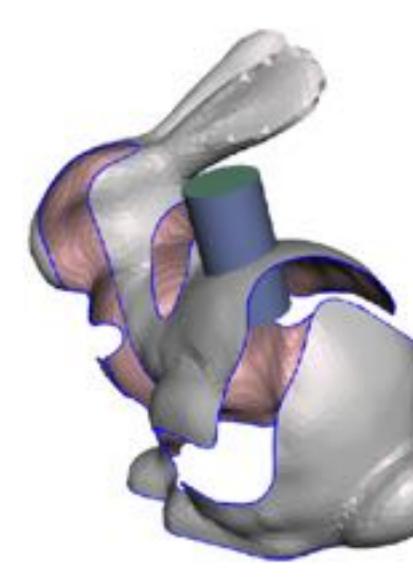
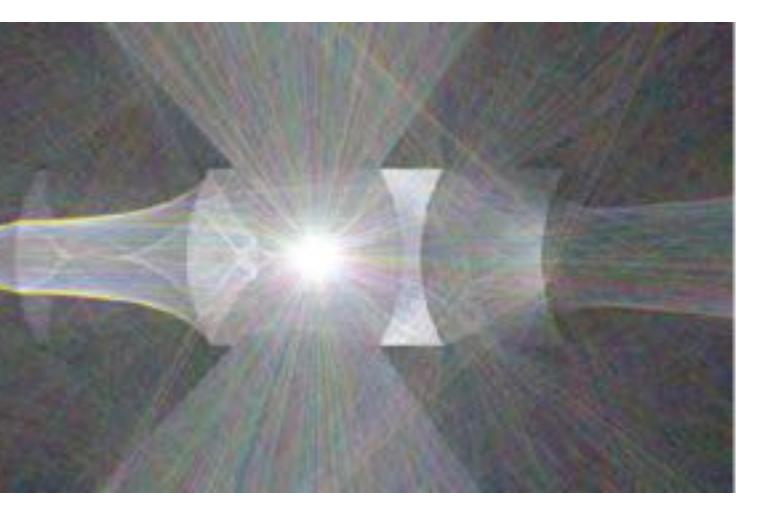
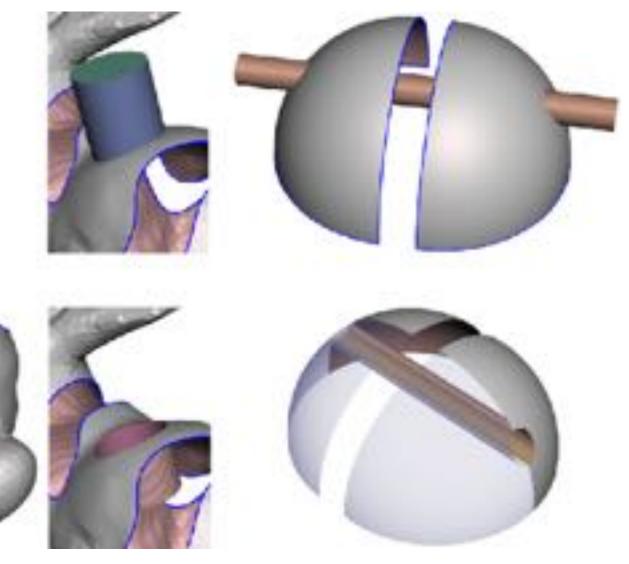
Geometric Queries

Computer Graphics CMU 15-462/15-662

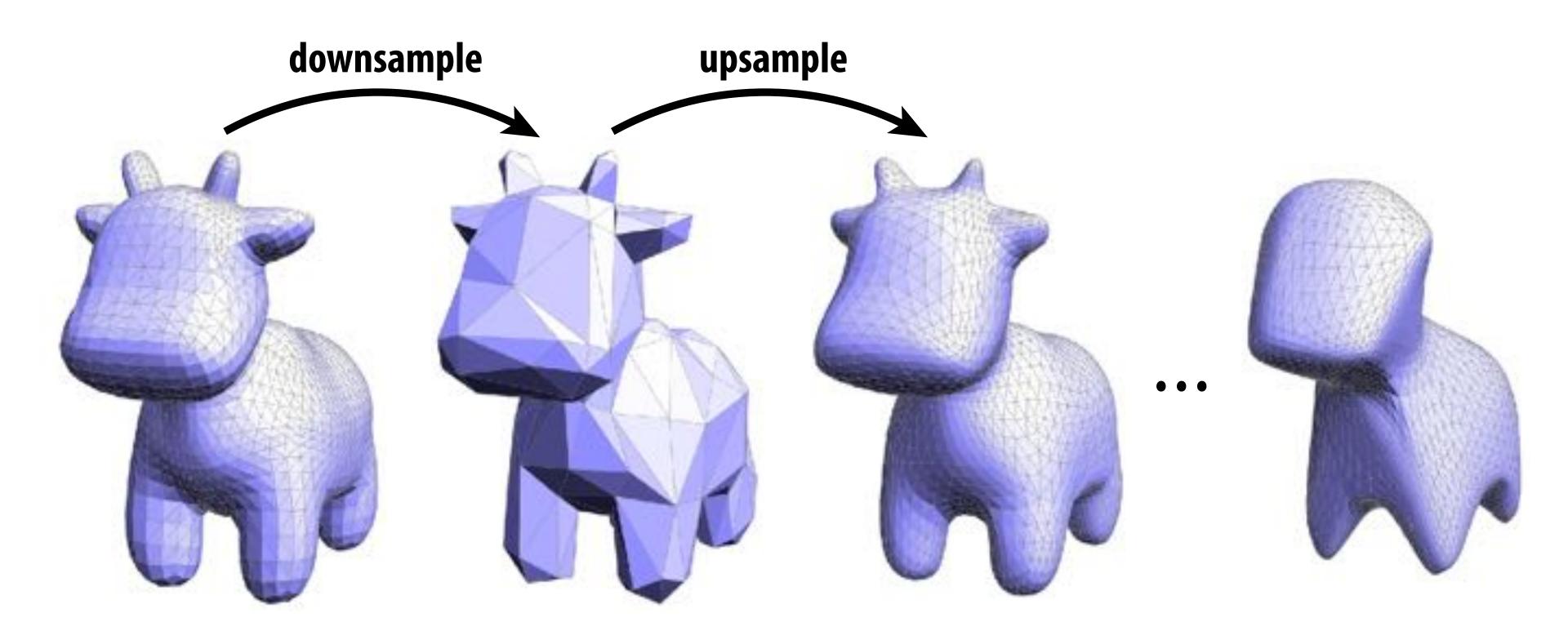
Geometric Queries—Motivation







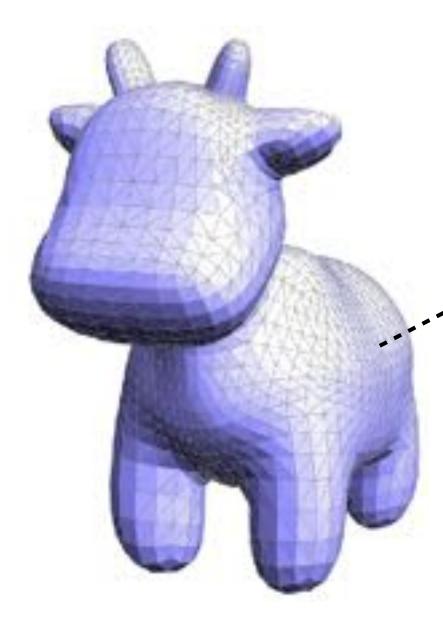
Last Time: Danger of Resampling

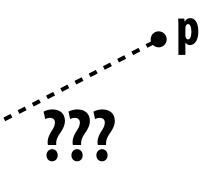


Idea: after resampling, project each vertex onto original mesh

Closest Point Queries

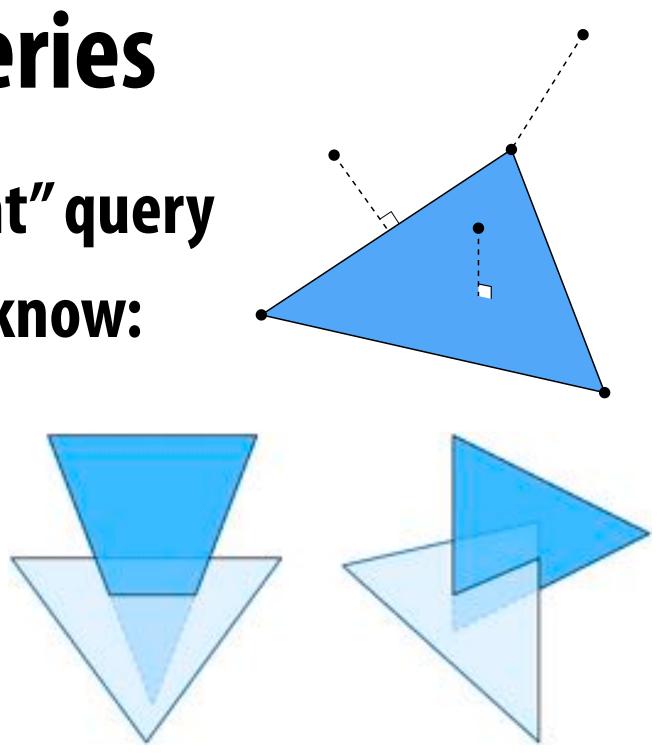
- Q: Given a point, in space (e.g., a new sample point), how do we find the closest point on a given surface?
