
Computer Graphics
CMU 15-462/15-662, Spring 2018

Lecture 8:

The Rasterization Pipeline
(and its implementation on GPUs)

 CMU 15-462/662, Spring 2018

What you know how to do (at this point in the course)

Position objects and the
camera in the world

z
x

y
z
x

y

Determine the position of
objects relative to the camera

Project objects onto
the screen

(0, 0)

(w, h)

Sample triangle coverage Compute triangle attribute
values at covered sample points

Sample texture maps

 CMU 15-462/662, Spring 2018

What else do you need to know to render a picture
like this?

Occlusion
Determining which surface is
visible to the camera at each
sample point

Lighting/materials

Surface representation
How to represent complex
surfaces?

Describing lights in scene and
how materials reflect light.

 CMU 15-462/662, Spring 2018

Course roadmap
Introduction

Drawing a triangle (by sampling)

Transforms and coordinate spaces

Perspective projection and texture sampling

Today: putting it all together: end-to-end
rasterization pipeline

Geometry

Materials and Lighting

Drawing Things

Sampling (and anti-aliasing)
Coordinate Spaces and Transforms

Key concepts:

 CMU 15-462/662, Spring 2018

Occlusion

 CMU 15-462/662, Spring 2018

Occlusion: which triangle is visible at each
covered sample point?

Opaque Triangles 50% transparent triangles

 CMU 15-462/662, Spring 2018

Review from last class

Assume we have a triangle defined by the screen-space 2D position and
distance (“depth”) from the camera of each vertex.

How do we compute the depth of the triangle at covered sample point ?

Lecture 5 Math

(x, y)

⇥
p0x p0y

⇤
, d0

⇥
p1x p1y

⇤
, d1

⇥
p2x p2y

⇤
, d2

Lecture 5 Math

(x, y)

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Interpolate it just like any other attribute that varies linearly over the surface
of the triangle.

 CMU 15-462/662, Spring 2018

Occlusion using the depth-buffer (Z-buffer)

Closest triangle at sample point (x,y) is triangle with minimum depth at (x,y)

For each coverage sample point, depth-buffer stores depth of closest triangle
at this sample point that has been processed by the renderer so far.

Black = small distance

White = large distance

Grayscale value of sample point
used to indicate distance

Initial state of depth buffer
before rendering any triangles
(all samples store farthest distance)

 CMU 15-462/662, Spring 2018

Depth buffer example

 CMU 15-462/662, Spring 2018

Example: rendering three opaque triangles

 CMU 15-462/662, Spring 2018

Depth buffer contents

Processing yellow triangle:
depth = 0.5

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point
used to indicate distance

Red = sample passed depth test

Occlusion using the depth-buffer (Z-buffer)

 CMU 15-462/662, Spring 2018

Depth buffer contents

After processing yellow triangle:

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point
used to indicate distance

Red = sample passed depth test

Occlusion using the depth-buffer (Z-buffer)

 CMU 15-462/662, Spring 2018

Depth buffer contents

Processing blue triangle:
depth = 0.75

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point
used to indicate distance

Red = sample passed depth test

Occlusion using the depth-buffer (Z-buffer)

 CMU 15-462/662, Spring 2018

Depth buffer contents

After processing blue triangle:

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point
used to indicate distance

Red = sample passed depth test

Occlusion using the depth-buffer (Z-buffer)

 CMU 15-462/662, Spring 2018

Depth buffer contents

Processing red triangle:
depth = 0.25

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point
used to indicate distance

Red = sample passed depth test

Occlusion using the depth-buffer (Z-buffer)

 CMU 15-462/662, Spring 2018

Depth buffer contents

After processing red triangle:

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point
used to indicate distance

Red = sample passed depth test

Occlusion using the depth-buffer (Z-buffer)

 CMU 15-462/662, Spring 2018

Occlusion using the depth buffer
bool	pass_depth_test(d1,	d2)	{	
			return	d1	<	d2;				
}		

depth_test(tri_d,	tri_color,	x,	y)	{	

		if	(pass_depth_test(tri_d,	zbuffer[x][y])	{	

				//	triangle	is	closest	object	seen	so	far	at	this	
				//	sample	point.	Update	depth	and	color	buffers.			

				zbuffer[x][y]	=	tri_d;					//	update	zbuffer	
				color[x][y]	=	tri_color;			//	update	color	buffer	
		}	
}	

 CMU 15-462/662, Spring 2018

Does depth-buffer algorithm handle
interpenetrating surfaces?
Of course!
Occlusion test is based on depth of triangles at a given sample point. The
relative depth of triangles may be different at different sample points.

