Geometric Queries

Computer Graphics
 CMU 15-462/15-662

Geometric Queries—Motivation

Last Time: Danger of Resampling

Idea: after resampling, project each vertex onto original mesh

Closest Point Queries

- Q: Given a point, in space (e.g., a new sample point), how do we find the closest point on a given surface?
- Q: Does implicit/explicit representation make this easier?

■ Q: Does our halfedge data structure help?
■ Q: What's the cost of the naïve algorithm?

- Q: How do we find the distance to a single triangle anyway?
- So many questions!

Many types of geometric queries

- Already identified need for "closest point" query
- Plenty of other things we might like to know:
- Do two triangles intersect?
- Are we inside or outside an object?
- Does one object contain another?
- Data structures we've seen so far not really designed for this...
- Need some new ideas!

■ TODAY: come up with simple (read: slow) algorithms.

- NEXT TIME: intelligent ways to accelerate geometric queries.

Warm up: closest point on point

- Goal is to find the point on a mesh closest to a given point.
- Much simpler question: given a query point (p1,p2), how do we find the closest point on the point (a1,a2)?

Bonus question: what's the distance?

Slightly harder: closest point on line

■ Now suppose I have a line $N^{\top} x=c$, where N is the unit normal

- How do I find the point closest to my query point p?

Harder: closest point on line segment

- Two cases: endpoint or interior
- Already have basic components:
- point-to-point
- point-to-line
- Algorithm?
- find closest point on line
- check if it's between endpoints
- if not, take closest endpoint

■ How do we know if it's between endpoints?

- write closest point on line as $a+t(b-a)$

- if t is between 0 and 1 , it's inside the segment!

Even harder: closest point on triangle

- What are all the possibilities for the closest point?
- Almost just minimum distance to three segments:

Q: What about a point inside the triangle?

Closest point on triangle in 3D

- Not so different from 2D case
- Algorithm?
- project onto plane of triangle
- use half-space tests to classify point (vs. half plane)
- if inside the triangle, we're done!
- otherwise, find closest point on associated vertex or edge
- By the way, how do we find closest point on plane?
- Same expression as closest point on a line!
- E.g., p + (c - $N^{\top} p$) N

Closest point on triangle mesh in 3D?

- Conceptually easy:
- loop over all triangles
- compute closest point to current triangle
- keep globally closest point
- Q: What's the cost?
- What if we have billions of faces?

■ NEXT TIME: Better data structures!

Closest point to implicit surface?

- If we change our representation of geometry, algorithms can change completely
- E.g. how might we compute the closest point on an implicit surface described via its distance function?
- One idea:
- start at the query point
- compute gradient of distance (using, e.g., finite differences)
- take a little step (decrease distance)
- repeat until we're at the surface (zero distance)
- Better yet:just store closest point for each grid cell! (speed/memory
 trade off)

Different query: ray-mesh intersection

- A "ray" is an oriented line starting at a point
- Think about a ray of light traveling from the sun
- Want to know where a ray pierces a surface
- Why?
- GEOMETRY: inside-outside test
- RENDERING: visibility, ray tracing
- ANIMATION: collision detection
- Might pierce surface in many places!

Ray equation

- Can express ray as

Intersecting a ray with an implicit surface

- Recall implicit surfaces: all points x such that $\mathrm{f}(\mathrm{x})=0$
- Q: How do we find points where a ray pierces this surface?
- Well, we know all points along the ray: $r(t)=0+t d$
- Idea: replace " x " with " r " in 1st equation, and solve for t
- Example: unit sphere

$$
\begin{aligned}
& f(\mathbf{x})=|\mathbf{x}|^{2}-1 \\
& \Rightarrow f(\mathbf{r}(t))=|\mathbf{o}+t \mathbf{d}|^{2}-1 \\
& \underbrace{|\mathbf{d}|^{2}}_{a} t^{2}+\underbrace{2(\mathbf{o} \cdot \mathbf{d})}_{b} t+\underbrace{|\mathbf{o}|^{2}-1}_{c}=0
\end{aligned}
$$

$$
t=-\quad-\mathbf{o} \cdot \mathbf{d} \pm \sqrt{(\mathbf{o} \cdot \mathbf{d})^{2}-|\mathbf{o}|^{2}+1}
$$

quadratic formula:

$$
t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Why two solutions?

