# Meshes and Manifolds

### **Computer Graphics CMU 15-462/15-662**

## Last time: overview of geometry

- Many types of geometry in nature
- **Demand sophisticated representations**
- **Two major categories:** 
  - IMPLICIT "tests" if a point is in shape
  - EXPLICIT directly "lists" points
- Lots of representations for both
- Today:
  - what is a surface, anyway?
  - nuts & bolts of polygon meshes
  - geometry processing / resampling



### Geometry



## Manifold Assumption

- Today we're going to introduce the idea of manifold geometry
- Can be hard to understand motivation at first!
- So first, let's revisit a more familiar example...



### of manifold geometry t first! nple...

### **Bitmap Images, Revisited** To encode images, we used a regular grid of pixels:



# Style 6 untitled

# But images are not fundamentally made of little squares:



Goyō Hashiguchi, *Kamisuki* (ca 1920)

# So why did we choose a square grid?





### ... rather than dozens of alternatives?



# Regular grids make life easy

- **One reason: SIMPLICITY / EFFICIENCY** 
  - E.g., always have four neighbors
  - Easy to index, easy to filter...
  - Storage is just a list of numbers
- **Another reason: GENERALITY** 
  - Can encode basically any image
  - Are regular grids always the best choice for bitmap images?
  - No! E.g., suffer from anisotropy, don't capture edges, ...
  - But more often than not are a pretty good choice
  - Will see a similar story with geometry...

|         | (i,j-1) |         |
|---------|---------|---------|
| (i-1,j) | (i,j)   | (i+1,j) |
|         | (i,j+1) |         |

### for bitmap images? t capture edges, ... good choice

### So, how should we encode surfaces?

# Smooth Surfaces

- Intuitively, a surface is the boundary or "shell" of an object
- (Think about the candy shell, not the chocolate.)
- Surfaces are manifold:
  - If you zoom in far enough (at any point) looks like a plane\*
  - E.g., the Earth from space vs. from the ground



\*...or can easily be flattened into the plane, without cutting or ripping.

### "shell" of an object ocolate.)

### nt) looks like a plane\* e ground

## Isn't every shape manifold?

### No, for instance:

Center point never looks like the plane, no matter how close we get.







### **More Examples of Smooth Surfaces**

### Which of these shapes are manifold?





### A manifold polygon mesh has fans, not fins For polygonal surfaces just two easy conditions to check: **1. Every edge is contained in only two polygons (no "fins")** 2. The polygons containing each vertex make a single "fan"





- - one polygon per boundary edge
  - boundary vertex looks like "pacman"

# Ok, but why is the manifold assumption useful?

# **Keep it Simple!**

### Same motivation as for images:

- make some assumptions about our geometry to keep data structures/algorithms simple and efficient
- in many common cases, doesn't fundamentally limit what we can do with geometry





### How do we actually encode all this data?

## Warm up: storing numbers

- Q: What data structures can we use to store a list of numbers?
- **One idea: use an array (constant time lookup, coherent access)**

Alternative: use a linked list (linear lookup, incoherent access)



- **Q: Why bother with the linked list?**
- A: For one, we can easily insert numbers wherever we like...

|--|

# Polygon Soup (Array-like)

- Store triples of coordinates (x,y,z), tuples of indices
- E.g., tetrahedron:

|    | VERTICES |    |    | POL | POLYG |  |  |
|----|----------|----|----|-----|-------|--|--|
|    | x        | У  | Z  | i   | j     |  |  |
| 0: | -1       | -1 | -1 | 0   | 2     |  |  |
| 1: | 1        | -1 | 1  | 0   | 3     |  |  |
| 2: | 1        | 1  | -1 | 3   | 0     |  |  |
| 3: | -1       | 1  | 1  | 3   | 1     |  |  |

Q: How do we find all the polygons touching vertex 2? Ok, now consider a more complicated mesh:



Very expensive to find the neighboring triangles! (What's the cost?)



### **Incidence** Matrices

- If we want to answer neighborhood queries, why not simply store a list of neighbors?
- **Can encode all neighbor information via incidence matrices** 
  - **E.g.**, tetrahedron: VERTEX ↔ EDGE

| 7  | vO | <b>v1</b> | <b>v</b> 2 | <b>v</b> 3 | е         | <b>:</b> 0 | e1 |
|----|----|-----------|------------|------------|-----------|------------|----|
| e0 | 1  | 1         | 0          | 0          | fO        | 1          | 0  |
| e1 | 0  | 1         | 1          | 0          | <b>f1</b> | 0          | 1  |
| e2 | 1  | 0         | 1          | 0          | <b>f2</b> | 1          | 1  |
| e3 | 1  | 0         | 0          | 1          | f3        | 0          | 0  |
| e4 | 0  | 0         | 1          | 1          |           |            |    |
| e5 | 0  | 1         | 0          | 1          |           |            |    |

- 1 means "touches"; 0 means "does not touch"
- Instead of storing lots of 0's, use sparse matrices
- Still large storage cost, but finding neighbors is now O(1)
- Hard to change connectivity, since we used fixed indices
- Bonus feature: mesh does not have to be manifold



## Halfedge Data Structure (Linked-list-like)

- Store some information about neighbors
- Don't need an exhaustive list; just a few key pointers
- Key idea: two halfedges act as "glue" between mesh elements:



Each vertex, edge face points to just one of its halfedges.