Green triangle in
front of yellow
triangle

Yellow triangle in
front of green
triangle

 CMU 15-462/662, Spring 2018

Does depth-buffer algorithm handle
interpenetrating surfaces?
Of course!
Occlusion test is based on depth of triangles at a given sample point. The
relative depth of triangles may be different at different sample points.

 CMU 15-462/662, Spring 2018

Does depth buffer work with super sampling?
Of course! Occlusion test is per sample, not per pixel!

This example: green triangle occludes yellow triangle

 CMU 15-462/662, Spring 2018

Color buffer contents

 CMU 15-462/662, Spring 2018

Color buffer contents (4 samples per pixel)

 CMU 15-462/662, Spring 2018

Final resampled result

Note anti-aliasing of edge due to filtering of green and yellow samples.

 CMU 15-462/662, Spring 2018

Summary: occlusion using a depth buffer
▪ Store one depth value per coverage sample (not per pixel!)

▪ Constant space per sample
- Implication: constant space for depth buffer

▪ Constant time occlusion test per covered sample
- Read-modify write of depth buffer if “pass” depth test
- Just a read if “fail”

▪ Not specific to triangles: only requires that surface depth can be
evaluated at a screen sample point

But what about semi-transparent surfaces?

 CMU 15-462/662, Spring 2018

Compositing

 CMU 15-462/662, Spring 2018

Representing opacity as alpha
Alpha describes the opacity of an object
- Fully opaque surface: α = 1
- 50% transparent surface: α = 0.5
- Fully transparent surface: α = 0

α = 1 α =0α = 0.75 α = 0.5 α = 0.25

Red triangle with decreasing opacity

 CMU 15-462/662, Spring 2018

Alpha: additional channel of image (rgba)

α of foreground object

 CMU 15-462/662, Spring 2018

Over operator:
Composite image B with opacity αB over image A with opacity αA

B over A

B
A

B
A

A over B

A over B != B over A
“Over” is not commutative

Koala over NYC

 CMU 15-462/662, Spring 2018

Fringing
Poor treatment of color/alpha can yield dark “fringing”:

foreground color foreground alpha background color

fringing no fringing

 CMU 15-462/662, Spring 2018

No fringing

 CMU 15-462/662, Spring 2018

Fringing (…why does this happen?)

 CMU 15-462/662, Spring 2018

Over operator: non-premultiplied alpha
Composite image B with opacity αB over image A with opacity αA

A first attempt:

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

Appearance of
semi-transparent B

B over A

B
A

B A

A over BWhat B lets through

Appearance of semi-
transparent A

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

A over B != B over A

Composited color:

“Over” is not commutative

 CMU 15-462/662, Spring 2018

Over operator: premultiplied alpha
Composite image B with opacity αB over image A with opacity αA

B over A

B
A

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

Non-premultiplied alpha:

Premultiplied alpha:

Composite alpha:

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

one multiply, one add

two multiplies, one add
(referring to vector ops on colors)

Notice premultiplied alpha composites alpha just like how it composites rgb.
Non-premultiplied alpha composites alpha differently than rgb.

’ ’

 CMU 15-462/662, Spring 2018

A problem with non-premultiplied alpha
▪ Suppose we upsample an image w/ an alpha mask, then composite it onto a background

▪ How should we compute the interpolated color/alpha values?

▪ If we interpolate color and alpha separately, then blend using the non-premultiplied
“over” operator, here’s what happens:

original
color

original
alpha

upsampled
color

upsampled
alpha

composited onto
yellow background

Notice black “fringe” that occurs because
we’re blending, e.g., 50% blue pixels using
50% alpha, rather than, say, 100% blue pixels
with 50% alpha.

