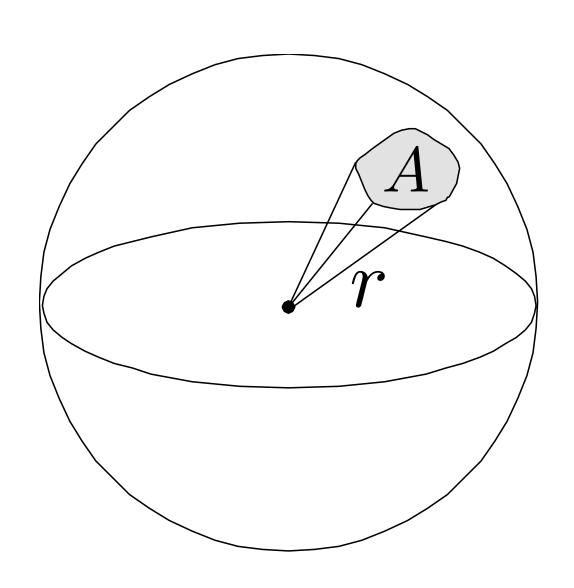
...things get dark fast!

Angles and solid angles

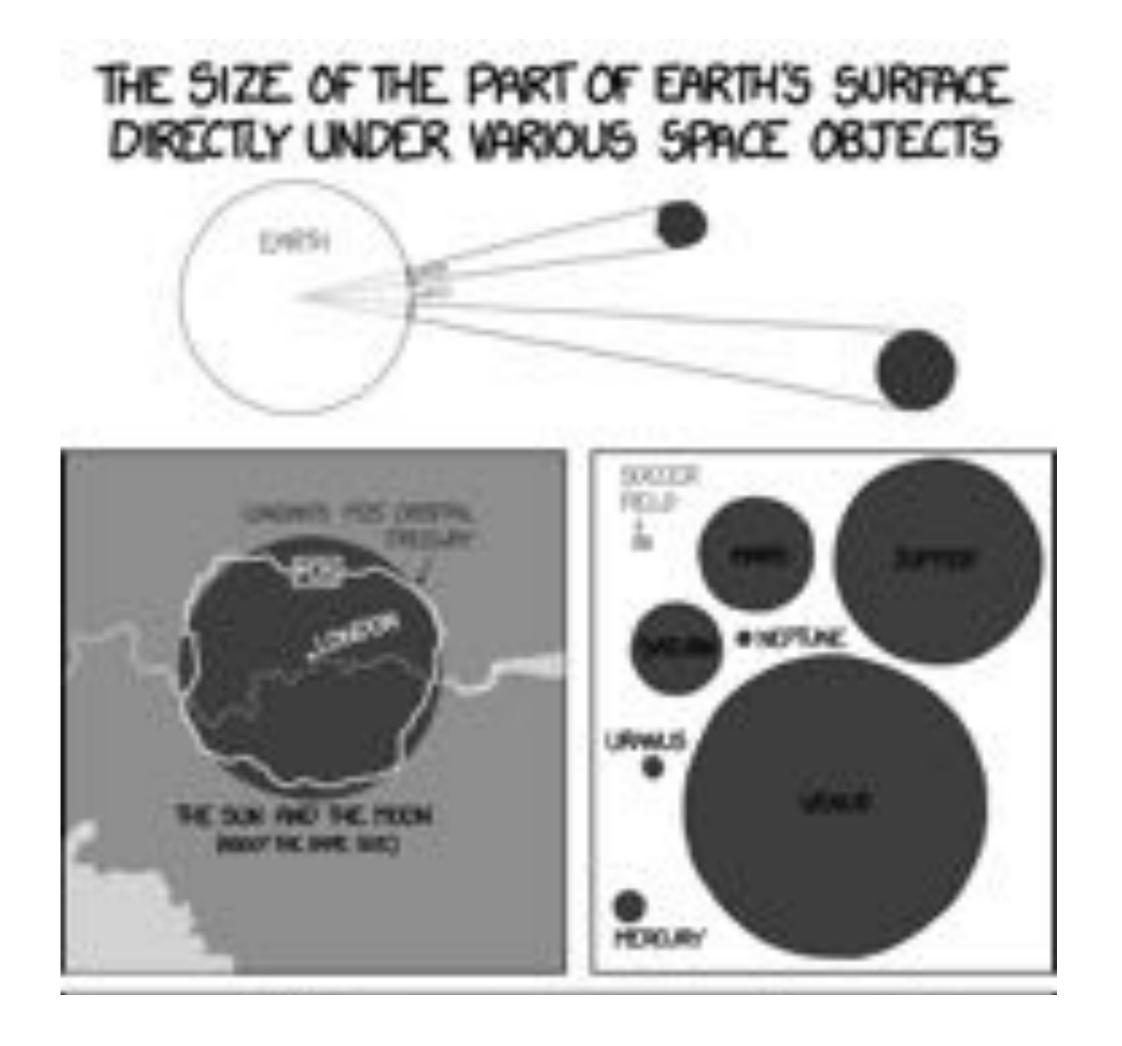
- Angle: ratio of subtended arc length on circle to radius
 - $oldsymbol{-} heta = rac{l}{r}$
 - Circle has 2π radians



- Solid angle: ratio of subtended area on sphere to radius squared
 - $oldsymbol{-} \Omega = rac{A}{r^2}$
 - Sphere has 4π steradians



