# Digital Geometry Processing 

Computer Graphics<br>CMU 15-462/15-662

## Last time: Meshes \& Manifolds

- Mathematical description of geometry
- simplifying assumption: manifold
- for polygon meshes: "fans, not fins"
- Data structures for surfaces
- polygon soup
- halfedge mesh
- storage cost vs. access time, etc.
- Today:
- how do we manipulate geometry?
- geometry processing/resampling



## Today: Geometry Processing \& Queries

- Extend traditional digital signal processing (audio, video, etc.) to deal with geometric signals:
- upsampling / downsampling / resampling / filtering ...
- aliasing (reconstructed surface gives "false impression")
- Also ask some basic questions about geometry:
- What's the closest point? Do two triangles intersect? Etc.
- Beyond pure geometry, these are basic building blocks for many algorithms in graphics (rendering, animation...)



## Digital Geometry Processing: Motivation



## Geometry Processing Pipeline



## Geometry Processing Tasks


reconstruction

remeshing

compression

## Geometry Processing: Reconstruction

- Given samples of geometry, reconstruct surface
- What are "samples"? Many possibilities:
- points, points \& normals, ...
- image pairs / sets (multi-view stereo)
- line density integrals (MRI/CT scans)

- How do you get a surface? Many techniques:
- silhouette-based (visual hull)
- Voronoi-based (e.g., power crust)
- PDE-based (e.g., Poisson reconstruction)
- Radon transform / isosurfacing (marching cubes)


## Geometry Processing: Upsampling

- Increase resolution via interpolation

■ Images: e.g., bilinear, bicubic interpolation

- Polygon meshes:
- subdivision
- bilateral upsampling



## Geometry Processing: Downsampling

- Decrease resolution; try to preserve shape/appearance
- Images: nearest-neighbor, bilinear, bicubic interpolation
- Point clouds: subsampling (just take fewer points!)
- Polygon meshes:
- iterative decimation, variational shape approximation, ...



## Geometry Processing: Resampling

- Modify sample distribution to improve quality
- Images: not an issue! (Pixels always stored on a regular grid)
- Meshes: shape of polygons is extremely important!
- different notion of "quality" depending on task
- e.g., visualization vs. solving equation

Q: What about aliasing?

## Geometry Processing: Filtering

- Remove noise, or emphasize important features (e.g., edges)
- Images: blurring, bilateral filter, edge detection, ...
- Polygon meshes:
- curvature flow
- bilateral filter
- spectral filter



## Geometry Processing: Compression

- Reduce storage size by eliminating redundant data/ approximating unimportant data
- Images:
- run-length, Huffman coding - lossless
- cosine/wavelet (JPEG/MPEG) - lossy
- Polygon meshes:
- compress geometry and connectivity
- many techniques (lossy \& lossless)



## Geometry Processing: Shape Analysis

- Identify/understand important semantic features

■ Images: computer vision, segmentation, face detection, ...

- Polygon meshes:
- segmentation, correspondence, symmetry detection, ...




Intrinsic symmetry

## Enough overviewLet's process some geometry!

## Remeshing as resampling

- Remember our discussion of aliasing
- Bad sampling makes signal appear different than it really is
- E.g., undersampled curve looks flat
- Geometry is no different!
- undersampling destroys features

- oversampling bad for performance


## What makes a "good" mesh?

- One idea: good approximation of original shape!
- Keep only elements that contribute information about shape
- Add additional information where, e.g., curvature is large


## Approximation of position is not enough!

- Just because the vertices of a mesh are very close to the surface it approximates does not mean it's a good approximation!
- Need to consider other factors, e.g., close approximation of surface normals
- Otherwise, can have wrong appearance, wrong area, wrong...

APPROXIMATION OF CYLINDER


FLATTENED

(true area)


## What else makes a "good" triangle mesh?

- Another rule of thumb: triangle


- E.g., all angles close to 60 degrees
- More sophisticated condition: Delaunay
- Can help w/ numerical accuracy/stability
- Tradeoffs w/ good geometric approximation*
- e.g., long \& skinny might be "more efficient"



## What else constitutes a good mesh?

- Another rule of thumb: regular vertex degree
- E.g., valence 6 for triangle meshes (equilateral)


■ Why? Better polygon shape, important for (e.g.) subdivision:


- FACT: Can't have perfect valence everywhere! (except on torus)


## How do we upsample a mesh?

## Upsampling via Subdivision

- Repeatedly split each element into smaller pieces

■ Replace vertex positions with weighted average of neighbors

- Main considerations:
- interpolating vs. approximating
- limit surface continuity (C1, C2, ...)
- behavior at irregular vertices