 CMU 15-462/662, Spring 2018

Eliminating fringe w/ premultiplied “over”
▪ If we instead use the premultiplied “over” operation, we get the correct alpha:

upsampled color

+ =

(1-alpha)*background composite image
w/ no fringe

background(1-alpha)

 CMU 15-462/662, Spring 2018

Eliminating fringe w/ premultiplied “over”
▪ If we instead use the premultiplied “over” operation, we get the correct alpha:

composite image
WITH fringe

 CMU 15-462/662, Spring 2018

Similar problem with non-premultiplied alpha
Consider pre-filtering (downsampling) a texture with an alpha matte

Desired filtered result

input color input α filtered result
composited over white

filtered color filtered α
Downsampling non-premultiplied alpha

image results in 50% opaque brown)

Result of filtering
premultiplied image

0.25 * ((0, 1, 0, 1) + (0, 1, 0, 1) +

 (0, 0, 0, 0) + (0, 0, 0, 0)) = (0, 0.5, 0, 0.5)

α

 CMU 15-462/662, Spring 2018

More problems: applying “over” repeatedly
Composite image C with opacity αC over B with opacity αB over image A with opacity αA

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Non-premultiplied alpha is not closed under composition:

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

Consider result of compositing 50% red over 50% red:
C over B over A

B A

C

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

Wait… this result is the premultiplied color!
“Over” for non-premultiplied alpha takes non-premultiplied colors to premultiplied
colors (“over” operation is not closed)
Cannot compose “over” operations on non-premultiplied values: over(C,	over(B,	A))

Q: What would be the correct UN-premultiplied
RGBA for 50% red on top of 50% red?

 CMU 15-462/662, Spring 2018

Summary: advantages of premultiplied alpha

▪ Simple: compositing operation treats all channels (RGB and A)
the same

▪ More efficient than non-premultiplied representation: “over”
requires fewer math ops

▪ Closed under composition

▪ Better representation for filtering (upsampling/
downsampling) textures with alpha channel

 CMU 15-462/662, Spring 2018

Strategy for drawing semi-transparent primitives

over(c1, c2) {
 return c1.rgba + (1-c1.a) * c2.rgba;
}

update_color_buffer(x, y, sample_color, sample_depth)
{
 if (pass_depth_test(sample_depth, zbuffer[x][y]) {
 // (how) should we update depth buffer here??
 color[x][y] = over(sample_color, color[x][y]);
 }
}

Assuming all primitives are semi-transparent, and RGBA values are encoded
with premultiplied alpha, here’s one strategy for creating a correctly
rasterized image:

Q: What is the assumption made by this implementation?
Triangles must be rendered in back to front order!

 CMU 15-462/662, Spring 2018

Putting it all together
Now what if we have a mixture of opaque and transparent triangles?

Step 1: render opaque primitives (in any order) using depth-buffered occlusion
If pass depth test, triangle overwrites value in color buffer at sample

Step 2: disable depth buffer update, render semi-transparent surfaces in back-to-front order.
If pass depth test, triangle is composited OVER contents of color buffer at sample

 CMU 15-462/662, Spring 2018

End-to-end rasterization pipeline
(“real-time graphics pipeline”)

 CMU 15-462/662, Spring 2018

Goal: turn these inputs into an image!

list_of_positions	=	{	

				v0x,	v0y,	v0z,		
				v1x,	v1y,	v1x,	
				v2x,	v2y,	v2z,	
				v3x,	v3y,	v3x,	
				v4x,	v4y,	v4z,	
				v5x,	v5y,	v5x			};	

list_of_texcoords	=	{	

				v0u,	v0v,		
				v1u,	v1v,	
				v2u,	v2v,	
				v3u,	v3v,	
				v4u,	v4v,	
				v5u,	v5v			};	 Texture map

Size of output image (W, H)

Object-to-camera-space transform:

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

Perspective projection transform

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

Inputs:

At this point we should have all the tools we need, but let’s review…

 CMU 15-462/662, Spring 2018

Step 1:
Transform triangle vertices into camera space

z

x

y

 CMU 15-462/662, Spring 2018

Step 2:
Apply perspective projection transform to transform triangle vertices
into normalized coordinate space

Pinhole
Camera

(0,0)

z

x

y

znear

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

z

x

y

(-1,-1,-1)

(1, 1, 1)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

Camera-space positions: 3D Normalized space positions

 CMU 15-462/662, Spring 2018

Step 3: clipping
▪ Discard triangles that lie complete outside the unit cube (culling)

- They are off screen, don’t bother processing them further

▪ Clip triangles that extend beyond the unit cube to the cube
- (possibly generating new triangles)

z

x

y

(-1,-1,-1)

(1, 1, 1)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

z

x

y

(-1,-1,-1)

(1, 1, 1)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

Triangles before clipping Triangles after clipping

 CMU 15-462/662, Spring 2018

Step 4: transform to screen coordinates
Perform homogeneous divide, transform vertex xy positions from
normalized coordinates into screen coordinates (based on screen w,h)

(0, 0)

(w, h)

 CMU 15-462/662, Spring 2018

Step 5: setup triangle (triangle preprocessing)
Before rasterizing triangle, can compute a bunch
of data that will be used by all fragments, e.g.,

• triangle edge equations

• triangle attribute equations

• etc.

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

E01(x, y) = E12(x, y) = E20(x, y)

U(x, y) = V(x, y) =
1

w
(x, y) = Z(x, y)

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

E01(x, y) = E12(x, y) = E20(x, y)

U(x, y) = V(x, y) =
1

w
(x, y) = Z(x, y)

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

E01(x, y) = E12(x, y) = E20(x, y)

U(x, y) = V(x, y) =
1

w
(x, y) = Z(x, y)

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

E01(x, y) = E12(x, y) = E20(x, y)

U(x, y) = V(x, y) =
1

w
(x, y) = Z(x, y)

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

E01(x, y) = E12(x, y) = E20(x, y)

U(x, y) = V(x, y) =
1

w
(x, y) = Z(x, y)

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

E01(x, y) = E12(x, y) = E20(x, y)

U(x, y) = V(x, y) =
1

w
(x, y) = Z(x, y)

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

Not premultiplied:
C = ↵BB + (1� ↵B)↵AA

C =
1

↵C
(↵BB + (1� ↵B)↵AA)

↵C = ↵B + (1� ↵B)↵A

A =
⇥
Ar Ag Ab

⇤T

B =
⇥
Br Bg Bb

⇤T

Premultiplied:
C 0 = B + (1� ↵B)A

A0 =
⇥
↵AAr ↵AAg ↵AAb ↵A

⇤T

B0 =
⇥
↵BBr ↵BBg ↵BBb ↵B

⇤T

C =
⇥
0.75 0 0

⇤T

↵C = 0.75

T = P

E01(x, y) = E12(x, y) = E20(x, y)

U(x, y) = V(x, y) =
1

w
(x, y) = Z(x, y)

 CMU 15-462/662, Spring 2018

Step 6: sample coverage
Evaluate attributes z, u, v at all covered samples

 CMU 15-462/662, Spring 2018

Step 6: compute triangle color at sample point
e.g., sample texture map *

u

v
u(x,y), v(x,y)

* So far, we’ve only described computing triangle’s color at a point by interpolating per-vertex colors, or by sampling a
texture map. Later in the course, we’ll discuss more advanced algorithms for computing its color based on material
properties and scene lighting conditions.

 CMU 15-462/662, Spring 2018

Step 7: perform depth test (if enabled)

PASS PASSPASS

PASS PASS PASS

PASSPASS

PASS

PASS

FAIL

FAIL

FAIL

FAIL

FAIL

FAIL

PASS

PASS

PASS

PASS

Also update depth value at covered samples (if necessary)

 CMU 15-462/662, Spring 2018

Step 8: update color buffer (if depth test passed)

 CMU 15-462/662, Spring 2018

OpenGL/Direct3D graphics pipeline *

Vertex Processing

Fragment Generation
(Rasterization)

Fragment Processing

Screen sample operations
(depth and color)

Primitive Processing

Vertex stream

Primitive stream

Fragment stream

Shaded fragment stream

Operations on
vertices

Operations on
primitives
(triangles, lines, etc.)