Solid angles in practice

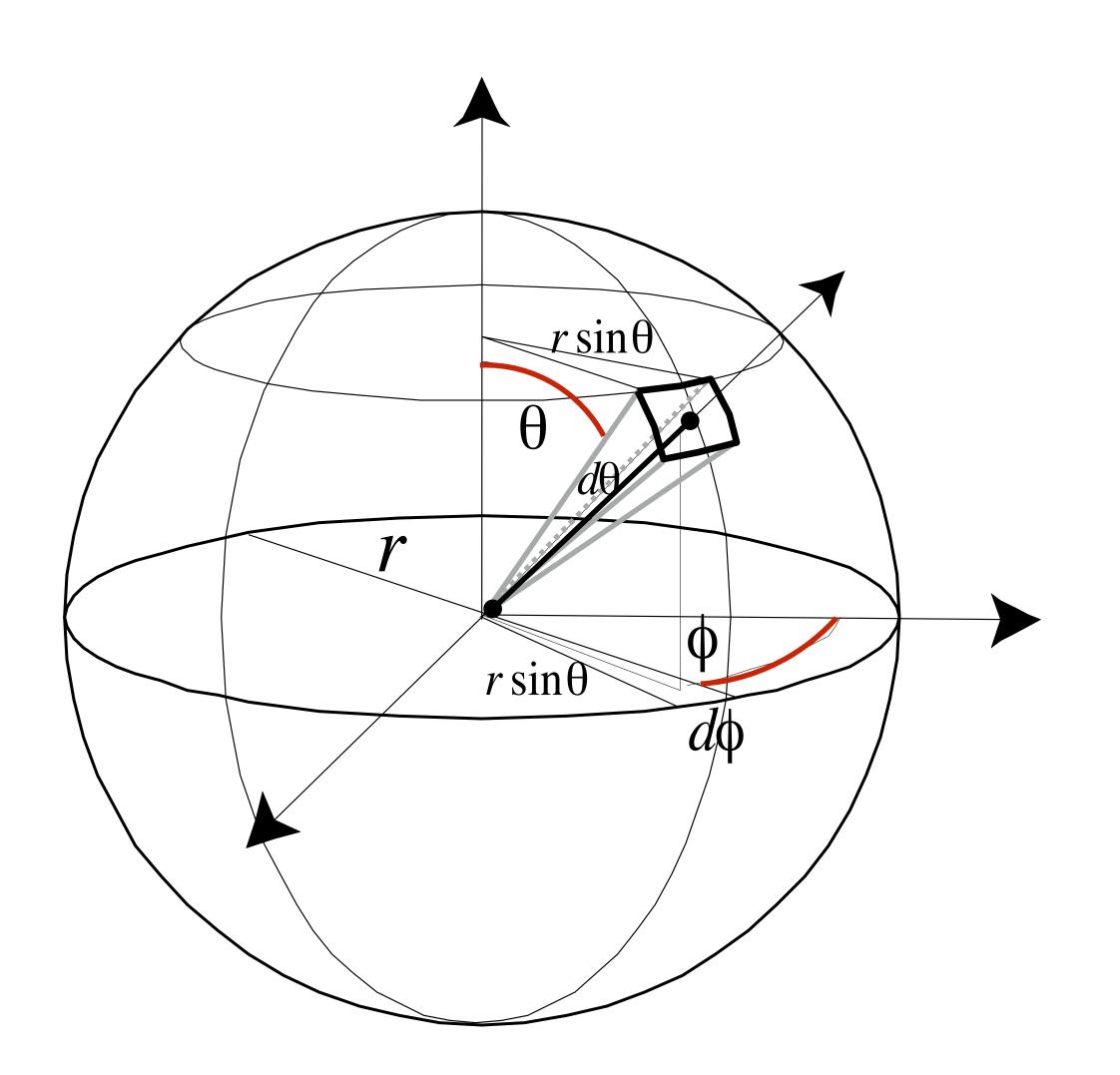


- Sun and moon both subtend ~60µ sr as seen from earth
- Surface area of earth:
 ~510M km²
- Projected area:

$$510 \text{Mkm}^2 \frac{60 \mu \text{sr}}{4 \pi \text{sr}} = 510 \frac{15}{\pi}$$
$$\approx 2400 \text{km}^2$$

http://xkcd.com/1276/

Differential solid angle



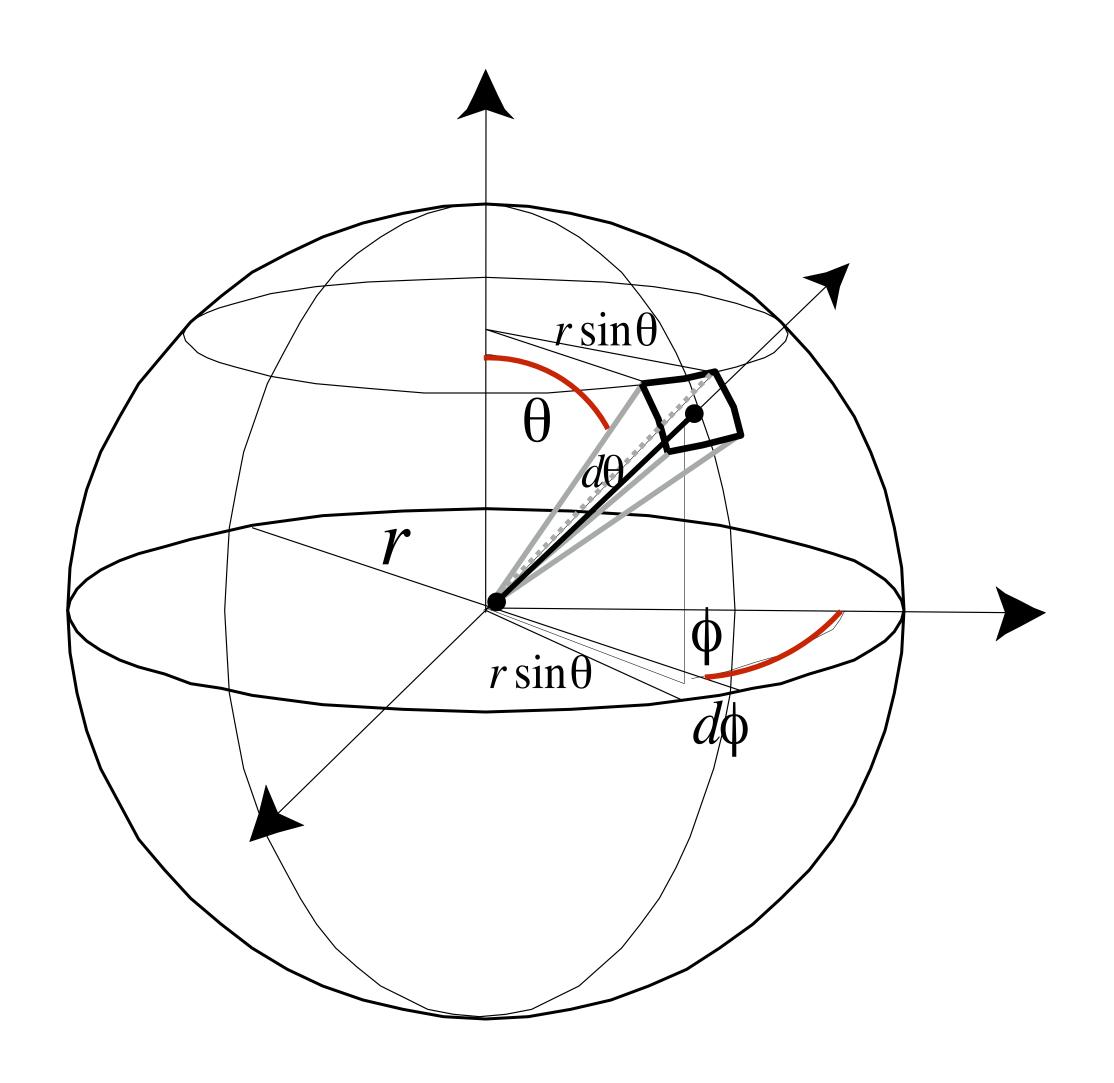
Consider a tiny area swept out by a tiny angle in each direction...