 - Q: Does implicit/explicit representation make this easier?
 - Q: Does our halfedge data structure help?
 - Q: What's the cost of the naïve algorithm?
 - Q: How do we find the distance to a single triangle anyway?
- So many questions!





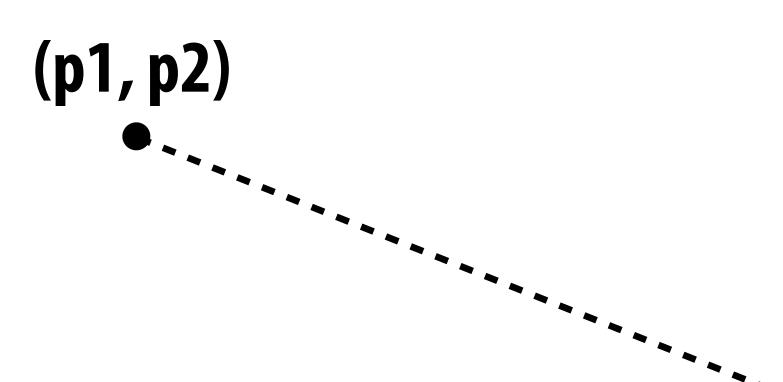
Many types of geometric queries

- Already identified need for "closest point" query
- Plenty of other things we might like to know:
 - Do two triangles intersect?
 - Are we inside or outside an object?
 - Does one object contain another?
 - Data structures we've seen so far not really designed for this...
- **Need some new ideas!**
- **TODAY: come up with simple (read: slow) algorithms.**
- NEXT TIME: intelligent ways to accelerate geometric queries.



Warm up: closest point on point

- Goal is to find the point on a mesh closest to a given point.
- Much simpler question: given a query point (p1,p2), how do we find the closest point on the point (a1,a2)?

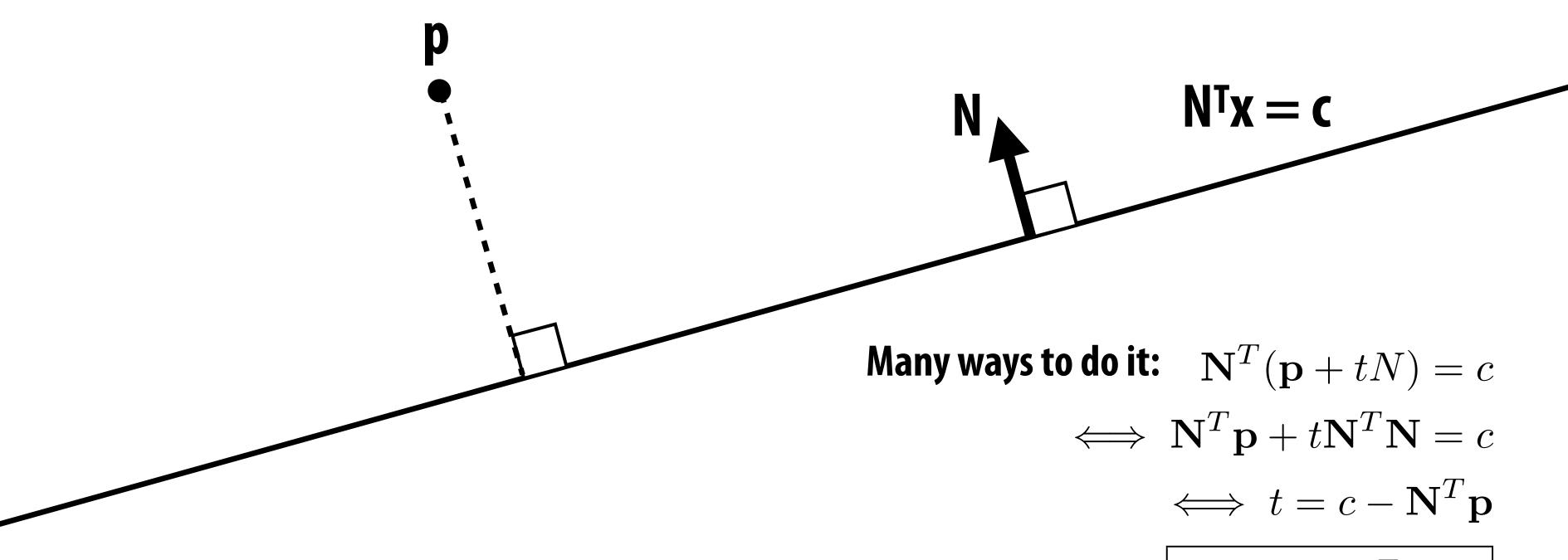


Bonus question: what's the distance?

```` (a1, a2)

Slightly harder: closest point on line

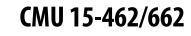
- Now suppose I have a line $N^T x = c$, where N is the unit normal
- How do I find the point closest to my query point p?