Operations on
fragments

Operations on
screen samples

Triangles positioned on screen

Fragments (one fragment per covered sample)

Shaded fragments

Output: image (pixels)

Vertices in positioned in normalized
coordinate space

* Several stages of the modern OpenGL pipeline are omitted

Input: vertices in 3D space
1

2

3
4

Structures rendering computation as a series of operations on vertices, primitives,
fragments, and screen samples

 CMU 15-462/662, Spring 2018

OpenGL/Direct3D graphics pipeline *

Vertex Processing

Fragment Generation
(Rasterization)

Fragment Processing

Screen sample operations
(depth and color)

Primitive Processing

Vertex stream

Primitive stream

Fragment stream

Shaded fragment stream

Operations on
vertices

Operations on
primitives
(triangles, lines, etc.)

Operations on
fragments

Operations on
screen samples

* several stages of the modern OpenGL pipeline are omitted

Pipeline inputs:
- Input vertex data

- Parameters needed to compute position on vertices
in normalized coordinates (e.g., transform matrices)

- Parameters needed to compute color of fragments
(e.g., textures)

Input vertices in 3D space
1

2

3
4

transform matrices

textures

- “Shader” programs that define behavior of vertex
and fragment stages

 CMU 15-462/662, Spring 2018

Shader programs
Define behavior of vertex processing and fragment processing stages
Describe operation on a single vertex (or single fragment)

uniform	sampler2D	myTexture;	

uniform	vec3	lightDir;	

varying	vec2	uv;	

varying	vec3	norm;	

void	diffuseShader()	

{	

		vec3	kd;	

		kd	=	texture2d(myTexture,	uv);	

		kd	*=	clamp(dot(-lightDir,	norm),	0.0,	1.0);	

		gl_FragColor	=	vec4(kd,	1.0);				

}	

Example GLSL fragment shader program

Sample surface albedo
(reflectance color) from texture

Modulate surface albedo by incident
irradiance (incoming light)

Shader outputs surface color

Per-fragment attributes
(interpolated by rasterizer)

Shader function executes once
per fragment.

Outputs color of surface at
sample point corresponding to
fragment.
(this shader performs a texture lookup to
obtain the surface’s material color at this point,
then performs a simple lighting computation)

Program parameters

 CMU 15-462/662, Spring 2018Unreal Engine Kite Demo (Epic Games 2015)

Goal: render very high complexity 3D scenes
- 100’s of thousands to millions of triangles in a scene
- Complex vertex and fragment shader computations
- High resolution screen outputs (2-4 Mpixel + supersampling)
- 30-60 fps

 CMU 15-462/662, Spring 2018

Graphics pipeline implementation: GPUs
Specialized processors for executing graphics pipeline computations

Discrete GPU card
(NVIDIA GeForce Titan X)

Integrated GPU: part of modern Intel CPU die

 CMU 15-462/662, Spring 2018

GPU: heterogeneous, multi-core processor

GPU
Memory

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Texture Texture

Texture Texture

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Tessellate Tessellate

Tessellate Tessellate

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

T-OP’s of fixed-function
compute capability over here

Scheduler / Work Distributor

Modern GPUs offer ~2-4 TFLOPs of performance for
executing vertex and fragment shader programs

 CMU 15-462/662, Spring 2018

Summary
▪ Occlusion resolved independently at each screen sample using the depth buffer

▪ Alpha compositing for semi-transparent surfaces

- Premultiplied alpha forms simply repeated composition

- “Over” compositing operations is not commutative: requires triangles to be
processed in back-to-front (or front-to-back) order

▪ Graphics pipeline:

- Structures rendering computation as a sequence of operations performed
on vertices, primitives (e.g., triangles), fragments, and screen samples

- Behavior of parts of the pipeline is application-defined using shader
programs.

- Pipeline operations implemented by highly, optimized parallel processors
and fixed-function hardware (GPUs)