Many options:

- Quad: Catmull-Clark
- Triangle: Loop, Butterfly, Sqrt(3)



## Catmull-Clark Subdivision

■ Step 0: split every polygon (any \# of sides) into quadrilaterals:


- New vertex positions are weighted combination of old ones:


New vertex coords:

$$
Q+2 R+(n-3) S
$$

$n$

STEP 2: Edge coords

n - vertex degree
Q - average of face coords around vertex
$R$ - average of edge coords around vertex
S - original vertex position

STEP 3: Vertex coords


## Catmull-Clark on quad mesh



Good normal approximation almost everywhere:

smooth
reflection lines
smooth caustics

## Catmull-Clark on triangle mesh



Poor normal approximation almost everywhere:

jagged reflection lines ALIASING!

## Loop Subdivision

- Alternative subdivision scheme for triangle meshes
- Curvature is continuous away from irregular vertices ("(2")
- Algorithm:
- Split each triangle into four

- Assign new vertex positions according to weights:


1/8

n : vertex degree $u: 3 / 16$ if $n=3,3 /(8 n)$ otherwise

## Loop Subdivision via Edge Operations

- First, split edges of original mesh in any order:

- Next, flip new edges that touch a new \& old vertex:

(Don't forget to update vertex positions!)


## What if we want fewer triangles?

## Simplification via Edge Collapse

■ One popular scheme: iteratively collapse edges

- Greedy algorithm:
- assign each edge a cost
- collapse edge with least cost
- repeat until target number of elements is reached
- Particularly effective cost function: quadric error metric*



## Quadric Error Metric

- Approximate distance to a collection of triangles
- Distance is sum of point-to-plane distances
- Q: Distance to plane w/ normal $N$ passing through point $p$ ?
- $A: d(x)=N \cdot x-N \cdot p=N \cdot(x-p)$
- Sum of distances:



## Quadric Error - Homogeneous Coordinates

- Suppose in coordinates we have
- a query point ( $x, y, z$ )
- a normal ( $\mathbf{a}, \mathbf{b}, \mathbf{c}$ )
- an offset $d:=-(p, q, r) \cdot(a, b, c)$

$$
K=\left[\begin{array}{llll}
a^{2} & a b & a c & a d \\
a b & b^{2} & b c & b d \\
a c & b c & c^{2} & c d \\
a d & b d & c d & d^{2}
\end{array}\right]
$$

- Then in homogeneous coordinates, let
- $\mathbf{u}:=(\mathbf{x}, \mathrm{y}, \mathrm{z}, \mathbf{1})$
- $\mathrm{v}:=(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$
- Signed distance to plane is then just $u \cdot v=a x+b y+c z+d$
- Squared distance is $\left(u^{\top} v\right)^{2}=u^{\top}\left(v^{\top}\right) u=: u^{\top} K u$
- Key idea: matrix K encodes distance to plane
- K is symmetric, contains 10 unique coefficients (small storage)


## Quadric Error of Edge Collapse

- How much does it cost to collapse an edge?

■ Idea: compute edge midpoint, measure quadric error


■ Better idea: use point that minimizes quadric error as new point!
■ Q: Ok, but how do we minimize quadric error?

## Review: Minimizing a Quadratic Function

- Suppose I give you a function $f(x)=a x^{2}+b x+c$

■ Q: What does the graph of this function look like?

- Could also look like this!
- Q: How do we find the minimum?
- A: Look for the point where the function isn't changing (if we look "up close")
- I.e., find the point where the derivative vanishes

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
2 a x+b & =0 \\
x & =-b / 2 a
\end{aligned}
$$

(What about our second example?)

## Minimizing a Quadratic Form

- A quadratic form is just a generalization of our quadratic polynomial from 1D to nD
- E.g., in 2D: $f(x, y)=a x^{2}+b x y+c y^{2}+d x+e y+g$

■ Can always (always!) write quadratic polynomial using a symmetric matrix (and a vector, and a constant):

$$
\begin{aligned}
f(x, y) & =\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{cc}
a & b / 2 \\
b / 2 & c
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{ll}
d & e
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+g \\
& =\mathbf{x}^{\top} A \mathbf{x}+\mathbf{u}^{\top} x+g \quad \text { (this expression works for any } \mathrm{n}!\text { ) }
\end{aligned}
$$

■ Q: How do we find a critical point ( $\mathbf{m i n} / \mathrm{max} /$ saddle)?

- A: Set derivative to zero! $\quad 2 A \mathrm{x}+\mathbf{u}=0$

$$
\mathbf{x}=-\frac{1}{2} A^{-1} \mathbf{u}
$$

(Can you show this is true, at least in 2D?)

