
Computer Graphics
CMU 15-462/15-662, Spring 2018

Lecture 7:

Perspective Projection and
Texture Mapping

 CMU 15-462/662, Spring 2018

Perspective & Texture
▪ PREVIOUSLY:

- transformation (how to manipulate
primitives in space)

- rasterization (how to turn primitives
into pixels)

▪ TODAY:
- see where these two ideas come

crashing together!
- revisit perspective transformations
- talk about how to map texture onto a

primitive to get more detail
- …and how perspective creates

challenges for texture mapping!

Why is it hard to render
an image like this?

 CMU 15-462/662, Spring 2018

Perspective Projection

 CMU 15-462/662, Spring 2018

Perspective projection

distant objects
appear smaller

parallel lines
converge at
the horizon

 CMU 15-462/662, Spring 2018

Early painting: incorrect perspective

Carolingian painting from the 8-9th century

 CMU 15-462/662, Spring 2018

Evolution toward correct perspective

Masaccio – The Tribute Money c.1426-27
Fresco, The Brancacci Chapel, Florence

Brunelleschi, elevation of Santo Spirito,
1434-83, Florence

Ambrogio Lorenzetti
Annunciation, 1344

 CMU 15-462/662, Spring 2018

Later… rejection of proper perspective projection

 CMU 15-462/662, Spring 2018

Return of perspective in computer graphics

 CMU 15-462/662, Spring 2018

Rejection of perspective in computer graphics

 CMU 15-462/662, Spring 2018

Transformations: From Objects to the Screen

original description
of objects

[WORLD COORDINATES]

all positions now expressed
relative to camera; camera
is sitting at origin looking

down -z direction

z
x

y

[VIEW COORDINATES]

everything visible to the
camera is mapped to unit

cube for easy “clipping”

(-1,-1,-1)

(1,1,1)

[CLIP COORDINATES]

(0, 0)

(w, h)

Screen transform:
objects now in 2D screen coordinates

[WINDOW COORDINATES]

(-1,-1)

(1,1)

unit cube mapped to unit
square via perspective divide

[NORMALIZED COORDINATES]

primitives are now 2D
and can be drawn via

rasterization

 CMU 15-462/662, Spring 2018

Review: simple camera transform
Consider object positioned in world at (10, 2, 0)
Consider camera at (4, 2, 0), looking down x axis

y

z

x

▪ Translating object vertex positions by (-4, -2, 0) yields position relative to camera
▪ Rotation about y by gives position of object in new coordinate system

where camera’s view direction is aligned with the -z axis

Lecture 3 Math

x0 � x1 � x2 � x3 � y � x

x+ y � ✓ � xx � xy

cos ✓ � sin ✓ � ⇡/2� ⇡ � i

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:

Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =

sx 0
0 sy

�

Ss =

0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

What transform places in the object in a coordinate space where the camera is at the
origin and the camera is looking directly down the -z axis?

 CMU 15-462/662, Spring 2018

Camera looking in a different direction
Consider camera looking in direction

y

z

x

What transform places in the object in a coordinate space where the camera is at the origin and the
camera is looking directly down the -z axis?

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

4

Form orthonormal basis around : (see and)

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

Consider rotation matrix:

Lecture 3 Math

Rotations arbitrary:
u� v �w

R�1 = RT

R =

2

4
ux vx wx

uy vy wy

uz vz wz

3

5

RT =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

RTu =
⇥
u · u v · u w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w w ·w

⇤T
=

⇥
0 0 1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Projection:
p2D =

⇥
xx/xz xy/xz

⇤T

x =
⇥
xx xy xz 1

⇤

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
xx xy xz xz

⇤T

p2D-H =
⇥
xx xy xz

⇤T

p2D =
⇥
xx/xz xy/xz

⇤T

maps x-axis to , y-axis to , z axis to -

Lecture 3 Math

Rotations arbitrary:
u� v �w

R�1 = RT

R =

2

4
ux vx wx

uy vy wy

uz vz wz

3

5

RT =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

RTu =
⇥
u · u v · u w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w w ·w

⇤T
=

⇥
0 0 1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Projection:
p2D =

⇥
xx/xz xy/xz

⇤T

x =
⇥
xx xy xz 1

⇤

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
xx xy xz xz

⇤T

p2D-H =
⇥
xx xy xz

⇤T

p2D =
⇥
xx/xz xy/xz

⇤T

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

Lecture 3 Math

Misc:

ax

Rotations arbitrary:

u� v �w

R�1 = RT

R =

2

4
ux vx �wx

uy vy �wy

uz vz �wz

3

5

R�1 = RT =

2

4
ux uy uz

vx vy vz

�wx �wy �wz

3

5

RTu =
⇥
u · u v · u �w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v �w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w �w ·w