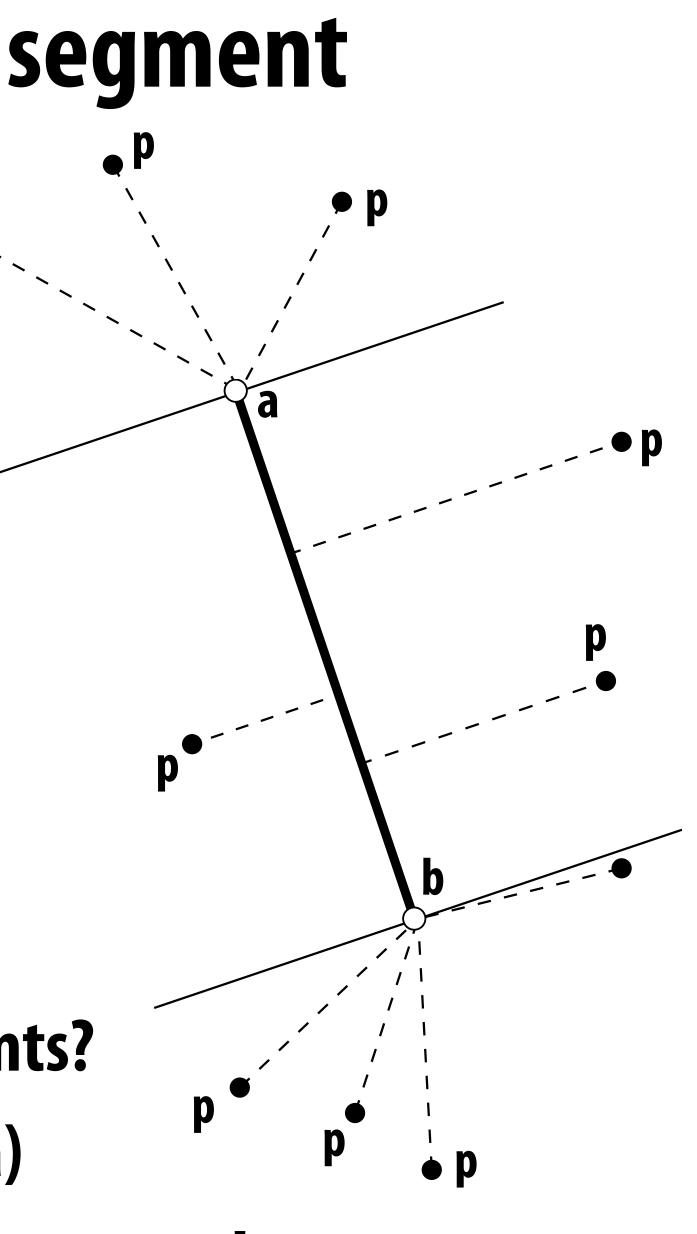


 $\Rightarrow \mathbf{p} + t\mathbf{N} = |\mathbf{p} + (c - \mathbf{N}^T \mathbf{p})\mathbf{N}|$

Harder: closest point on line segment

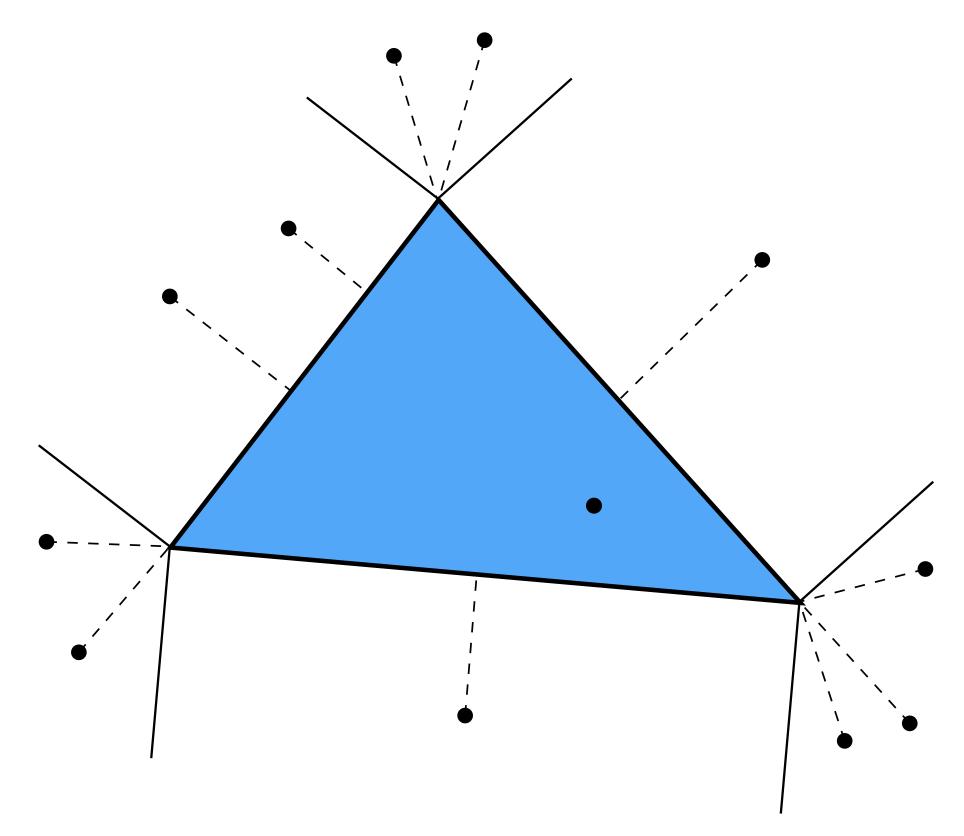
- **Two cases: endpoint or interior**
- Already have basic components:
 - point-to-point
 - point-to-line
 - **Algorithm?**
 - find closest point on line
 - check if it's between endpoints
 - if not, take closest endpoint
 - How do we know if it's between endpoints?
 - write closest point on line as a+t(b-a)
 - if t is between 0 and 1, it's inside the segment!





Even harder: closest point on triangle

- What are all the possibilities for the closest point?
- **Almost just minimum distance to three segments:**



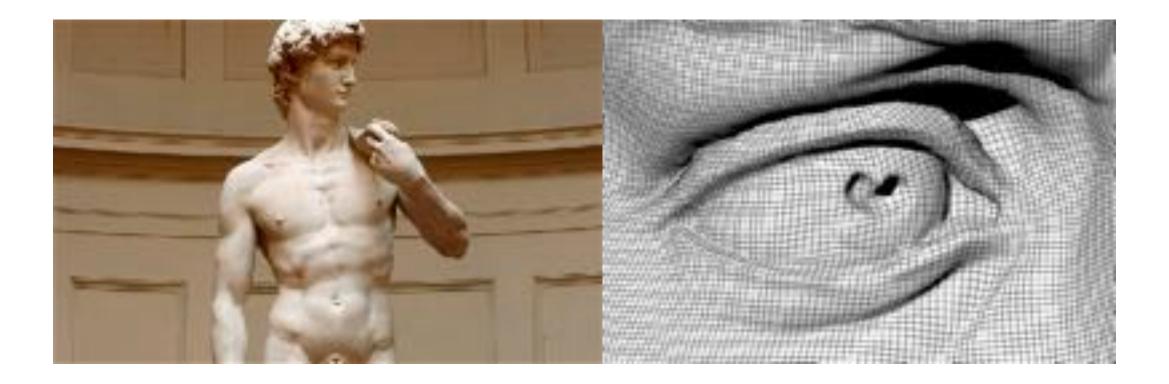
Q: What about a point inside the triangle?

