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Last time: overview of geometry
Many types of geometry in nature 
Demand sophisticated representations 
Two major categories: 
- IMPLICIT - “tests” if a point is in shape 
- EXPLICIT - directly “lists” points 
Lots of representations for both 
Today: 
- what is a surface, anyway? 
- nuts & bolts of polygon meshes 
- geometry processing / resampling

Geometry
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Manifold Assumption
Today we’re going to introduce the idea of manifold geometry 
Can be hard to understand motivation at first! 
So first, let’s revisit a more familiar example...

u

v
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Bitmap Images, Revisited
To encode images, we used a regular grid of pixels:
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But images are not fundamentally 
made of little squares:

Goyō Hashiguchi, Kamisuki (ca 1920)
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So why did we choose a square grid?

…rather than dozens of alternatives?
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Regular grids make life easy
One reason: SIMPLICITY / EFFICIENCY 
- E.g., always have four neighbors 
- Easy to index, easy to filter… 
- Storage is just a list of numbers 
Another reason: GENERALITY 
- Can encode basically any image 
Are regular grids always the best choice for bitmap images? 
- No!  E.g., suffer from anisotropy, don’t capture edges, ... 
- But more often than not are a pretty good choice 
Will see a similar story with geometry...

(i,j)(i-1,j) (i+1,j)

(i,j-1)

(i,j+1)
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So, how should we encode surfaces?
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Smooth Surfaces
Intuitively, a surface is the boundary or “shell” of an object 
(Think about the candy shell, not the chocolate.) 
Surfaces are manifold: 
- If you zoom in far enough (at any point) looks like a plane* 
- E.g., the Earth from space vs. from the ground

*…or can easily be flattened into the plane, without cutting or ripping.
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Isn’t every shape manifold?
No, for instance:

Center point never looks like the plane, no matter how close we get.
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More Examples of Smooth Surfaces
Which of these shapes are manifold?
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A manifold polygon mesh has fans, not fins
For polygonal surfaces just two easy conditions to check: 
1. Every edge is contained in only two polygons (no “fins”) 
2. The polygons containing each vertex make a single “fan”

NO

YES

NO

YES
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What about boundary?
The boundary is where the surface “ends.” 
E.g., waist & ankles on a pair of pants. 
Locally, looks like a half disk 
Globally, each boundary forms a loop 

Polygon mesh: 
- one polygon per boundary edge 
- boundary vertex looks like “pacman”

YES
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Ok, but why is the manifold 
assumption useful?
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Keep it Simple!
Same motivation as for images: 
- make some assumptions about our geometry to keep data 

structures/algorithms simple and efficient 
- in many common cases, doesn’t fundamentally limit what 

we can do with geometry

(i,j)(i-1,j) (i+1,j)

(i,j-1)

(i,j+1)
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How do we actually encode all this data?
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Warm up: storing numbers
Q: What data structures can we use to store a list of numbers? 
One idea: use an array (constant time lookup, coherent access) 

Alternative: use a linked list (linear lookup, incoherent access) 

Q: Why bother with the linked list? 
A: For one, we can easily insert numbers wherever we like...

1.7 2.9 0.3 7.5 9.2 4.8 6.0 0.1

1.7

2.9

0.3
7.5

9.2
4.8

6.0

0.1
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Polygon Soup (Array-like)
Store triples of coordinates (x,y,z), tuples of indices 
E.g., tetrahedron:

0

1

2

3

    x  y  z
0: -1 -1 -1
1:  1 -1  1
2:  1  1 -1
3: -1  1  1

VERTICES
i  j  k
0  2  1
0  3  2
3  0  1
3  1  2

POLYGONS

Q: How do we find all the polygons touching vertex 2? 
Ok, now consider a more complicated mesh: 

Very expensive to find the neighboring triangles!  (What’s the cost?) 

~1 billion polygons
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Incidence Matrices
If we want to answer neighborhood queries, why not simply 
store a list of neighbors? 
Can encode all neighbor information via incidence matrices 
E.g., tetrahedron: 

1 means “touches”; 0 means “does not touch” 
Instead of storing lots of 0’s, use sparse matrices 
Still large storage cost, but finding neighbors is now O(1) 
Hard to change connectivity, since we used fixed indices 
Bonus feature: mesh does not have to be manifold

e2

v0

v1

v2

v3

e0

e1

e3
e4

f0

f3

f1

f2

e5

  v0 v1 v2 v3
e0 1  1  0  0
e1 0  1  1  0
e2 1  0  1  0
e3 1  0  0  1
e4 0  0  1  1
e5 0  1  0  1

VERTEX⬌EDGE
  e0 e1 e2 e3 e4 e5
f0 1  0  0  1  0  1
f1 0  1  0  0  1  1
f2 1  1  1  0  0  0
f3 0  0  1  1  1  0

EDGE⬌FACE



Store some information about neighbors 
Don’t need an exhaustive list; just a few key pointers 
Key idea: two halfedges act as “glue” between mesh 
elements: 

Each vertex, edge face points to just one of its halfedges.
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Halfedge Data Structure (Linked-list-like)

