Meshes and Manifolds

Computer Graphics
(MU 15-462/15-662

Last time: overview of geometry

Many types of geometry in nature
Demand sophisticated representations
Two major categories:

- IMPLICIT - “tests” if a point is in shape
- EXPLICIT - directly “lists” points

Lots of representations for both

Today:

- what s a surface, anyway?

- nuts & bolts of polygon meshes

- geometry processing / resampling

Geometry

(MU 15-462/662

Manifold Assumption

m Today we're going to introduce the idea of manifold geometry
m (Can be hard to understand motivation at first!
m So first, let’s revisit a more familiar example...

(MU 15-462/662

Bitmap Images, Revisited

To encode images, we used a reqular grid of pixels:

r

6 Flle Edlt Goodles Font FontSnze Stgle .

0 unu“ed

_ m°w = SRS
TR memmu'="_m;

-

(MU 15-462/662

But images are not fundamentally
made of little squares:

Goyo Hashiguchi, Kamisuki (ca 1920)

(MU 15-462/662

S0 why did we choose a square grid?

...rather than dozens of alternatives?

(MU 15-462/662

Reqular grids make life easy

m Onereason: SIMPLICITY / EFFICIENCY
- E.g., always have four neighbors
- Easy to index, easy to filter...
- Storage is just a list of numbers

m Another reason: GENERALITY
- (an encode basically any image

(ilj_l)

(i_llj)

(1,3)

(1+1,3)

(1,]+1)

m Are reqular grids always the best choice for bitmap images?

- No! E.g., suffer from anisotropy, don’t capture edges, ...

- But more often than not are a pretty good choice

m Will see a similar story with geometry...

(MU 15-462/662

S0, how should we encode surfaces?

(MU 15-462/662

Smooth Surfaces

m Intuitively, a surface is the boundary or “shell” of an object

m (Think about the candy shell, not the chocolate.)

m Surfaces are manifold:
- [f you zoom in far enough (at any point) looks like a plane*
- E.g., the Earth from space vs. from the ground

*...0r can easily be flattened into the plane, without cutting or ripping. ' CMU 15-462/662

Isn’t every shape manifold?

m No, forinstance:

Center point never looks like the plane, no matter how close we get.

(MU 15-462/662

More Examples of Smooth Surfaces

m Which of these shapes are manifold?

AT %
S =
v "I“\ M
\y

(MU 15-462/662

1. Every edge is contained in only two polygons (no “fins”)
2. The polygons containing each vertex make a single “fan”

YES

YES

A manifold polygon mesh has fans, not fins

m For polygonal surfaces just two easy conditions to check:

(MU 15-462/662

What about boundary?

m The boundary is where the surface “ends.”
m E.g., waist & ankles on a pair of pants.

m Locally, looks like a half disk

m Globally, each houndary forms a loop

V

e

m Polygon mesh:
- one polygon per boundary edge
- boundary vertex looks like “pacman”

(MU 15-462/662

Ok, but why is the manifold
assumption useful?

Keep it Simple!

m Same motivation as for images:

- make some assumptions about our geometry to keep data
structures/algorithms simple and efficient

- in many common cases, doesn’t fundamentally limit what
we can do with geometry

(ilj_l)

(i_llj) (ilj) (i+1lj) ?

(1,j+1)

(MU 15-462/662

How do we actually encode all this data?

(MU 15-462/662

Warm up: storing numbers

m Q: What data structures can we use to store a list of numbers?
m Oneidea: use an array (constant time lookup, coherent access)

‘ 1.7 ‘ 2.9 ‘ 0.3 ‘ 7.5 ‘ 9.2 ‘ 4.8 ‘ 6.0 ‘ 0.1

m Alternative: use a linked list (linear lookup, incoherent access)
H . H\ .\
B \\48\

m Q: Why bother with the linked list?
m A:Forone, we can easily insert numbers wherever we like...

(MU 15-462/662

Polygon Soup (Array-like) ;

m Store triples of coordinates (x,y,z), tuples of indices
m E.g., tetrahedron: VERTICES POLYGONS

X YV z i1 3] Kk
O: -1 -1 -1 0 2 1
l1: 1 -1 1 0O 3 2 } 2
2: 1 1 -1 3 0 1 0
3: -1 1 1 3 1 2

m Q: How do we find all the polygons touching vertex 2?
Ok, now consider a more complicated mesh:

1

i

ori

ng triangles! (Wh“at’s themcost?)

(MU 15-462/662

Very expensive to find the neighb

Incidence Matrices

If we want to answer neighborhood queries, why not simply
store a list of neighbors?

Can encode all neighbor information via incidence matrices

E.g., tetrahedron: VERTEX« EDGE EDGE « FACE
vO vl v2 v3 el el e2 e3 e4d eb5
e01 1 0 O f01 0 0 1 0 1 e
el £1 0 1 0 0 1 1
e2 £2 1 1 1 0 0 O
e3 £3 0 0 1 1 1 o0

e4
e5

1 means “touches”: 0 means “does not touch”

O O R RL O
) O O O K
O O R K
= = = O O

Vv

Instead of storing lots of 0's, use sparse matrices S

Still large storage cost, but finding neighborsisnow 0(1)
Hard to change connectivity, since we used fixed indices
Bonus feature: mesh does not have to he manifold

(MU 15-462/662

Halfedge Data Structure (Linked-list-like)

m Store some information about neighbors
m Don’t need an exhaustive list; just a few key pointers
m Keyidea: two halfedges act as “glue” hetween mesh

elements:

struct Halfedge

{
Halfedge* twin;
Halfedge* next;
Vertex* vertex;

Edge* edge;
Face* face;
L next

face

vertex

Halfedge
edge
(_I.
s
|_|
5

struct Edge

Hal fedge

* halfedge; struct Face

{
Halfedge* halfedge;

};

halfedge

vertex

struct Vertex

{
};

Halfedge* halfedge;

m Each vertex, edge face points to just one of its halfedges.