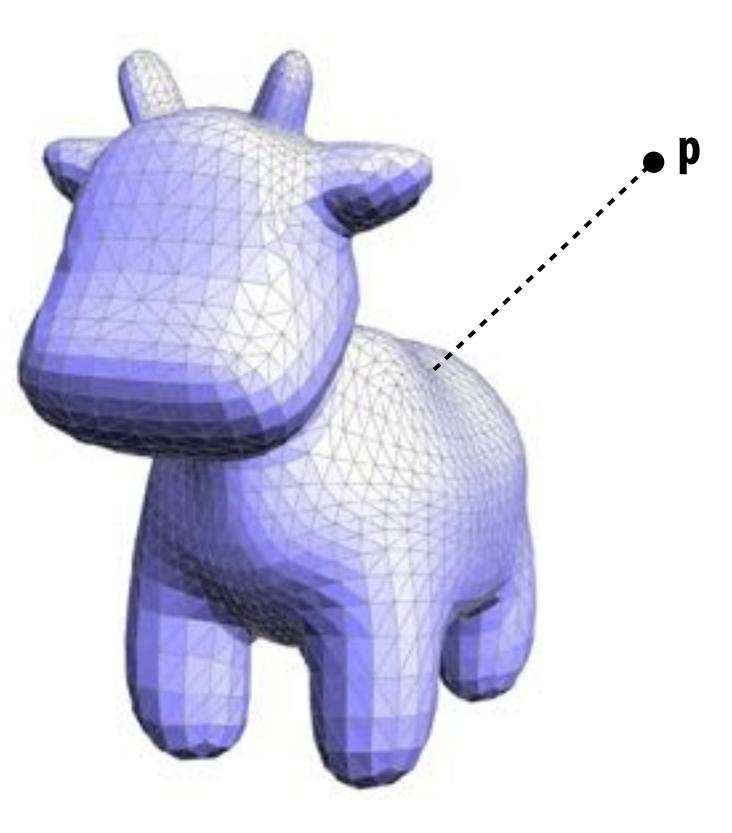
Closest point on triangle in 3D

- Not so different from 2D case **Algorithm?**
 - project onto plane of triangle
 - use half-space tests to classify point (vs. half plane)
 - if inside the triangle, we're done!
 - otherwise, find closest point on associated vertex or edge
- By the way, how do we find closest point on plane?
- Same expression as closest point on a line! **E.g.**, **p** + (**c** - **N**^T**p**) **N**

Closest point on triangle mesh in 3D?

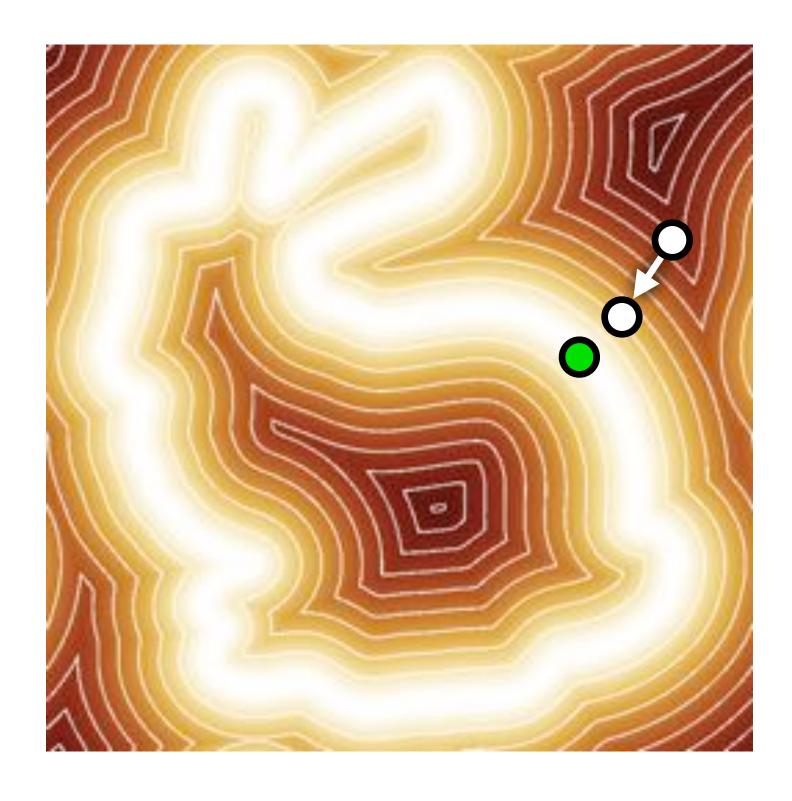
- **Conceptually easy:**
 - loop over all triangles
 - compute closest point to current triangle
 - keep globally closest point
 - Q: What's the cost?
- What if we have billions of faces?
- **NEXT TIME: Better data structures!**





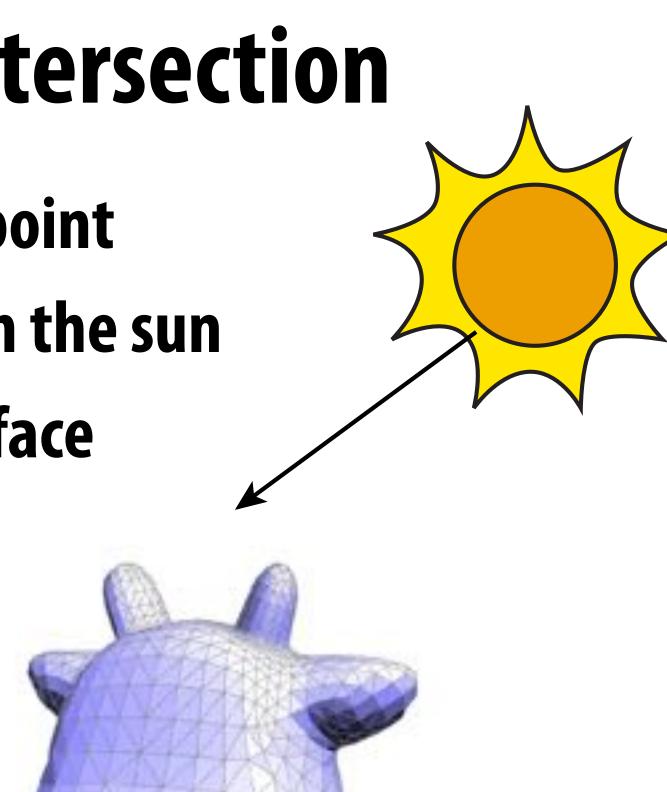
Closest point to implicit surface?