$$dA = (r d\theta)(r \sin \theta d\phi)$$
$$= r^2 \sin \theta d\theta d\phi$$

$$d\omega = \frac{dA}{r^2} = \sin\theta \, d\theta \, d\phi$$

Differential solid angle is just that tiny area on the unit sphere

Differential solid angle

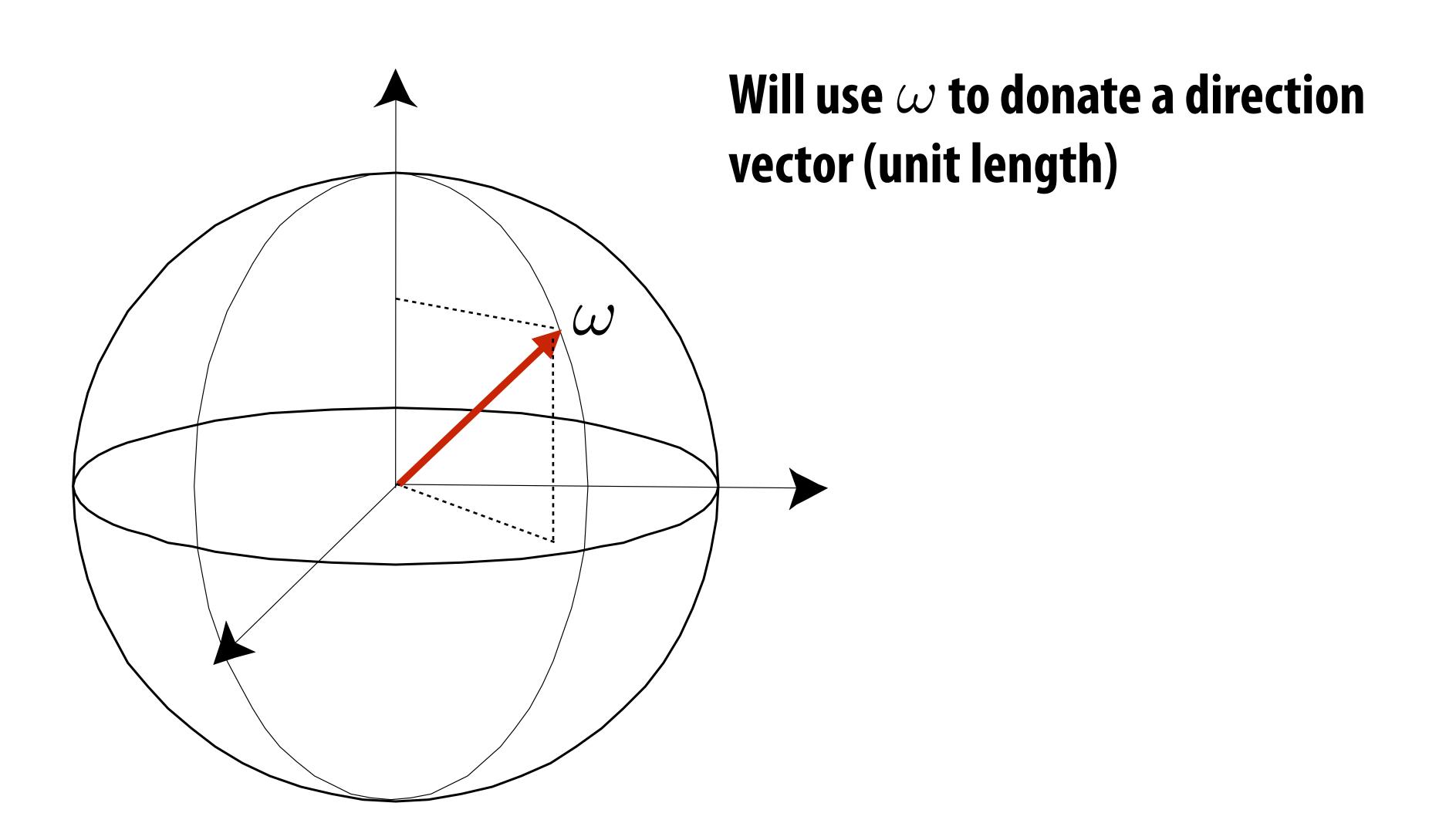


$$\Omega = \int_{S^2} d\omega$$

$$= \int_0^{2\pi} \int_0^{\pi} \sin \theta \, d\theta \, d\phi$$

$$= 4\pi$$

ω as a direction vector

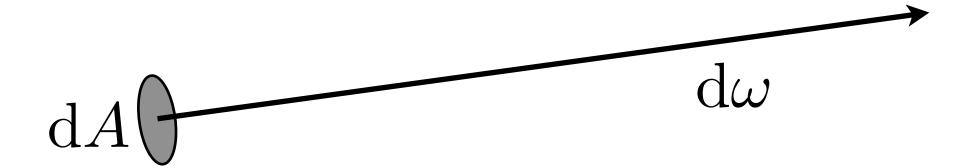


Measuring illumination: radiance

Radiance is the solid angle density of irradiance

$$L(\mathbf{p}, \omega) = \lim_{\Delta \to 0} \frac{\Delta E_{\omega}(\mathbf{p})}{\Delta \omega} = \frac{\mathrm{d}E_{\omega}(\mathbf{p})}{\mathrm{d}\omega} \left[\frac{\mathrm{W}}{\mathrm{m}^2 \, \mathrm{sr}} \right]$$

where E_{ω} denotes that the differential surface area is oriented to face in the direction ω



In other words, radiance is energy along a ray defined by origin point p and direction $\boldsymbol{\omega}$

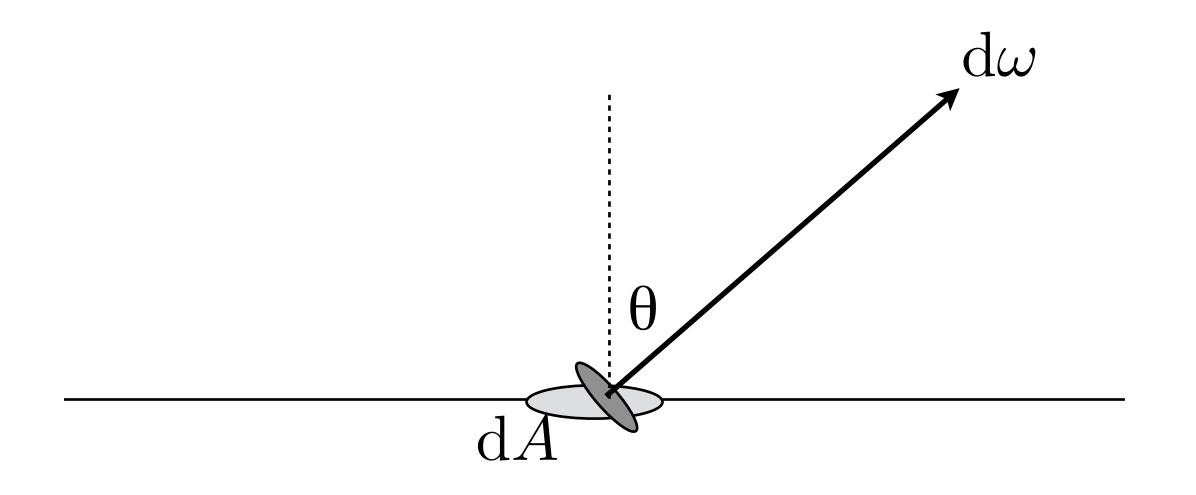
Energy per unit time per unit area per unit solid angle...!

Radiance functions

Equivalently,

$$L(\mathbf{p}, \omega) = \frac{dE(\mathbf{p})}{d\omega \cos \theta} = \frac{d^2\Phi(\mathbf{p})}{dA d\omega \cos \theta}$$

- Previous slide described measuring radiance at a surface oriented in ray direction
 - cos(theta) accounts for different surface orientation



Spectral Radiance

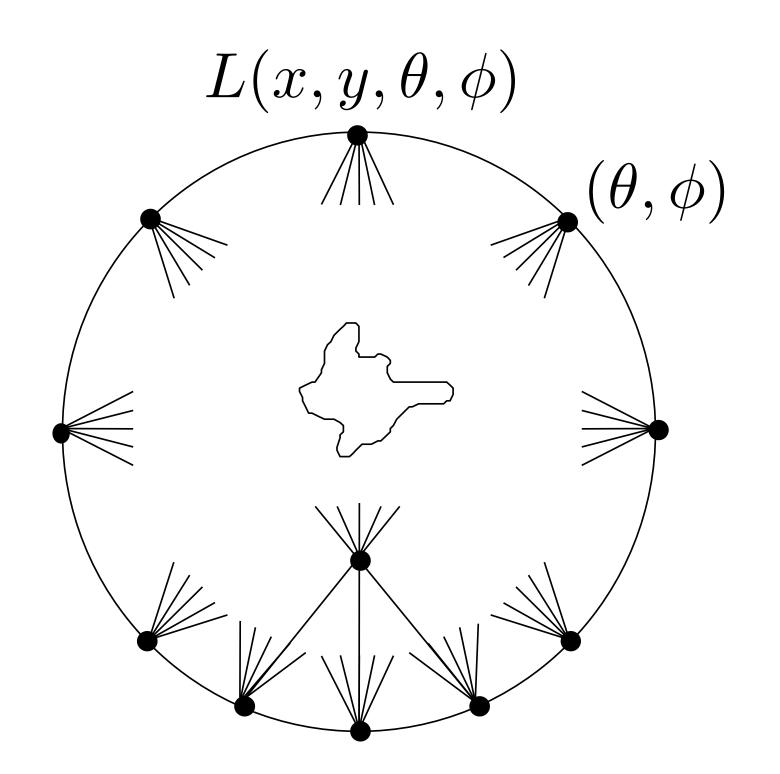
- To summarize, radiance is: radiant energy per unit time per unit area per unit solid angle
- To really get a complete description of light we have to break this down just one more step: radiant energy per unit time per unit area per unit solid angle per unit wavelength
- Q: What additional information do we now get?
- A: Color!