CMU 15-462/662

Halfedge makes mesh traversal easy

m Use“twin” and “next” pointers to move around mesh

/]

m Use“vertex’, “edge”, and “face” pointers to grab element

m Example: visit all vertices of a face:
Halfedge* h = f->halfedge;

do { ;
h = h->next; g
// do something w/ h->vertex s
}

while(h != f->halfedge);
m Example: visit all neighbors of a vertex:

Halfedge* h = v->halfedge;
do {
h = h->twin->next;

}

while(h != v->halfedge);

m Note: only makes sense if mesh is manifold!

halfedge \

Vertex

twin

next
vV

twin

&

(MU 15-462/662

Halfedge meshes are always manifold

Consider simplified halfedge data structure

(pointer to yourself!)

- V7 / °og®
Require only “common-sense” conditions
struct Halfedge { twin->twin == this
Halfedge *next, *twin; next != this
}; twin != this

Keep following next, and you'll get faces.
Keep following twin and you'll get edges.
Keep following next->twin and you'll get vertices.

fin

Q: Why, therefore, is it impossible to encode the red figures?

(MU 15-462/662

Halfedge meshes are easy to edit

m Remember key feature of linked list: insert/delete elements
m Same story with halfedge mesh (“linked list on steroids”)
m E.g., for triangle meshes, several atomic operations:

c /ﬂl‘k c

- A P

b

a

m How? Allocate/delete elements; reassigning pointers.

m Must be careful to preserve manifoldness!

(MU 15-462/662

Edge Flip (Triangles)

m Triangles (a,b,c), (b,d,c) become (a,d,c), (a,b,d):

< flip

a d a d
b b

Long list of pointer reassignments (ecdge->halfedge = ...)

However, no elements created/destroyed.
Q: What happens if we flip twice?

Challenge: can you implement edge flip such that pointers are
unchanged after two flips?

(MU 15-462/662

Edge Split (Triangles)

m Insert midpoint m of edge (¢,b), connect to get four triangles:

split <

m This time, have to add new elements.
m Lots of pointer reassignments.
m (Q: Can we“reverse” this operation?

(MU 15-462/662

Edge Collapse (Triangles)

m Replace edge (b,c) with a single vertex m:

collapse

T

C v d
b
Now have to delete elements.

Still lots of pointer assignments!
Q: How would we implement this with a polygon soup?
Any other good way to do it? (E.g., different data structure?)

CMU 15-462/662

Comparison of Polygon Mesh Data Strucutres

Case study: Incidence
: Polygon Sou] Halfedge Mesh
triangles. Y9 P Matrices 9
storage cost* ~3 X #vertices ~33 x #vertices ~36 X #vertices

constant-time

neighborhood access? N0 e e
easy to add/remove NO NO YES
mesh elements?
nonmanifold YES YES NO
geometry?

Conclusion: pick the right data structure for the job!

*number of integer values and/or pointers required to encode connectivity

(all data structures require same amount of storage for vertex positions)
(MU 15-462/662

Alternatives to Halfedge

m Many very similar data structures:
- winged edge
- corner table
- quadedge

Paul Heckbert (former CMU prof.)
quadedge code - http://bit.ly/1QZLHos

Aodec ¢» wes

m Each stores local neighborhood information

m Similar tradeoffs relative to simple polygon list:
- CONS: additional storage, incoherent memory access

- PROS: better access time for individual elements, intuitive
traversal of local neighborhoods

m (Food for thought: can you design a halfedge-like data
structure with reasonably coherent data storage?)

(MU 15-462/662

Ok, but what can we actually do with our
fancy new data structure?

Subdivision Modeling

(MU 15-462/662

Subdivision Modeling

m Common modeling paradigm in modern 3D tools:
- Coarse “control cage”
- Perform local operations to control/edit shape
- Global subdivision process determines final surface

CMU 15-462/662

Subdivision Modeling—Local Operations

m For general olygon meshes, we can dream up lots of local
mes opera jons that mlght be useful for modeling:

@ llllll ANd e

...and many, many more!

(MU 15-462/662

Global Subdivision

Start with coarse polygon mesh (“control cage”)
Subdivide each element

Update vertices via local averaging

Many possible rule:
- Catmull-Clark (quads)
- Loop (triangles)

m Common issues:
- interpolating or approximating?
- continuity at vertices?

m Easier than splines for modeling; harder to evaluate pointwise

(MU 15-462/662

Next Time: Digital Geometry Processing

m Extend traditional digital signal processing (audio, video, etc.)
to deal with geometric signals:

- upsampling / downsampling / resampling / filtering ...

- aliasing (reconstructed surface gives “false impression”)
m Also some new challenges (very recent field!):

- over which domain is a geometric signal expressed?

- no terrific sampling theory, no fast Fourier transform, ...
m Often need new data structures & new algorithms

(MU 15-462/662