Ha
lf
ed
ge

twin

ed
ge

next

vertex

face

struct Halfedge
{
   Halfedge* twin;
   Halfedge* next;
   Vertex* vertex;
   Edge* edge;
   Face* face;
};

struct Vertex
{
   Halfedge* halfedge;
};

halfedge

vertex

struct Edge
{
   Halfedge* halfedge;
};ha

lf
ed
ge

ed
ge

struct Face
{
   Halfedge* halfedge;
};

ha
lf
ed
ge

Face



Use “twin” and “next” pointers to move around mesh 
Use “vertex”, “edge”, and “face” pointers to grab element 
Example: visit all vertices of a face: 

Example: visit all neighbors of a vertex: 

Note: only makes sense if mesh is manifold!
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Halfedge makes mesh traversal easy

ha
lf
ed
ge

next

next

Face

Halfedge* h = f->halfedge;
do {
   h = h->next;
   // do something w/ h->vertex
}
while( h != f->halfedge );

ha
lf
ed
ge

twin

twin

next

next
Vertex

Halfedge* h = v->halfedge;
do {
   h = h->twin->next;
}
while( h != v->halfedge );
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Halfedge meshes are always manifold
Consider simplified halfedge data structure 
Require only “common-sense” conditions

struct Halfedge {
   Halfedge *next, *twin;
};

Keep following next, and you’ll get faces. 
Keep following twin and you’ll get edges. 
Keep following next->twin and you’ll get vertices.

Q: Why, therefore, is it impossible to encode the red figures?

twin->twin == this
next != this
twin != this

(pointer to yourself!)
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Halfedge meshes are easy to edit
Remember key feature of linked list: insert/delete elements 
Same story with halfedge mesh (“linked list on steroids”) 
E.g., for triangle meshes, several atomic operations:

b

c

a d

b

c

a d

flip

b

m

c

a d

b

c

a d

split

a

b

c d

a

b

m

collapse

How?  Allocate/delete elements; reassigning pointers. 
Must be careful to preserve manifoldness!
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Edge Flip (Triangles)
Triangles (a,b,c), (b,d,c) become (a,d,c), (a,b,d): 

Long list of pointer reassignments (edge->halfedge = ...) 
However, no elements created/destroyed. 
Q: What happens if we flip twice? 
Challenge: can you implement edge flip such that pointers are 
unchanged after two flips?

b

c

a d

b

c

a d

flip
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Edge Split (Triangles)
Insert midpoint m of edge (c,b), connect to get four triangles: 

This time, have to add new elements. 
Lots of pointer reassignments. 
Q: Can we “reverse” this operation?

b

m

c

a d

b

c

a d

split
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Edge Collapse (Triangles)
Replace edge (b,c) with a single vertex m: 

Now have to delete elements. 
Still lots of pointer assignments! 
Q: How would we implement this with a polygon soup? 
Any other good way to do it?  (E.g., different data structure?)

a

b

c d

a

b

m

collapse
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Comparison of Polygon Mesh Data Strucutres

Polygon Soup Incidence 
Matrices

Halfedge Mesh

storage cost* ~3 x #vertices ~33 x #vertices ~36 x #vertices

constant-time 
neighborhood access?

NO YES YES

easy to add/remove 
mesh elements?

NO NO YES

nonmanifold 
geometry?

YES YES NO

*number of integer values and/or pointers required to encode connectivity 
(all data structures require same amount of storage for vertex positions)

Conclusion: pick the right data structure for the job!

Case study: 
triangles.



Paul Heckbert (former CMU prof.) 
quadedge code - http://bit.ly/1QZLHosMany very similar data structures: 

- winged edge 
- corner table 
- quadedge 
- ... 
Each stores local neighborhood information 
Similar tradeoffs relative to simple polygon list: 
- CONS: additional storage, incoherent memory access 
- PROS: better access time for individual elements, intuitive 

traversal of local neighborhoods 
(Food for thought: can you design a halfedge-like data 
structure with reasonably coherent data storage?)
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Alternatives to Halfedge
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Ok, but what can we actually do with our 
fancy new data structure?
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Subdivision Modeling
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Subdivision Modeling
Common modeling paradigm in modern 3D tools: 
- Coarse “control cage” 
- Perform local operations to control/edit shape 
- Global subdivision process determines final surface
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Subdivision Modeling—Local Operations
For general polygon meshes, we can dream up lots of local 
mesh operations that might be useful for modeling:

…and many, many more!
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Global Subdivision
Start with coarse polygon mesh (“control cage”) 
Subdivide each element 
Update vertices via local averaging 
Many possible rule: 
- Catmull-Clark (quads) 
- Loop (triangles) 
- ... 
Common issues: 
- interpolating or approximating? 
- continuity at vertices? 
Easier than splines for modeling; harder to evaluate pointwise
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Next Time: Digital Geometry Processing
Extend traditional digital signal processing (audio, video, etc.) 
to deal with geometric signals: 
- upsampling / downsampling / resampling / filtering ... 
- aliasing (reconstructed surface gives “false impression”) 
Also some new challenges (very recent field!): 
- over which domain is a geometric signal expressed? 
- no terrific sampling theory, no fast Fourier transform, ... 
Often need new data structures & new algorithms