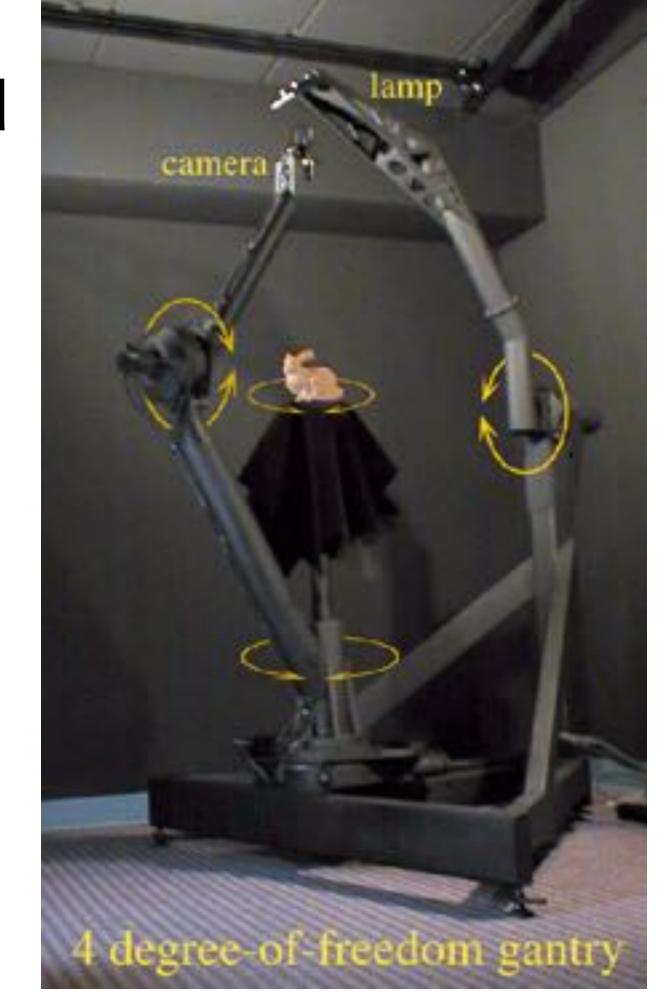
Why do we break energy down to this granularity? (spectral radiance)

Because once we have spectral radiance, we have a complete description of the light in an environment!

Field radiance: the light field

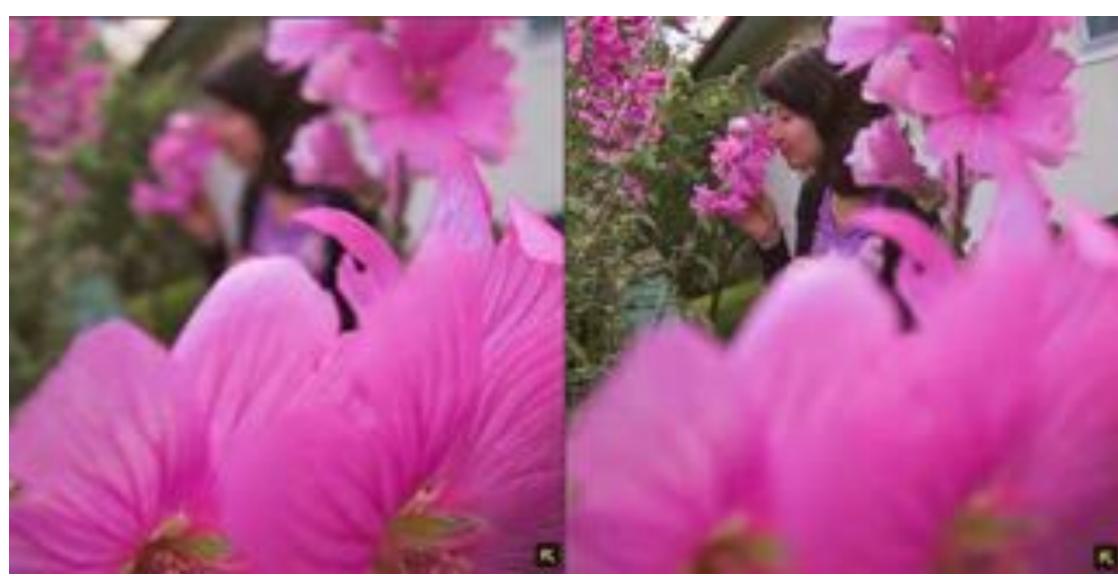
- Light field = radiance function on rays
- Radiance is constant along rays *
- Spherical gantry: captures 4D light field (all light leaving object)