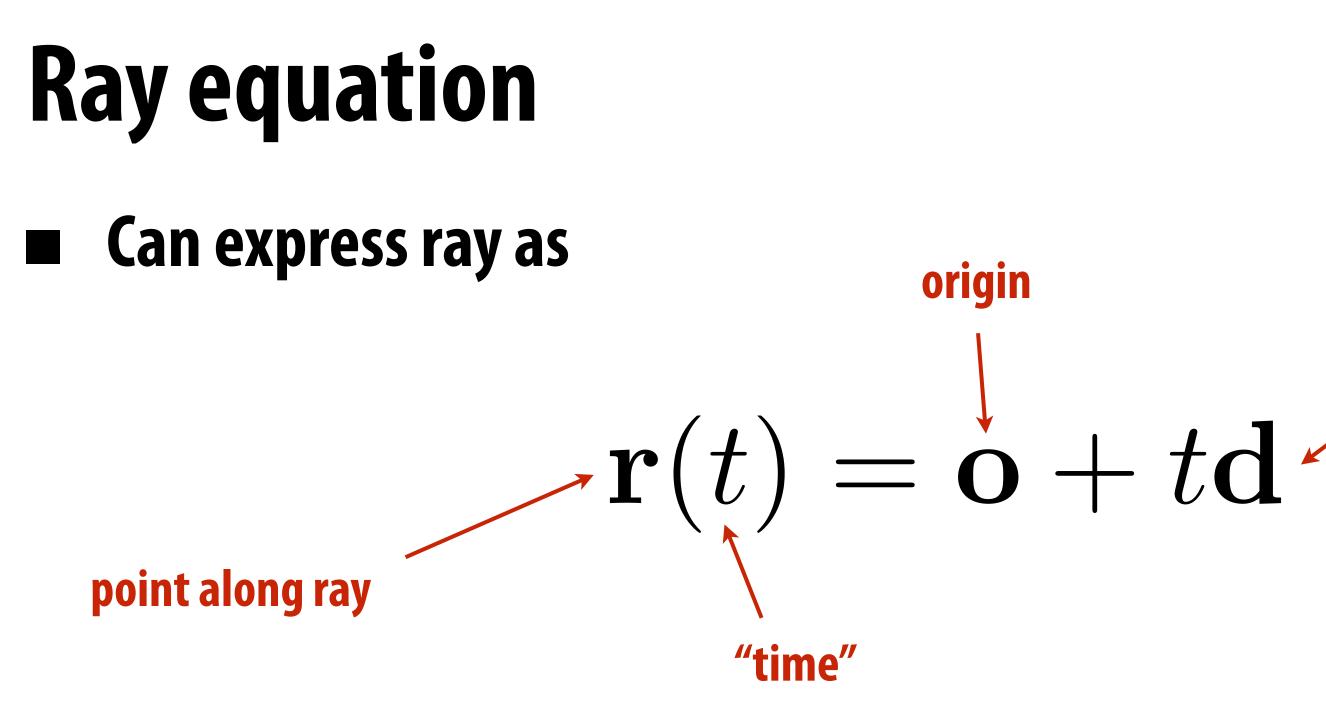
- If we change our representation of geometry, algorithms can change completely
- E.g., how might we compute the closest point on an implicit surface described via its distance function?
- **One idea:**
 - start at the query point
 - compute gradient of distance (using, e.g., finite differences)
 - take a little step (decrease distance)
 - repeat until we're at the surface (zero distance)
 - Better yet: just store closest point for each grid cell! (speed/memory trade off)

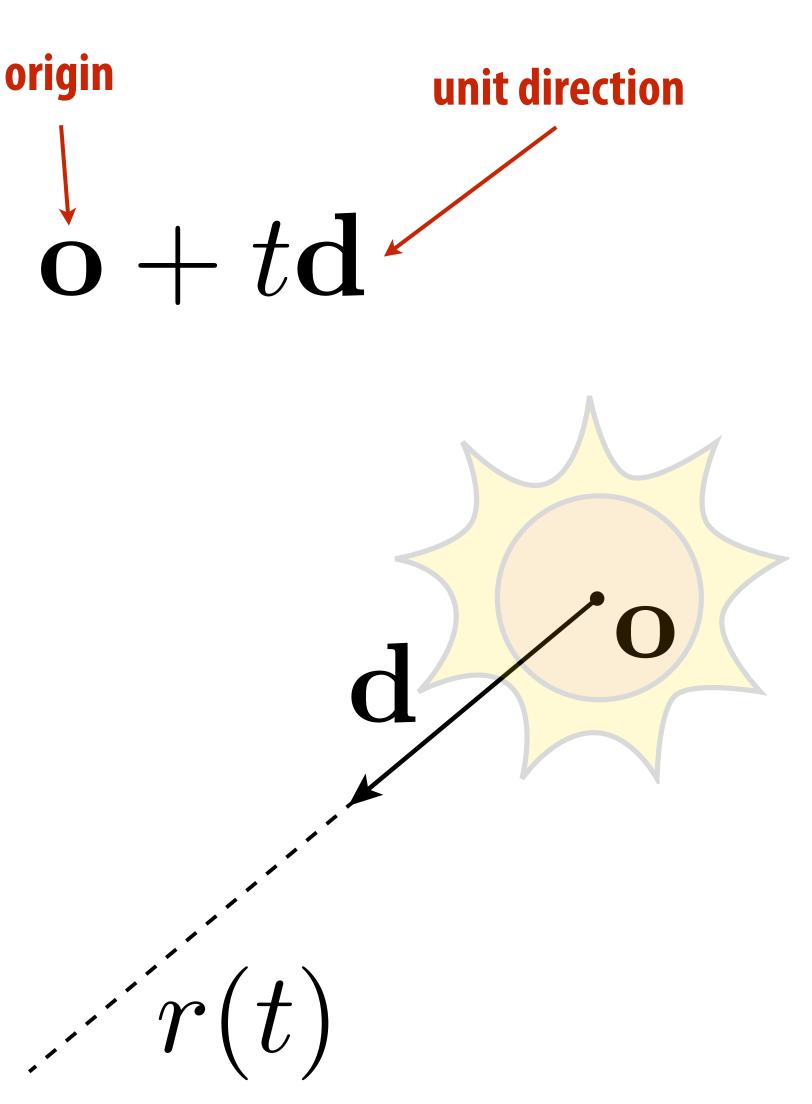


Different query: ray-mesh intersection

- A "ray" is an oriented line starting at a point
- Think about a ray of light traveling from the sun
- Want to know where a ray pierces a surface
 Why?
 - GEOMETRY: inside-outside test
 - RENDERING: visibility, ray tracing
 - ANIMATION: collision detection
 - Might pierce surface in many places!







Intersecting a ray with an implicit surface

- Recall implicit surfaces: all points x such that f(x) = 0
- Q: How do we find points where a ray pierces this surface?