Ray-plane intersection

- Suppose we have a plane $\mathrm{N}^{\top} \mathrm{x}=\mathrm{c}$
- N - unit normal
- c-offset

- How do we find intersection with ray $\mathrm{r}(\mathrm{t})=0+\mathrm{td}$?
- Key idea: again, replace the point x with the ray equation t :

$$
\mathbf{N}^{\top} \mathbf{r}(t)=c
$$

$$
\begin{aligned}
& \text { Now solve for t: } \\
& \quad \mathbf{N}^{\top}(\mathbf{o}+t \mathbf{d})=c \quad \Rightarrow t=\frac{c-\mathbf{N}^{\top} \mathbf{o}}{\mathbf{N}^{\top} \mathbf{d}}
\end{aligned}
$$

- And plug t back into ray equation:

$$
r(t)=\mathbf{o}+\frac{c-\mathbf{N}^{\top} \mathbf{o}}{\mathbf{N}^{\top} \mathbf{d}} \mathbf{d}
$$

Ray-triangle intersection

- Triangle is in a plane...
- Not much more to say!
- Compute ray-plane intersection

- Q: What do we do now?
- A: Why not compute barycentric coordinates of hit point?
- If barycentric coordinates are all positive, point in triangle
- Actually, a lot more to say... if you care about performance!

Google ray triangle insursettion metreds

Whb Shopping Visece Newn linages More - Selarch sodn
Nout 43 gop reabl 144 reconob)
Mbller-Trumbore intersection algorithm - Wikipedia, the free hagoillen wibipedeory, MOter-Thumbor_irtersection_(w)- "Wigede

por Fast Minimum Storage Ray-Triangle Intersection pdf
rapsillwwe cs.viginia eddi, FastllzoMininumst. " Univenity of Virgivia
by F C 2 B - Cued by 6 - Revated atcies
We geveret a clewn alpothm for deterining ahefer a ray intersects a triangle.-blep In sobed to previcue mathots, we boleve if is he favent roptriangle.

PON Optimizing Ray-Triangle Intersection via Automated Search
 by A Kimuer - Oned by 33 . Meland artoles
meted is unef is turter optimise te pode podiced va tre fleress linction. - For
these 30 methode we copbese rig-biangle intersection in two diferest wayk.
Frn Comparative Study of Ray-Triangle Intersection Algorithms

by V Shumblos. Cend by 1 - Aalated aricien

Why care about performance?

Intel Embree

NVIDIA OptiX

Why care about performance?

"Brigade 3" real time path tracing demo

One more query: mesh-mesh intersection

■ GEOMETRY: How do we know if a mesh intersects itself?

- ANIMATION: How do we know if a collision occurred?

Warm up: point-point intersection

- Q: How do we know if pintersects a?
- A: ...check if they're the same point!
(p1, p2)
(a1, a2)

Sadly, life is not always so easy.

Slightly harder: point-line intersection

- Q: How do we know if a point intersects a given line?
- A: ...plug it into the line equation!

Finally interesting: line-line intersection

- Two lines: $a x=b$ and $c x=d$

■ Q: How do we find the intersection?

- A: See if there is a simultaneous solution

■ Leads to linear system:

Degenerate line-line intersection?

- What if lines are almost parallel?
- Small change in normal can lead to big change in intersection!
- Instability very common, very important with geometric predicates. Demands special care (e.g., analysis of matrix).

Triangle-Triangle Intersection?

- Lots of ways to do it
- Basic idea:
- Q: Any ideas?

- One way: reduce to edge-triangle intersection
- Check if each line passes through plane
- Then do interval test
- What if triangle is moving?
- Important case for animation

- Can think of triangles as prisms in time
- Turns dynamic problem (nD + time) into purely geometric problem in ($\mathbf{n}+1$)-dimensions

Up Next: Spatial Acceleration Data Strucutres

- Testing every element is slow!
- E.g., linearly scanning through a list vs. binary search
- Can apply this same kind of thinking to geometric queries

