Meshes and Manifolds

Computer Graphics
 CMU 15-462/15-662

Last time: overview of geometry

- Many types of geometry in nature
- Demand sophisticated representations
- Two major categories:
- IMPLICIT - "tests" if a point is in shape
- EXPLICIT - directly"lists" points
- Lots of representations for both
- Today:
- what is a surface, anyway?
- nuts \& bolts of polygon meshes
- geometry processing/resampling

Geometry

Manifold Assumption

- Today we're going to introduce the idea of manifold geometry
- Can be hard to understand motivation at first!
- So first, let's revisit a more familiar example...

Bitmap Images, Revisited

To encode images, we used a regular grid of pixels:

But images are not fundamentally made of little squares:

Goyō Hashiguchi, Kamisuki (ca 1920)

So why did we choose a square grid?

...rather than dozens of alternatives?

Regular grids make life easy

- One reason: SIMPLICITY / EFFICIENCY
- E.g., always have four neighbors
- Easy to index, easy to filter...
- Storage is just a list of numbers
- Another reason: GENERALITY
- Can encode basically any image

	$(i, j-1)$	
$(i-1, j)$	(i, j)	$(i+1, j)$
	$(i, j+1)$	

- Are regular grids always the best choice for bitmap images?
- No! E.g., suffer from anisotropy, don't capture edges, ...
- But more often than not are a pretty good choice
- Will see a similar story with geometry...

So, how should we encode surfaces?

Smooth Surfaces

■ Intuitively, a surface is the boundary or "shell" of an object

- (Think about the candy shell, not the chocolate.)
- Surfaces are manifold:
- If you zoom in far enough (at any point) looks like a plane*
- E.g., the Earth from space vs. from the ground

Isn't every shape manifold?

- No, for instance:

Center point never looks like the plane, no matter how close we get.

More Examples of Smooth Surfaces

- Which of these shapes are manifold?

A manifold polygon mesh has fans, not fins

- For polygonal surfaces just two easy conditions to check:

1. Every edge is contained in only two polygons (no "fins")
2. The polygons containing each vertex make a single "fan"

What about boundary?

- The boundary is where the surface "ends."
- E.g., waist \& ankles on a pair of pants.
- Locally, looks like a half disk
- Globally, each boundary forms a loop

- Polygon mesh:

- one polygon per boundary edge
- boundary vertex looks like "pacman"

Ok, but why is the manifold assumption useful?

Keep it Simple!

- Same motivation as for images:
- make some assumptions about our geometry to keep data structures/algorithms simple and efficient
- in many common cases, doesn't fundamentally limit what we can do with geometry

	$(i, j-1)$	
$(i-1, j)$	(i, j)	$(i+1, j)$
	$(i, j+1)$	

How do we actually encode all this data?

Warm up: storing numbers

- Q: What data structures can we use to store a list of numbers?

■ One idea: use an array (constant time lookup, coherent access)

1.7	2.9	0.3	7.5	9.2	4.8	6.0	0.1

■ Alternative: use a linked list (linear lookup, incoherent access)

- Q: Why bother with the linked list?
- A: For one, we can easily insert numbers wherever we like...

Polygon Soup (Array-like)

- Store triples of coordinates (x, y, z), tuples of indices
- E.g., tetrahedron:

	VERTICES		
	\mathbf{x}	\mathbf{y}	\mathbf{z}
$\mathbf{0}:$	-1	-1	-1
$1:$	1	-1	1
$\mathbf{2}:$	1	1	-1
$3:$	-1	1	1

- Q: How do we find all the polygons touching vertex 2?
- Ok, now consider a more complicated mesh:

POLYGONS

\mathbf{i}	\mathbf{j}	\mathbf{k}
0	2	1
0	3	2
3	0	1
3	1	2

Very expensive to find the neighboring triangles! (What's the cost?)

Incidence Matrices

- If we want to answer neighborhood queries, why not simply store a list of neighbors?
- Can encode all neighbor information via incidence matrices
- E.g., tetrahedron: VERTEX \leftrightarrow EDGE

EDGE \leftrightarrow FACE						
	0	e1	e2	e3	e4	e5
f0	1	0	0	1	0	1
f1	0	1	0	0	1	1
f2	1	1	1	0	0	0
f3	0	0	1	1	1	0

- 1 means "touches"; 0 means "does not touch"
- Instead of storing lots of 0's, use sparse matrices
- Still large storage cost, but finding neighbors is now 0 (1)
- Hard to change connectivity, since we used fixed indices

■ Bonus feature: mesh does not have to be manifold

Halfedge Data Structure (Linked-list-like)

- Store some information about neighbors
- Don't need an exhaustive list; just a few key pointers

■ Key idea: two halfedges act as "glue" between mesh elements:

Each vertex, edge face points to just one of its halfedges.