- Well, we know all points along the ray: r(t) = o + td
- Idea: replace "x" with "r" in 1st equation, and solve for t **Example: unit sphere**

$$f(\mathbf{x}) = |\mathbf{x}|^2 - 1$$
$$\Rightarrow f(\mathbf{r}(t)) = |\mathbf{o} + t\mathbf{d}|^2 - 1$$

$$\underbrace{|\mathbf{d}|^2}_{a} t^2 + \underbrace{2(\mathbf{o} \cdot \mathbf{d})}_{b} t + \underbrace{|\mathbf{o}|^2 - 1}_{c} = 0$$

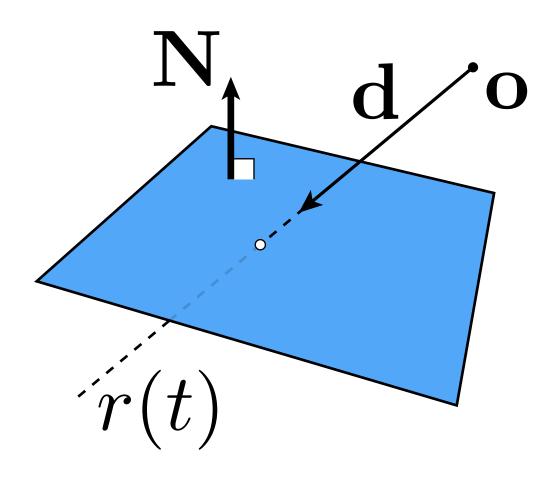
$$t = \begin{vmatrix} -\mathbf{o} \cdot \mathbf{d} \pm \sqrt{(\mathbf{o} \cdot \mathbf{d})^2 - |\mathbf{o}|^2 + 1} \end{vmatrix}$$

quadratic formula:



Ray-plane intersection

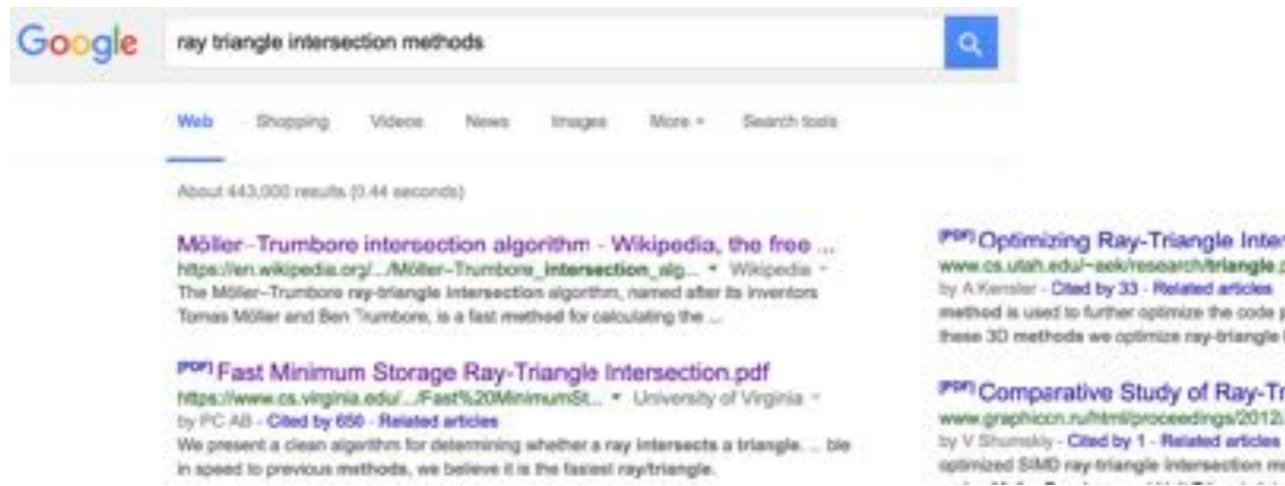
- Suppose we have a plane $N^T x = c$
 - N unit normal
 - c offset
- How do we find intersection with ray r(t) = o + td? Key idea: again, replace the point x with the ray equation t: $\mathbf{N}^{\mathsf{T}}\mathbf{r}(t) = c$
- Now solve for t: $\mathbf{N}^{\mathsf{T}}(\mathbf{o} + t\mathbf{d}) = c$ And plug t back into ray equation: $r(t) = \mathbf{o} + \frac{c - \mathbf{N}^{\mathsf{T}}\mathbf{o}}{\mathbf{N}^{\mathsf{T}}\mathbf{d}}$

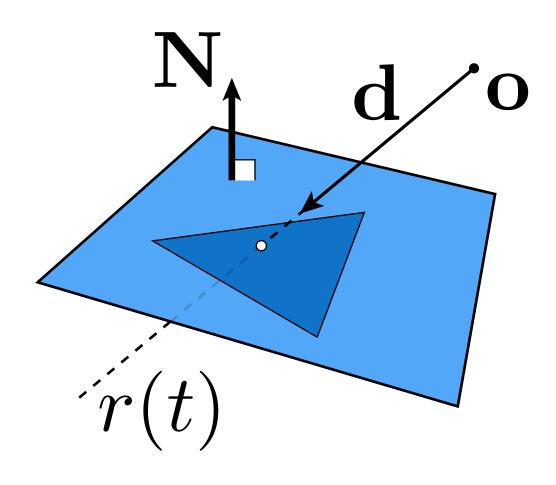


$\Rightarrow t = \frac{c - \mathbf{N}^{\mathsf{T}} \mathbf{o}}{\mathbf{N}^{\mathsf{T}} \mathbf{I}^{\mathsf{J}}}$

Ray-triangle intersection

- Triangle is in a plane...
- Not much more to say!
 - Compute ray-plane intersection
 - Q: What do we do now?
 - A: Why not compute barycentric coordinates of hit point?
 - If barycentric coordinates are all positive, point in triangle
 - Actually, a lot more to say... if you care about performance!





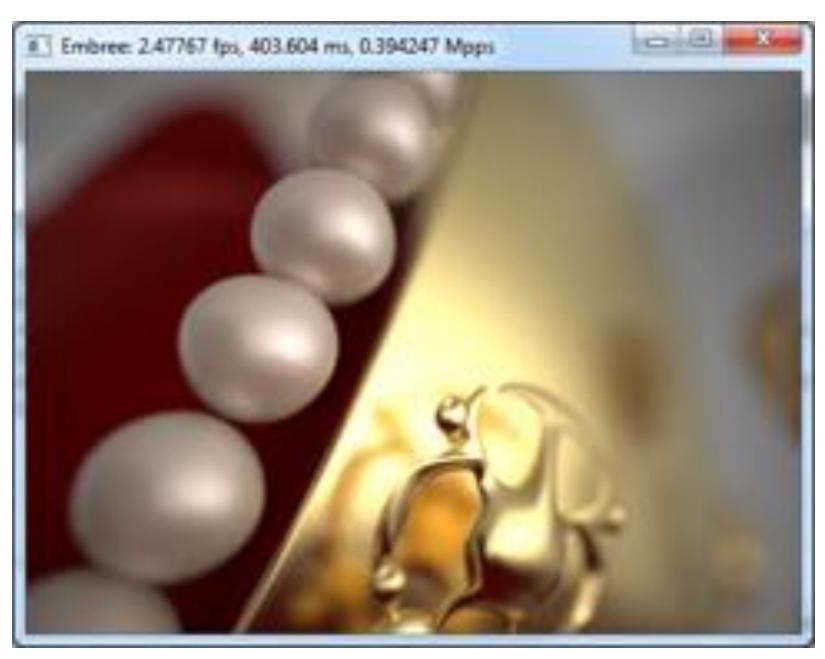
^{POPI} Optimizing Ray-Triangle Intersection via Automated Search www.cs.utah.edu/~aek/research/triangle.pdf = University of Utah + by A.Kensler - Cited by 33 - Related articles

method is used to further optimize the code produced via the fitness function For these 30 methods we optimize ray-briangle intersection in two different ways.

(Por) Comparative Study of Ray-Triangle Intersection Algorithms www.graphicon.ru/html/proceedings/2012.../gc20128humskiy.pdf *

optimized SMD ray triangle intersection method evaluated on. GPU to path-tracing

Why care about performance?