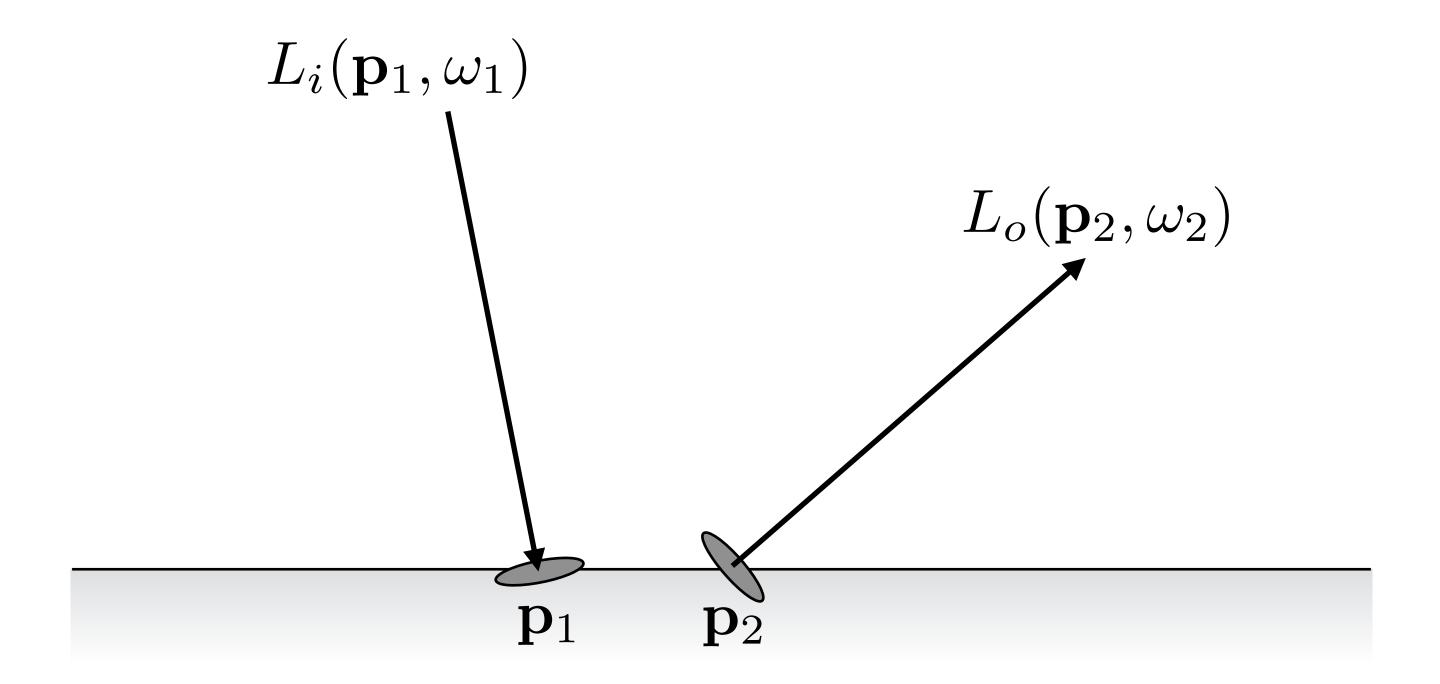
Light Field Photography

- A standard camera captures a small "slice" of the light field
- Light field cameras capture a "bigger slice," recombine information to get new images after taking the photo



Surface radiance

Need to distinguish between incident radiance and exitant radiance functions at a point on a surface



In general: $L_i(\mathbf{p},\omega) \neq L_o(\mathbf{p},\omega)$

Properties of radiance

- Radiance is a fundamental field quantity that characterizes the distribution of light in an environment
 - Radiance is the quantity associated with a ray
 - Rendering is all about computing radiance

Radiance is constant along a ray (in a vacuum)

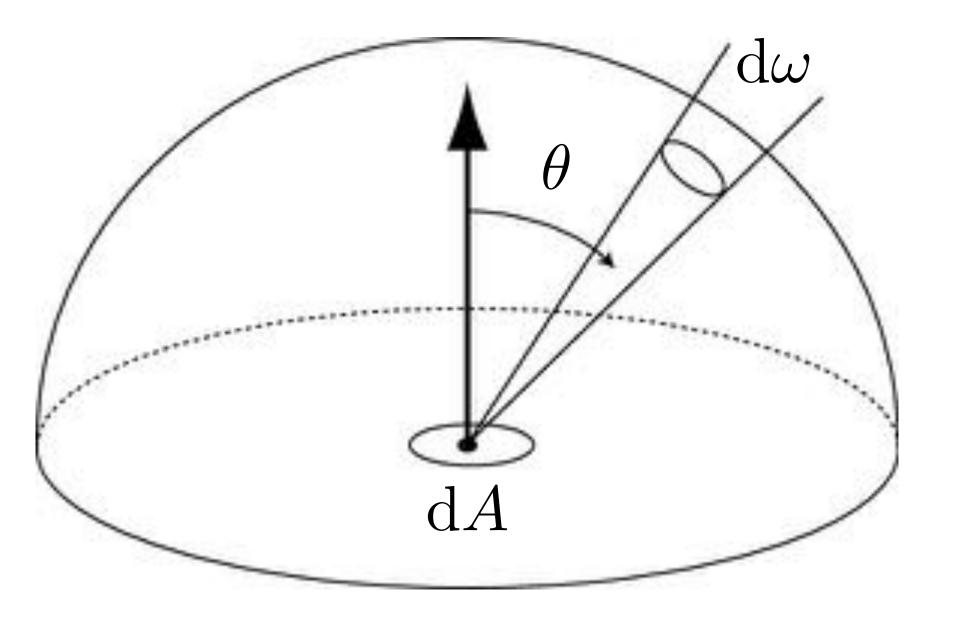
A pinhole camera measures radiance

Irradiance from the environment

Computing flux per unit area on surface, due to incoming light from all directions.

$$dE(\mathbf{p},\omega) = L_i(\mathbf{p},\omega)\cos\theta\,\mathrm{d}\omega$$
 Contribution to irradiance from light arriving from direction ω
$$E(\mathbf{p},\omega) = \int_{H^2} L_i(\mathbf{p},\omega)\cos\theta\,\mathrm{d}\omega$$

Light meter



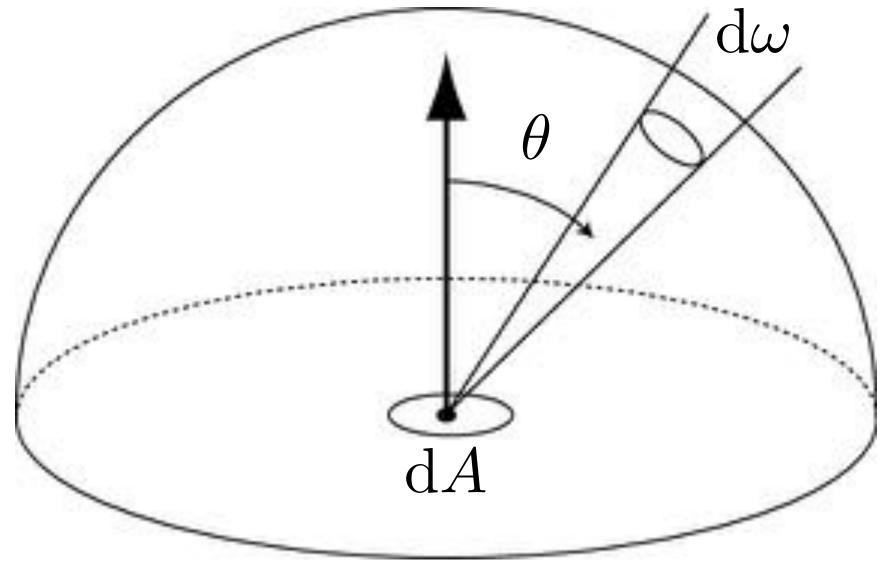
(This is what we often want to do for rendering!)

Simple case: irradiance from uniform hemispherical source

$$E(\mathbf{p}) = \int_{H^2} L \, d\omega$$

$$= L \int_0^{2\pi} \int_0^{\frac{\pi}{2}} \cos \theta \sin \theta \, d\theta \, d\phi$$

$$= L\pi$$

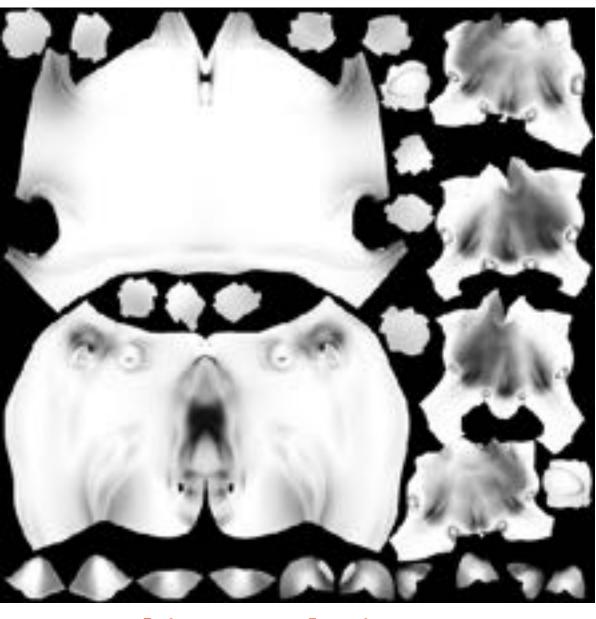


Example of hemispherical light source

Q: Why didn't we just get the same constant $L\pi$ (white) at every point?