Halfedge makes mesh traversal easy

- Use"twin" and "next" pointers to move around mesh

■ Use "vertex", "edge", and "face" pointers to grab element
■ Example: visit all vertices of a face:

- Example: visit all neighbors of a vertex:

```
Halfedge* h = v->halfedge;
do {
        h = h->twin->next;
}
while( h != v->halfedge );
```

■ Note: only makes sense if mesh is manifold!

Halfedge meshes are always manifold

- Consider simplified halfedge data structure
- Require only "common-sense" conditions

```
struct Halfedge {
    Halfedge *next, *twin;
};
```

```
twin->twin == this
next != this
twin != this
```

- Keep following next, and you'll get faces.
- Keep following twin and you'll get edges.
- Keep following next->twin and you'll get vertices.

Q: Why, therefore, is it impossible to encode the red figures?

Halfedge meshes are easy to edit

- Remember key feature of linked list: insert/delete elements
- Same story with halfedge mesh ("linked list on steroids")
- E.g., for triangle meshes, several atomic operations:

- How? Allocate/delete elements; reassigning pointers.
- Must be careful to preserve manifoldness!

Edge Flip (Triangles)

- Triangles ($\mathbf{a}, \mathrm{b}, \mathrm{c}$), ($\mathbf{b}, \mathrm{d}, \mathrm{c}$) become ($\mathbf{a}, \mathrm{d}, \mathrm{c}$), ($\mathbf{a}, \mathrm{b}, \mathrm{d}$):

■ Long list of pointer reassignments (edge->halfedge = ...)

- However, no elements created/destroyed.
- Q: What happens if we flip twice?
- Challenge: can you implement edge flip such that pointers are unchanged after two flips?

Edge Split (Triangles)

■ Insert midpoint m of edge (\mathbf{c}, b), connect to get four triangles:

- This time, have to add new elements.
- Lots of pointer reassignments.

■ Q: Can we "reverse" this operation?

Edge Collapse (Triangles)

- Replace edge (b, c) with a single vertex m :

- Now have to delete elements.
- Still lots of pointer assignments!

■ Q: How would we implement this with a polygon soup?

- Any other good way to do it? (E.g., different data structure?)

Comparison of Polygon Mesh Data Strucutres

Case study: triangles.	Polygon Soup	Incidence Matrices	Halfedge Mesh
storage cost*	~ 3 x \#vertices	~ 33 x \#vertices	~ 36 x \#vertices
constant-time neighborhood access?	NO	YES	YES
easy to add/remove mesh elements?	NO	NO	YES
nonmanifold geometry?	YES	YES	NO

Conclusion: pick the right data structure for the job!

*number of integer values and/or pointers required to encode connectivity (all data structures require same amount of storage for vertex positions)

Alternatives to Halfedge

- Many very similar data structures:
- winged edge
- corner table
- quadedge
-

cubeeroct

Paul Heckbert (former CMU prof.) quadedge code - http://bit.ly/1QZLHos

dodec \leftrightarrow ices

- Each stores local neighborhood information
- Similar tradeoffs relative to simple polygon list:
- CONS: additional storage, incoherent memory access
- PROS: better access time for individual elements, intuitive traversal of local neighborhoods
- (Food for thought: can you design a halfedge-like data structure with reasonably coherent data storage?)

Ok, but what can we actually do with our fancy new data structure?

Subdivision Modeling

Subdivision Modeling

- Common modeling paradigm in modern 3D tools:
- Coarse "control cage"
- Perform local operations to control/edit shape
- Global subdivision process determines final surface

Subdivision Modeling—Local Operations

- For general polygon meshes, we can dream up lots of local mesh operations that might be useful for modeling:

...and many, many more!

Global Subdivision

- Start with coarse polygon mesh ("control cage")
- Subdivide each element
- Update vertices via local averaging
- Many possible rule:
- Catmull-Clark (quads)
- Loop (triangles)
- - • -
- Common issues:

- interpolating or approximating?
- continuity at vertices?

- Easier than splines for modeling; harder to evaluate pointwise

Next Time: Digital Geometry Processing

- Extend traditional digital signal processing (audio, video, etc.) to deal with geometric signals:
- upsampling/downsampling / resampling / filtering ...
- aliasing (reconstructed surface gives "false impression")
- Also some new challenges (very recent field!):
- over which domain is a geometric signal expressed?
- no terrific sampling theory, no fast Fourier transform, ...
- Often need new data structures \& new algorithms