## Positive Definite Quadratic Form

- Just like our 1D parabola, critcal point is not always a min!
- Q: In 2D, 3D, nD, when do we get a minimum?
- A: When matrix A is positive-definite:

$$
\mathbf{x}^{\top} A \mathbf{x}>0 \quad \forall \mathbf{x}
$$

- 1D: Must have $x a x=a x^{2}>0$. In other words: $a$ is positive!

■ 2D: Graph of function looks like a "bowl":

positive definite


- Positive-definiteness is extremely important in computer graphics: it means we can find a minimum by solving linear equations. Basis of many, many modern algorithms (geometry processing, simulation, ...).


## Minimizing Quadratic Error

- Find "best" point for edge collapse by minimizing quad. form

$$
\min _{u} \mathbf{u}^{\top} K \mathbf{u}
$$

- Already know fourth (homogeneous) coordinate is 1!
- So, break up our quadratic function into two pieces:

$$
\begin{gathered}
{\left[\begin{array}{ll}
\mathbf{x}^{\top} & 1
\end{array}\right]\left[\begin{array}{cc}
B & \mathbf{w} \\
\mathbf{w} & d^{2}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x} \\
1
\end{array}\right]} \\
=\mathbf{x}^{\top} B \mathbf{x}+2 \mathbf{w}^{\top} \mathbf{x}+d^{2}
\end{gathered}
$$

- Now we have a quadratic form in the 3D position $x$.
- Can minimize as before:
$2 B \mathbf{x}+2 \mathbf{w}=0$ $\Longleftrightarrow \quad \mathbf{x}=-B^{-1} \mathbf{w}$
(Q: Why should B be positive-definite?)


## Quadric Error Simplification: Final Algorithm

- Compute K for each triangle (distance to plane)
- Set $K$ at each vertex to sum of Ks from incident triangles
- Set $K$ at each edge to sum of $K s$ at endpoints
- Find point at each edge minimizing quadric error
- Until we reach target \# of triangles:

- collapse edge ( $\mathrm{i}, \mathrm{j}$ ) with smallest cost to get new vertex m
- add $\mathrm{K}_{\mathrm{i}}$ and $\mathrm{K}_{\mathrm{j}}$ to get quadric $\mathrm{K}_{\mathrm{m}}$ at m
- update cost of edges touching m
- More details in assignment writeup!



## Quadric Simplification—Flipped Triangles

- Depending on where we put the new vertex, one of the new triangles might be "flipped" (normal points in instead of out):

- Easy solution: check dot product between normals across edge
- If negative, don't collapse this edge!


# What if we're happy with the number of triangles, but want to improve quality? 

## How do we make a mesh "more Delaunay"?

- Already have a good tool: edge flips!
- If $\alpha+\beta>\pi$, flip it!

- FACT: in 2D, flipping edges eventually yields Delaunay mesh
- Theory: worst case $0\left(\mathbf{n}^{2}\right)$; no longer true for surfaces in 3D.

■ Practice: simple, effective way to improve mesh quality

## Alternatively: how do we improve degree?

- Same tool: edge flips!
- If total deviation from degree-6 gets smaller, flip it!

- FACT: average valence of any triangle mesh is 6

■ Iterative edge flipping acts like "discrete diffusion" of degree
■ Again, no (known) guarantees; works well in practice

## How do we make a triangles "more round"?

- Delaunay doesn't mean triangles are "round" (angles near $60^{\circ}$ )
- Can often improve shape by centering vertices:


■ Simple version of technique called "Laplacian smoothing".*

- On surface: move only in tangent direction
- How? Remove normal component from update vector.
*See Crane, "Digital Geometry Processing with Discrete Exterior Calculus" http://keenan.is/ddg


## Isotropic Remeshing Algorithm

- Try to make triangles uniform shape \& size
- Repeat four steps:
- Split any edge over 4/3rds mean edge length
- Collapse any edge less than 4/5ths mean edge length
- Flip edges to improve vertex degree
- Center vertices tangentially


## What can go wrong when you resample a signal?

## Danger of Resampling


(Q:What happens with an image?)

# But wait: we have the original mesh. Why not just project each new sample point onto the closest point of the original mesh? 

## Next Time: Geometric Queries

- Q: Given a point, in space, how do we find the closest point on a surface? Are we inside or outside the surface? How do we find intersection of two triangles? Etc.
- Q: Do implicit/explicit representations make such tasks easier?
- Q: What's the cost of the naïve algorithm, and how do we accelerate such queries for large meshes?
- So many questions!