Ambient occlusion

- Assume spherical (vs. hemispherical) light source, "at infinity"
- Irradiance is now rotation, translation invariant
- Can pre-compute, "bake" into texture to enhance shading

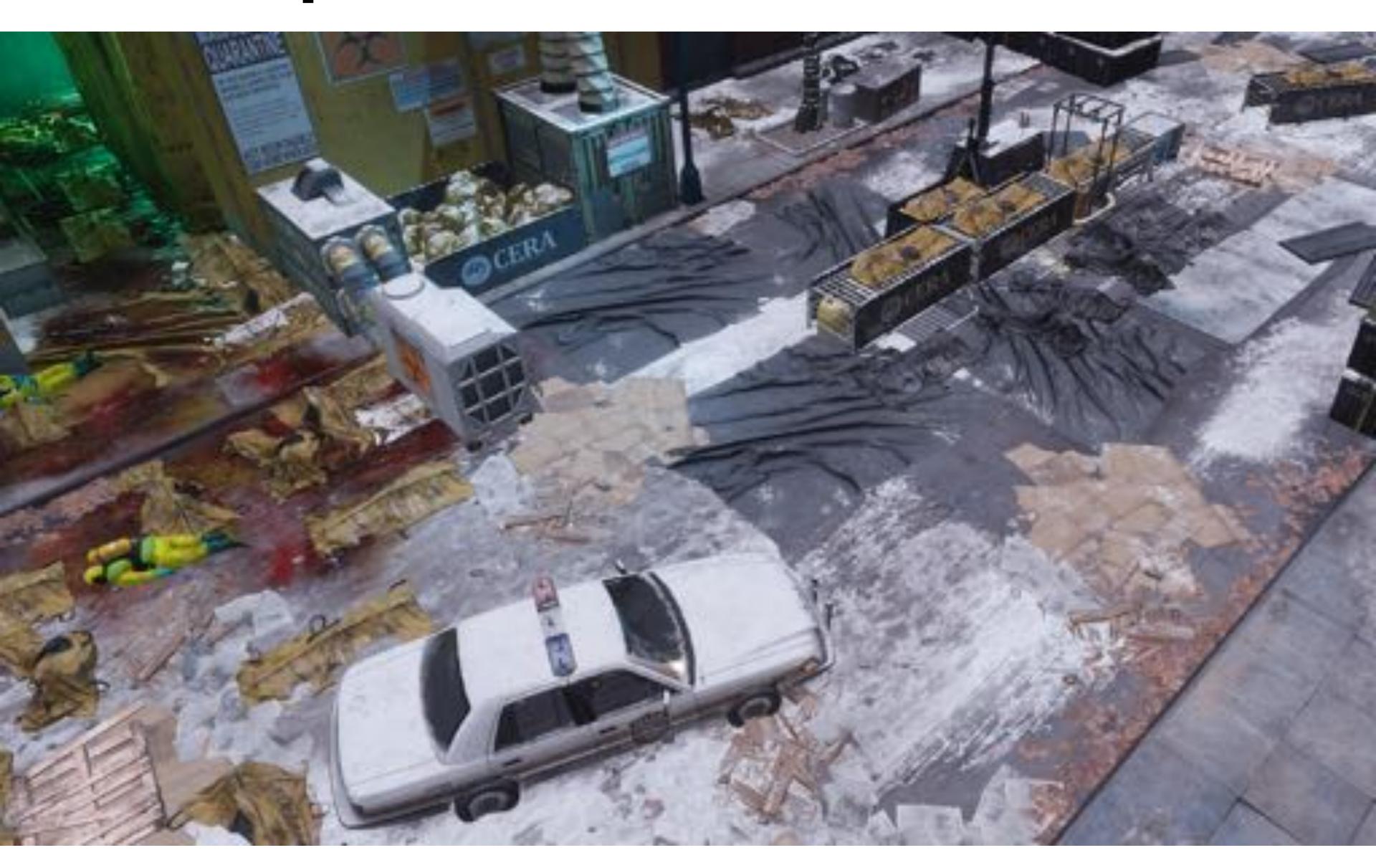


ambient occlusion map

without A0 map

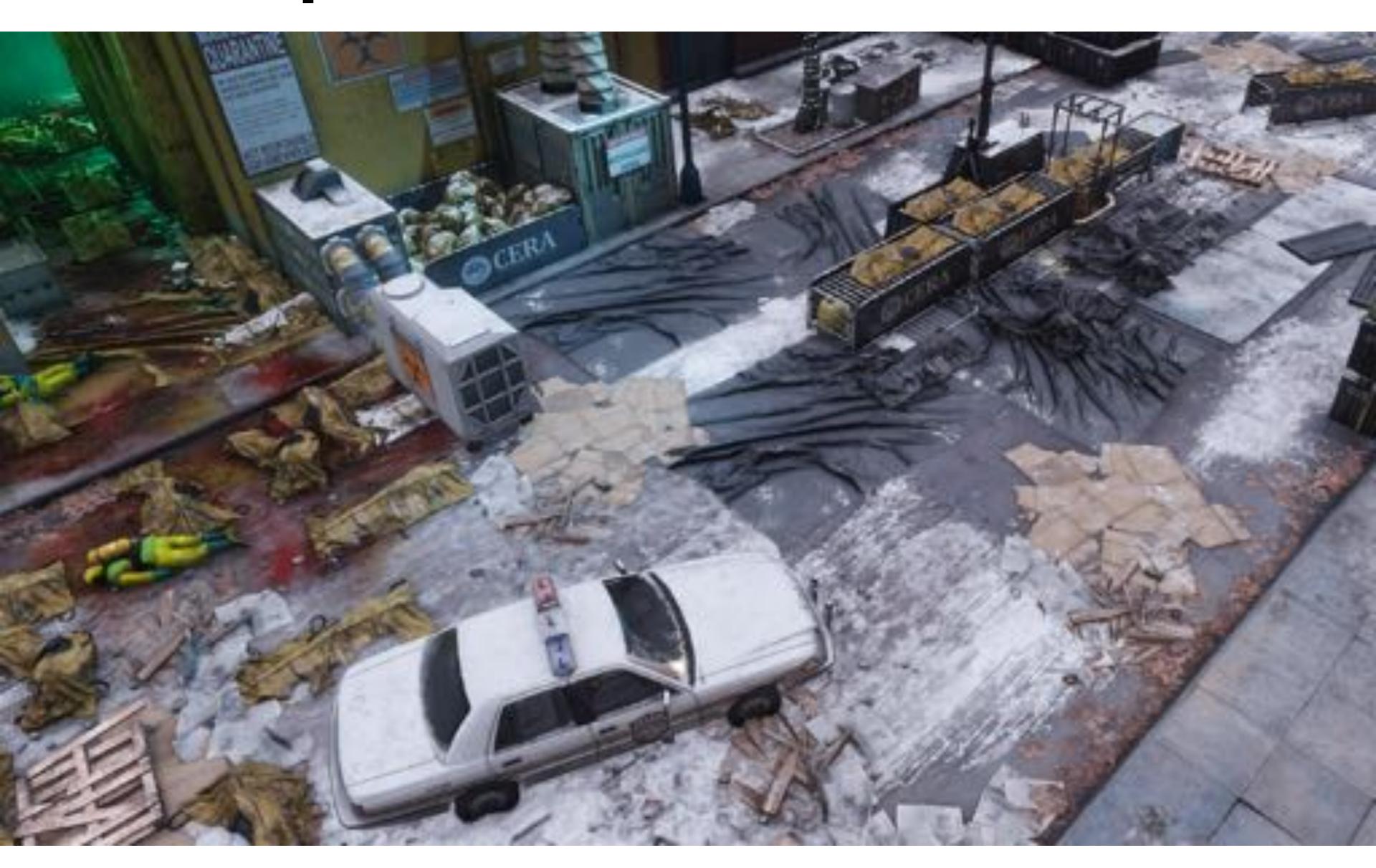
with A0 map

Screen-space ambient occlusion



Credit: NVIDIA

Screen-space ambient occlusion



Credit: NVIDIA

Screen-space ambient occlusion

Credit: NVIDIA

Irradiance from a uniform area source

(source emits radiance L)

$$E(\mathbf{p}) = \int_{H^2} L(\mathbf{p}, \omega) \cos \theta \, d\omega$$

$$= L \int_{\Omega} \cos \theta \, d\omega$$

$$= L\Omega^{\perp}$$

Projected solid angle:

- Cosine-weighted solid angle
- Area of object 0 projected onto unit sphere, then projected onto plane

$$d\omega^{\perp} = |\cos\theta| d\omega$$

Uniform disk source (oriented perpendicular to plane)

Geometric Derivation

(using projected solid angle)



$$\Omega^{\perp} = \pi \sin^2 \alpha$$

Algebraic Derivation

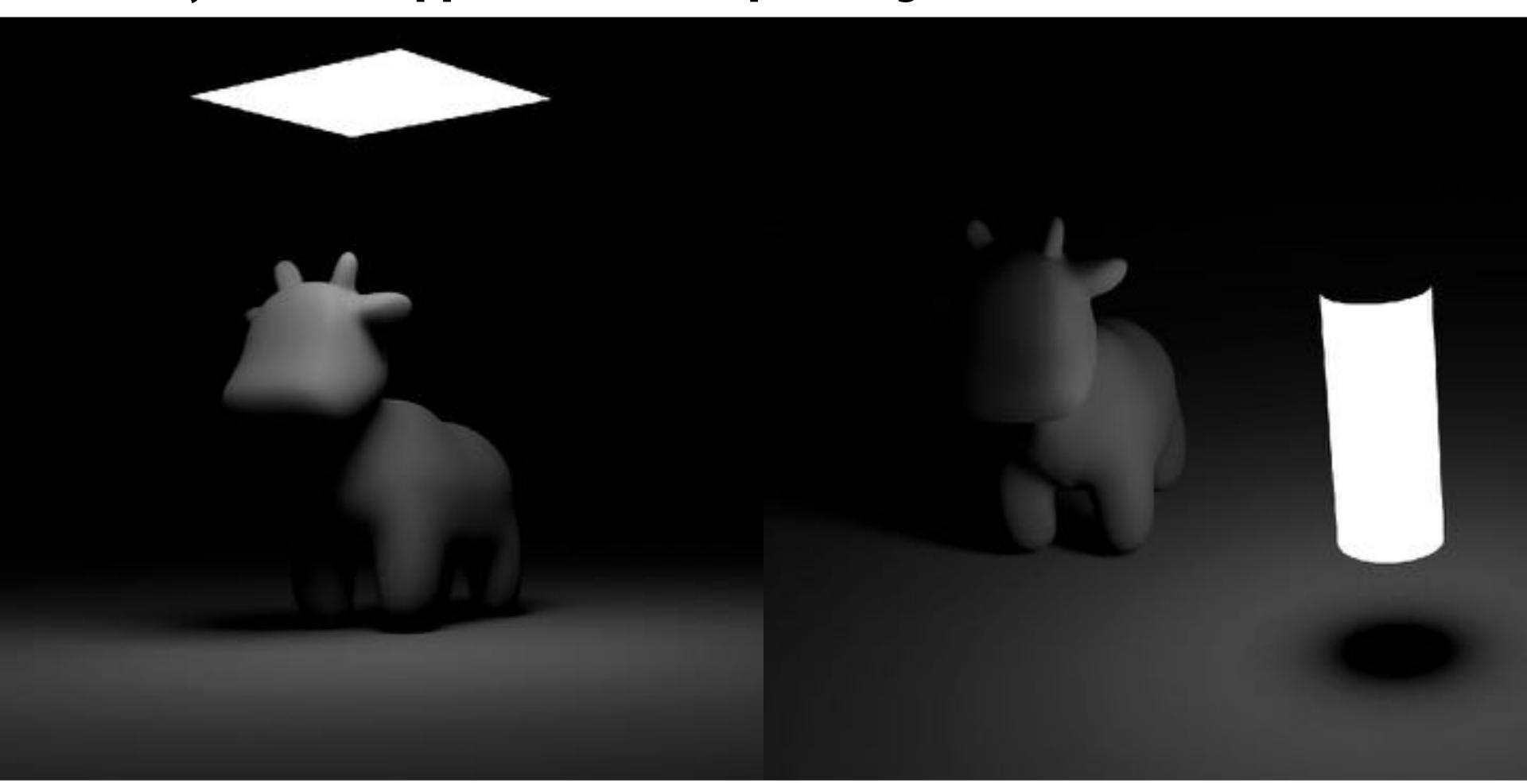
$$\Omega^{\perp} = \int_0^{2\pi} \int_0^{\alpha} \cos \theta \sin \theta \, d\theta \, d\phi$$

$$= 2\pi \frac{\sin^2 \theta}{2} \Big|_0^{\alpha}$$

$$= \pi \sin^2 \alpha$$

Examples of Area Light Sources

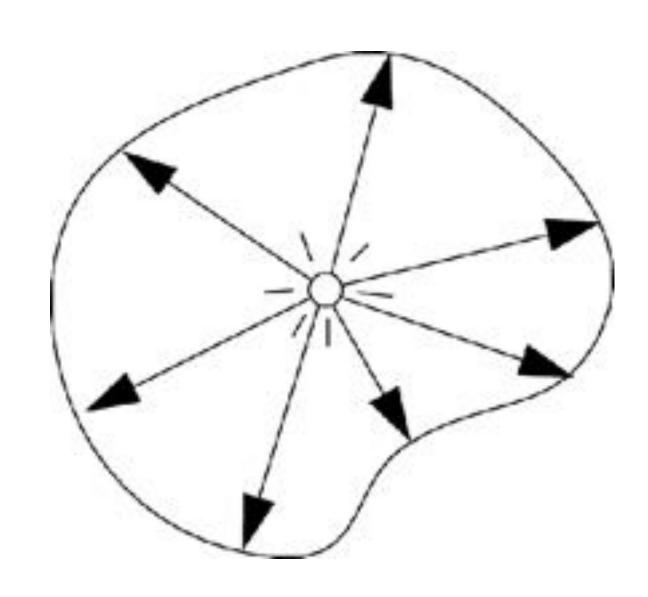
Generally "softer" appearance than point lights:



...and better model of real-world lights!