⇤T
=

⇥
0 0 �1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Homogeneous:

x =
⇥
xx xy 1

⇤T

wx =
⇥
wxx wxy w

⇤T

Projection:

x2D =
⇥
xx/�xz xy/�xz

⇤T

x =
⇥
xx xy xz 1

⇤T

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 �1 0

3

775

Px =
⇥
xx xy xz �xz

⇤T

x2D-H =
⇥
xx xy �xz

⇤T

x2D =
⇥
xx/�xz xy/�xz

⇤T

Lecture 3 Math

Misc:

ax

Rotations arbitrary:

u� v �w

R�1 = RT

R =

2

4
ux vx �wx

uy vy �wy

uz vz �wz

3

5

R�1 = RT =

2

4
ux uy uz

vx vy vz

�wx �wy �wz

3

5

RTu =
⇥
u · u v · u �w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v �w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w �w ·w

⇤T
=

⇥
0 0 �1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Homogeneous:

x =
⇥
xx xy 1

⇤T

wx =
⇥
wxx wxy w

⇤T

Projection:

x2D =
⇥
xx/�xz xy/�xz

⇤T

x =
⇥
xx xy xz 1

⇤T

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 �1 0

3

775

Px =
⇥
xx xy xz �xz

⇤T

x2D-H =
⇥
xx xy �xz

⇤T

x2D =
⇥
xx/�xz xy/�xz

⇤T

Lecture 3 Math

Misc:

ax

Rotations arbitrary:

u� v �w

R�1 = RT

R =

2

4
ux vx �wx

uy vy �wy

uz vz �wz

3

5

R�1 = RT =

2

4
ux uy uz

vx vy vz

�wx �wy �wz

3

5

RTu =
⇥
u · u v · u �w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v �w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w �w ·w

⇤T
=

⇥
0 0 �1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Homogeneous:

x =
⇥
xx xy 1

⇤T

wx =
⇥
wxx wxy w

⇤T

Projection:

x2D =
⇥
xx/�xz xy/�xz

⇤T

x =
⇥
xx xy xz 1

⇤T

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 �1 0

3

775

Px =
⇥
xx xy xz �xz

⇤T

x2D-H =
⇥
xx xy �xz

⇤T

x2D =
⇥
xx/�xz xy/�xz

⇤T

Lecture 3 Math

Misc:

ax

Rotations arbitrary:

u� v �w

R�1 = RT

R =

2

4
ux vx �wx

uy vy �wy

uz vz �wz

3

5

R�1 = RT =

2

4
ux uy uz

vx vy vz

�wx �wy �wz

3

5

RTu =
⇥
u · u v · u �w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v �w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w �w ·w

⇤T
=

⇥
0 0 �1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Homogeneous:

x =
⇥
xx xy 1

⇤T

wx =
⇥
wxx wxy w

⇤T

Projection:

x2D =
⇥
xx/�xz xy/�xz

⇤T

x =
⇥
xx xy xz 1

⇤T

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 �1 0

3

775

Px =
⇥
xx xy xz �xz

⇤T

x2D-H =
⇥
xx xy �xz

⇤T

x2D =
⇥
xx/�xz xy/�xz

⇤T

Lecture 3 Math

Misc:

ax

Rotations arbitrary:

u� v �w

R�1 = RT

R =

2

4
ux vx �wx

uy vy �wy

uz vz �wz

3

5

R�1 = RT =

2

4
ux uy uz

vx vy vz

�wx �wy �wz

3

5

RTu =
⇥
u · u v · u �w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v �w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w �w ·w

⇤T
=

⇥
0 0 �1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Homogeneous:

x =
⇥
xx xy 1

⇤T

wx =
⇥
wxx wxy w

⇤T

Projection:

x2D =
⇥
xx/�xz xy/�xz

⇤T

x =
⇥
xx xy xz 1

⇤T

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 �1 0

3

775

Px =
⇥
xx xy xz �xz

⇤T

x2D-H =
⇥
xx xy �xz

⇤T

x2D =
⇥
xx/�xz xy/�xz

⇤T

How do we invert?

Why is that the inverse?