Intel Embree

CMU 15-462/662

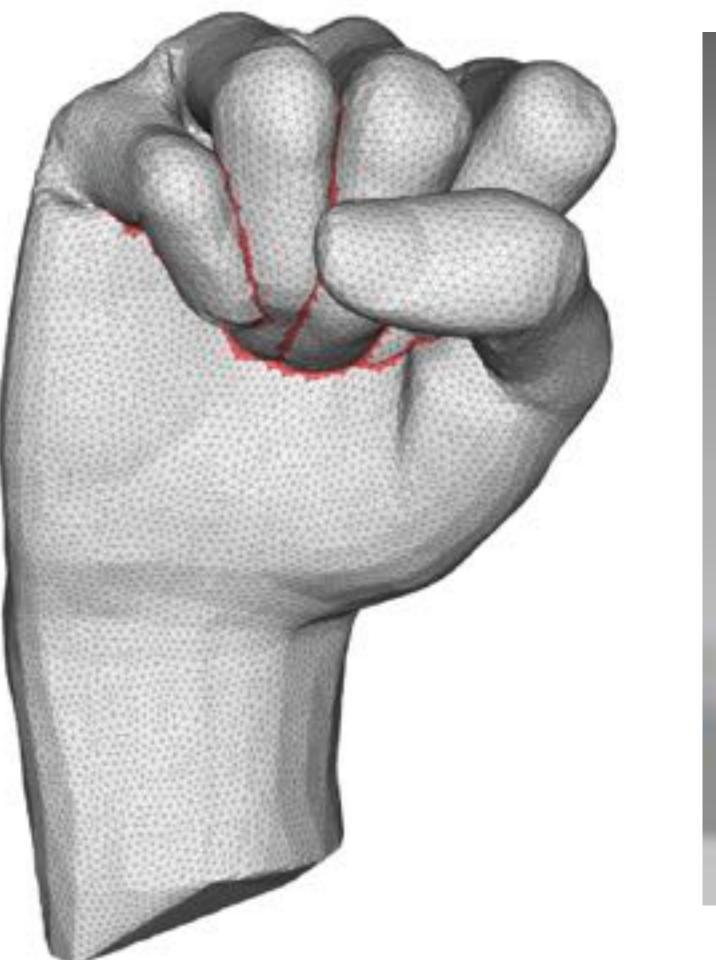
NVIDIA OptiX

Why care about performance?

"Brigade 3" real time path tracing demo

One more query: mesh-mesh intersection

GEOMETRY: How do we know if a mesh intersects itself?
 ANIMATION: How do we know if a collision occurred?



intersection tersects itself? on occurred?

Warm up: point-point intersection

- Q: How do we know if p intersects a?
- A: ...check if they're the same point!

(p1, p2)

Sadly, life is not always so easy.

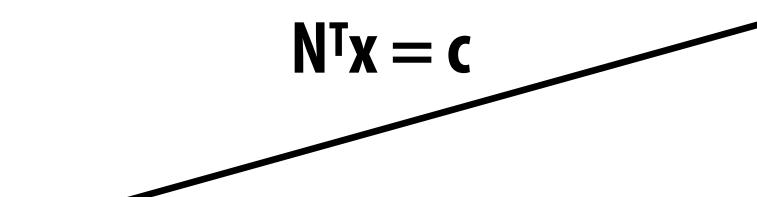
(a1, a2)

Slightly harder: point-line intersection

Q: How do we know if a point intersects a given line?

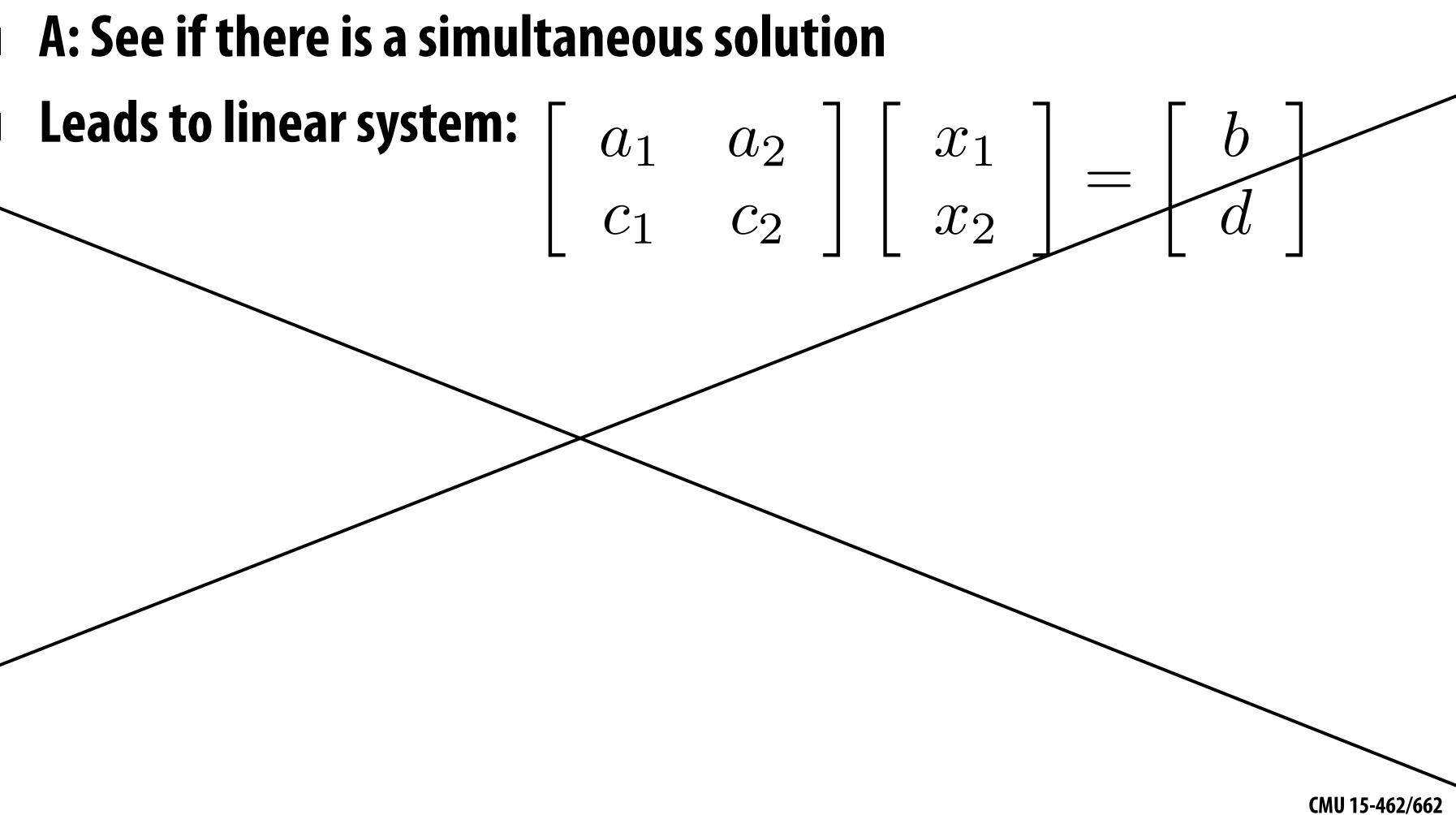
A: ...plug it into the line equation!

p



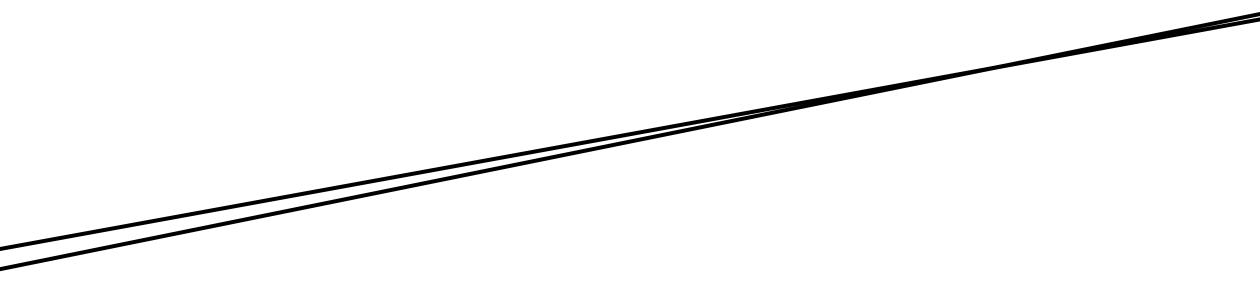
Finally interesting: line-line intersection

- Two lines: ax=b and cx=d
- **Q: How do we find the intersection?**
- A: See if there is a simultaneous solution



Degenerate line-line intersection?