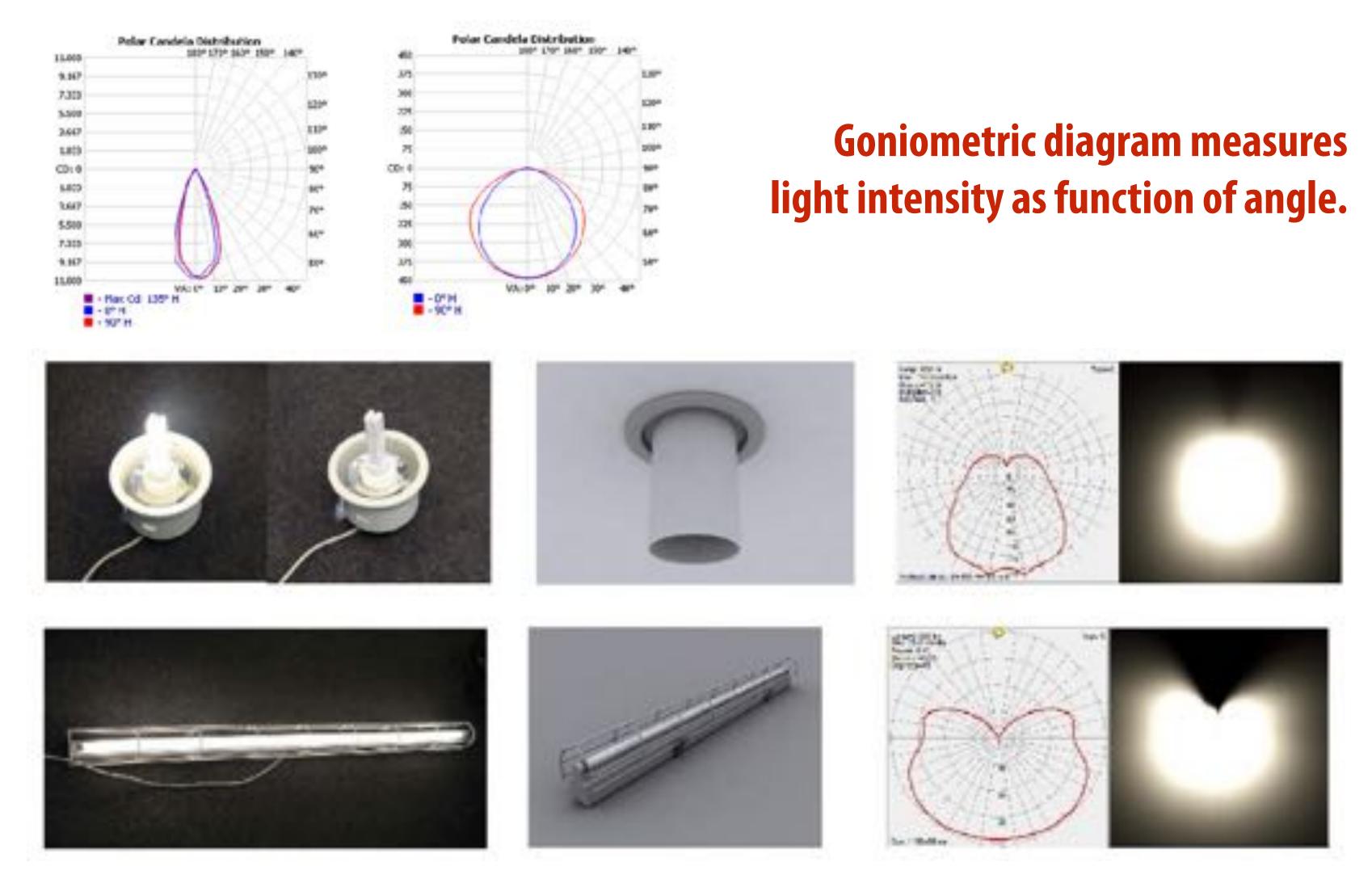
Measuring illumination: radiant intensity

Power per solid angle emanating from a point source



$$I(\omega) = \frac{\mathrm{d}\Phi}{\mathrm{d}\omega} \left[\frac{\mathrm{W}}{\mathrm{sr}} \right]$$

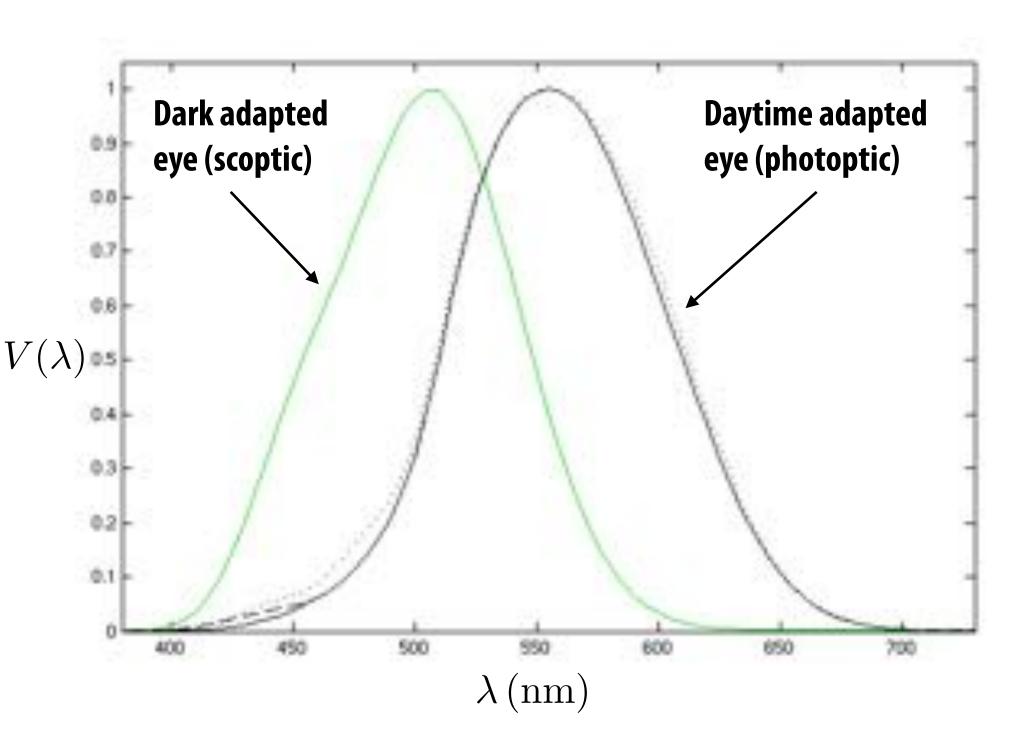
More realistic light models via "goniometry"



http://www.mpi-inf.mpg.de/resources/mpimodel/v1.0/luminaires/index.html http://www.visual-3d.com/tools/photometricviewer/

Photometry: light + humans

- All radiometric quantities have equivalents in photometry
- Photometry: accounts for response of human visual system $V(\lambda)$ to electromagnetic radiation
- Luminance (Y) is photometric quantity that corresponds to radiance: integrate radiance over all wavelengths, weight by eye's luminous efficacy curve, e.g.:



$$Y(\mathbf{p}, \omega) = \int_0^\infty L(\mathbf{p}, \omega, \lambda) V(\lambda) d\lambda$$

Radiometric and photometric terms

Physics	Radiometry Photometry		
Energy	Radiant Energy Luminous Energy		
Flux (Power)	Radiant Power Luminous Power		
Flux Density	Irradiance (incoming) Radiosity (outgoing)	Illuminance (incoming) Luminosity (outgoing)	
Angular Flux Density	Radiance	Luminance	
Intensity	Radiant Intensity	Luminous Intensity	

Photometric Units

Photometry	MKS	CGS	British
Luminous Energy	Talbot	Talbot	Talbot
Luminous Power	Lumen	Lumen	Lumen
Illuminance Luminosity	Lux	Phot	Footcandle
Luminance	Nit, Apostlib, Blondel	Stilb Lambert	Footlambert
Luminous Intensity	Candela	Candela	Candela

"Thus one nit is one lux per steradian is one candela per square meter is one lumen per square meter per steradian. Got it?" — James Kajiya

What information are we missing?

- At the beginning, adopted "geometric optics" model of light
- Miss out on small-scale effects (e.g., diffraction/iridescence)
- Also large-scale effects (e.g., bending of light due to gravity)

Next time...

More toward our goal of realistic rendering

Materials, scattering, etc.