
Computer Graphics
CMU 15-462/15-662

Geometric Queries

 CMU 15-462/662

Geometric Queries—Motivation

 CMU 15-462/662

Last Time: Danger of Resampling

downsample upsample

…

Idea: after resampling, project each vertex onto original mesh

 CMU 15-462/662

Closest Point Queries
Q: Given a point, in space (e.g., a new sample point), how do
we find the closest point on a given surface?
Q: Does implicit/explicit representation make this easier?
Q: Does our halfedge data structure help?
Q: What’s the cost of the naïve algorithm?
Q: How do we find the distance to a single triangle anyway?
So many questions!

p

???

 CMU 15-462/662

Many types of geometric queries
Already identified need for “closest point” query
Plenty of other things we might like to know:
- Do two triangles intersect?
- Are we inside or outside an object?
- Does one object contain another?
- ...
Data structures we’ve seen so far not really designed for this...
Need some new ideas!
TODAY: come up with simple (read: slow) algorithms.
NEXT TIME: intelligent ways to accelerate geometric queries.

 CMU 15-462/662

Warm up: closest point on point
Goal is to find the point on a mesh closest to a given point.
Much simpler question: given a query point (p1,p2), how do
we find the closest point on the point (a1,a2)?

(p1, p2)

(a1, a2)

Bonus question: what’s the distance?

 CMU 15-462/662

Slightly harder: closest point on line
Now suppose I have a line NTx = c, where N is the unit normal
How do I find the point closest to my query point p?

p
NTx = cN

Many ways to do it:

 CMU 15-462/662

p
p

p

p

p

p

p
p p

Harder: closest point on line segment
Two cases: endpoint or interior
Already have basic components:
- point-to-point
- point-to-line
Algorithm?
- find closest point on line
- check if it’s between endpoints
- if not, take closest endpoint
How do we know if it’s between endpoints?
- write closest point on line as a+t(b-a)
- if t is between 0 and 1, it’s inside the segment!

a

b

 CMU 15-462/662

Even harder: closest point on triangle
What are all the possibilities for the closest point?
Almost just minimum distance to three segments:

Q: What about a point inside the triangle?

 CMU 15-462/662

Closest point on triangle in 3D
Not so different from 2D case
Algorithm?
- project onto plane of triangle
- use half-space tests to classify point (vs. half plane)
- if inside the triangle, we’re done!
- otherwise, find closest point on associated vertex or edge
By the way, how do we find closest point on plane?
Same expression as closest point on a line!
E.g., p + (c - NTp) N

 CMU 15-462/662

p

Closest point on triangle mesh in 3D?
Conceptually easy:
- loop over all triangles
- compute closest point to current triangle
- keep globally closest point
Q: What’s the cost?
What if we have billions of faces?
NEXT TIME: Better data structures!

 CMU 15-462/662

Closest point to implicit surface?
If we change our representation of geometry, algorithms can
change completely
E.g., how might we compute the closest point on an implicit
surface described via its distance function?

One idea:
- start at the query point
- compute gradient of distance

(using, e.g., finite differences)
- take a little step (decrease

distance)
- repeat until we’re at the

surface (zero distance)
Better yet: just store closest point
for each grid cell! (speed/memory
trade off)

 CMU 15-462/662

Different query: ray-mesh intersection
A “ray” is an oriented line starting at a point
Think about a ray of light traveling from the sun
Want to know where a ray pierces a surface
Why?
- GEOMETRY: inside-outside test
- RENDERING: visibility, ray tracing
- ANIMATION: collision detection
Might pierce surface in many places!

 CMU 15-462/662

Ray equation
Can express ray as

“time”
point along ray

origin unit direction

 CMU 15-462/662

Intersecting a ray with an implicit surface
Recall implicit surfaces: all points x such that f(x) = 0
Q: How do we find points where a ray pierces this surface?
Well, we know all points along the ray: r(t) = o + td
Idea: replace “x” with “r” in 1st equation, and solve for t
Example: unit sphere

quadratic formula:

Why two solutions?
o

d

 CMU 15-462/662

Ray-plane intersection
Suppose we have a plane NTx = c
- N - unit normal
- c - offset
How do we find intersection with ray r(t) = o + td?
Key idea: again, replace the point x with the ray equation t:

Now solve for t:

And plug t back into ray equation:

 CMU 15-462/662

Ray-triangle intersection
Triangle is in a plane...
Not much more to say!
- Compute ray-plane intersection
- Q: What do we do now?
- A: Why not compute barycentric coordinates of hit point?
- If barycentric coordinates are all positive, point in triangle
Actually, a lot more to say... if you care about performance!

 CMU 15-462/662

Why care about performance?

Intel Embree

NVIDIA OptiX

 CMU 15-462/662

Why care about performance?

“Brigade 3” real time path tracing demo

 CMU 15-462/662

One more query: mesh-mesh intersection
GEOMETRY: How do we know if a mesh intersects itself?
ANIMATION: How do we know if a collision occurred?

 CMU 15-462/662

Warm up: point-point intersection
Q: How do we know if p intersects a?
A: ...check if they’re the same point!

(p1, p2)

(a1, a2)

Sadly, life is not always so easy.

 CMU 15-462/662

Slightly harder: point-line intersection
Q: How do we know if a point intersects a given line?
A: ...plug it into the line equation!

p
NTx = c

I promise, life isn’t always so easy.

 CMU 15-462/662

Finally interesting: line-line intersection
Two lines: ax=b and cx=d
Q: How do we find the intersection?
A: See if there is a simultaneous solution
Leads to linear system:

 CMU 15-462/662

Degenerate line-line intersection?
What if lines are almost parallel?
Small change in normal can lead to big change in intersection!
Instability very common, very important with geometric
predicates. Demands special care (e.g., analysis of matrix).

See for example Shewchuk, “Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates”

 CMU 15-462/662

Triangle-Triangle Intersection?
Lots of ways to do it
Basic idea:
- Q: Any ideas?
- One way: reduce to edge-triangle intersection
- Check if each line passes through plane
- Then do interval test
What if triangle is moving?
- Important case for animation
- Can think of triangles as prisms in time
- Turns dynamic problem (nD + time) into purely

geometric problem in (n+1)-dimensions

 CMU 15-462/662

Up Next: Spatial Acceleration Data Strucutres
Testing every element is slow!
E.g., linearly scanning through a list vs. binary search
Can apply this same kind of thinking to geometric queries