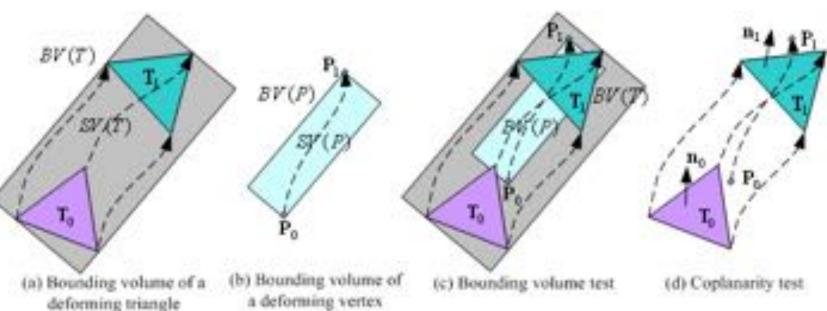
- What if lines are almost parallel?
- Small change in normal can lead to big change in intersection!
- Instability very common, very important with geometric predicates. Demands special care (e.g., analysis of matrix).



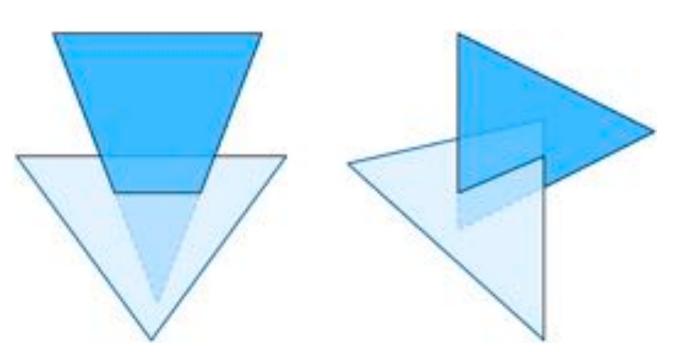
See for example Shewchuk, "Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates"

Triangle-Triangle Intersection?

- Lots of ways to do it
- **Basic idea:**
 - Q: Any ideas?
 - One way: reduce to edge-triangle intersection
 - Check if each line passes through plane
 - Then do interval test
 - What if triangle is moving?
 - Important case for animation



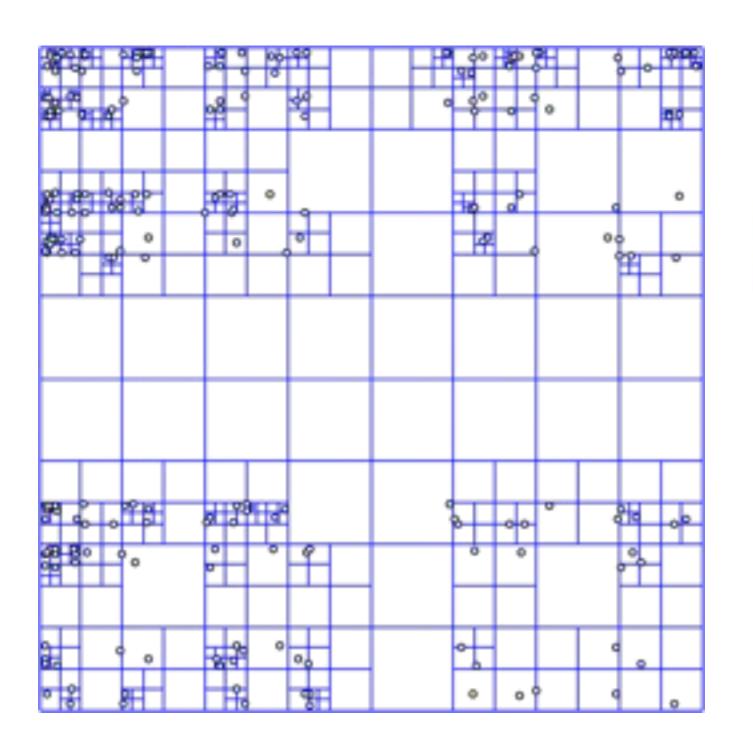
- Can think of triangles as prisms in time
- Turns dynamic problem (nD + time) into purely geometric problem in (n+1)-dimensions

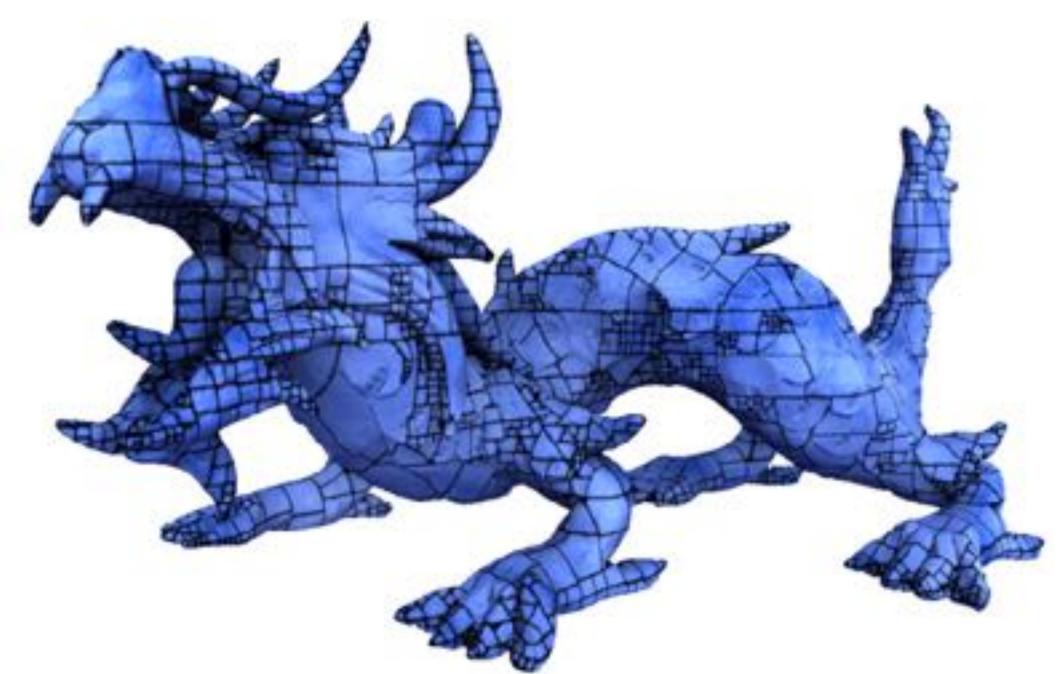


a deforming vertex

Up Next: Spatial Acceleration Data Strucutres

- Testing every element is slow!
- E.g., linearly scanning through a list vs. binary search
 - Can apply this same kind of thinking to geometric queries





binary search geometric queries