### Halfedge makes mesh traversal easy

- Use "twin" and "next" pointers to move around mesh
- Use "vertex", "edge", and "face" pointers to grab element
- Example: visit all vertices of a face:

### Example: visit all neighbors of a vertex:

Halfedge\* h = v->halfedge; do { h = h->twin->next; } while( h != v->halfedge );

### Note: only makes sense if mesh is manifold!

### sal easy around mesh to grab element



## Halfedge meshes are always manifold

- **Consider simplified halfedge data structure**
- **Require only "common-sense" conditions**



Keep following next, and you'll get faces. Keep following twin and you'll get edges. Keep following next->twin and you'll get vertices.



Q: Why, therefore, is it impossible to encode the red figures?

### (pointer to yourself!)



twin->twin == this next != this



## Halfedge meshes are easy to edit

- **Remember key feature of linked list: insert/delete elements**
- Same story with halfedge mesh ("linked list on steroids")
  - E.g., for triangle meshes, several atomic operations:



How? Allocate/delete elements; reassigning pointers. Must be careful to preserve manifoldness!

# **Edge Flip (Triangles)**



- Q: What happens if we flip twice?
- Challenge: can you implement edge flip such that pointers are unchanged after two flips?

# **Edge Split (Triangles)**

Insert midpoint m of edge (c,b), connect to get four triangles:



- This time, have to add new elements.
- Lots of pointer reassignments.
- Q: Can we "reverse" this operation?

# Edge Collapse (Triangles)

### **Replace edge (b,c) with a single vertex m:**



- Now have to delete elements.
- **Still lots of pointer assignments!**
- Q: How would we implement this with a polygon soup?
- Any other good way to do it? (E.g., different data structure?)



# **Comparison of Polygon Mesh Data Strucutres**

| Case study:<br>triangles.             | Polygon Soup   | Incidence<br>Matrices | Halfedge Mesh   |
|---------------------------------------|----------------|-----------------------|-----------------|
| storage cost*                         | ~3 x #vertices | ~33 x #vertices       | ~36 x #vertices |
| constant-time<br>neighborhood access? | NO             | YES                   | YES             |
| easy to add/remove<br>mesh elements?  | NO             | NO                    | YES             |
| nonmanifold<br>geometry?              | YES            | YES                   | NO              |

### **Conclusion: pick the right data structure for the job!**

\*number of integer values and/or pointers required to encode connectivity (all data structures require same amount of storage for vertex positions)

### **Alternatives to Halfedge**

### Many very similar data structures:

- winged edge
- corner table
- quadedge



- Each stores local neighborhood information
- Similar tradeoffs relative to simple polygon list:
  - **CONS:** additional storage, incoherent memory access
  - **PROS**: better access time for individual elements, intuitive traversal of local neighborhoods
- Food for thought: can you design a halfedge-like data structure with reasonably coherent data storage?)

### **Paul Heckbert (former CMU prof.)** quadedge code - http://bit.ly/1QZLHos

# Ok, but what can we actually do with our fancy new data structure?

### Subdivision Modeling



# Subdivision Modeling

- **Common modeling paradigm in modern 3D tools:** 
  - Coarse "control cage"
  - Perform local operations to control/edit shape
  - Global subdivision process determines final surface



## Subdivision Modeling—Local Operations

# For general polygon meshes, we can dream up lots of local mesh operations that might be useful for modeling:



...and many, many more!

# **Global Subdivision**

- Start with coarse polygon mesh ("control cage")
- Subdivide each element
  - Update vertices via local averaging
  - Many possible rule:
    - Catmull-Clark (quads)
    - Loop (triangles)
  - **Common issues:** 
    - interpolating or approximating?
    - continuity at vertices?
- Easier than splines for modeling; harder to evaluate pointwise





# Next Time: Digital Geometry Processing

- Extend traditional digital signal processing (audio, video, etc.) to deal with geometric signals:
  - upsampling / downsampling / resampling / filtering ...
  - aliasing (reconstructed surface gives "false impression")
  - Also some new challenges (very recent field!):
    - over which domain is a geometric signal expressed?
    - no terrific sampling theory, no fast Fourier transform, ...
- **Often need new data structures & new algorithms**