 CMU 15-462/662, Spring 2018

View frustum

Pinhole
Camera

(0,0)

z

x

y

znear

zfar

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

View frustum is region the camera can see:

• Top/bottom/left/right planes correspond to sides of screen
• Near/far planes correspond to closest/furthest thing we want to draw

 CMU 15-462/662, Spring 2018

Clipping
▪ In real-time graphics pipeline, “clipping” is the process of eliminating triangles that

aren’t visible to the camera

- Don’t waste time computing pixels (or really, fragments) you can’t see!

- Even “tossing out” individual fragments is expensive (“fine granularity”)

- Makes more sense to toss out whole primitives (“coarse granularity”)

- Still need to deal with primitives that are partially clipped…

from: https://paroj.github.io/gltut/

 CMU 15-462/662, Spring 2018

Aside: Near/Far Clipping
▪ But why near/far clipping?

- Some primitives (e.g., triangles) may have vertices both in front & behind eye!
(Causes headaches for rasterization, e.g., checking if fragments are behind eye)

- Also important for dealing with finite precision of depth buffer / limitations on
storing depth as floating point values

floating point has more “resolution” near zero—hence more precise resolution of primitive-primitive intersection

“Z-fighting”

near = 10-5

far = 105near = 10-1

far = 103

[DEMO]

 CMU 15-462/662, Spring 2018

Mapping frustum to unit cube

z

x

y

znea

zfar

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

z

x

y

(-1,-1,-1)

(1,1,1)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

Before mapping to 2D, map corners of frustum to corners of cube:

Why do we do this?
1. Makes clipping much easier!

- can quickly discard points outside range [-1,1]
- need to think a bit about partially-clipped triangles

2. Different maps to cube yield different effects
- specifically perspective or orthographic view
- perspective is affine transformation, implemented via

homogeneous coordinates
- for orthographic view, just use identity matrix!

Perspective:
Set homogeneous coord to “z”
Distant objects get smaller

Orthographic:
Set homogeneous coord to “1”
Distant objects remain same size

 CMU 15-462/662, Spring 2018

Review: homogeneous coordinates
w

w = 1

x

y

Many points in 2D-H correspond to same point in 2D
 and correspond to the same 2D point
(divide by to convert 2D-H back to 2D)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

R✓ =

cos ✓ � sin ✓
sin ✓ cos ✓

�

Translation:

Tb(x) = x+ b

Tb(x0)� Tb(x1)� Tb(x2)� Tb(x3)� Tb(x)� Tb(y)� Tb(x+ y)� Tb(x) + Tb(y)

Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)� Ta,b(x)� Ta,b(y)� Ta,b(x+ y)� Ta,b(x) + Ta,b(y)

xoutx = xx + bx

xouty = xy + by

xoutx = M11xx +M12xy

xouty = M21xx +M22xy

Reflection:

Rey(x0)�Rey(x1)�Rey(x2)�Rey(x3)

Rex(x0)�Rex(x1)�Rex(x2)�Rex(x3)

Shear:

Hx(x0)�Hx(x1)�Hx(x2)�Hx(x3)

Hxs =

1 s

0 1

�

Hys =

1 0
s 1

�

Homogeneous:

(x, y)�
⇥
x y 1

⇤T

wx

Ss =

2

4
Sx 0 0
0 Sy 0
0 0 1

3

5

R✓ =

2

4
cos ✓ � sin ✓ 0
sin ✓ cos ✓ 0
0 0 1

3

5

Tb =

2

4
1 0 bx

0 1 by

0 0 1

3

5

Tbx =

2

4
1 0 bx

0 1 by

0 0 1

3

5

2

4
xx

xy

1

3

5 =

2

4
xx + bx

xy + by

1

3

5

2

Lecture 3 Math

Rotations arbitrary:

u� v �w

R�1 = RT

R =

2

4
ux vx wx

uy vy wy

uz vz wz

3

5

R�1 = RT =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

RTu =
⇥
u · u v · u w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w w ·w

⇤T
=

⇥
0 0 1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Homogeneous:

x =
⇥
xx xy 1

⇤T

wx =
⇥
wxx wxy w

⇤T

Projection:

x

x2D =
⇥
xx/xz xy/xz

⇤T

x =
⇥
xx xy xz 1

⇤

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
xx xy xz xz

⇤T

x2D-H =
⇥
xx xy xz

⇤T

x2D =
⇥
xx/xz xy/xz

⇤T

Lecture 3 Math

Rotations arbitrary:

u� v �w

R�1 = RT

R =

2

4
ux vx wx

uy vy wy

uz vz wz

3

5

R�1 = RT =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

RTu =
⇥
u · u v · u w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w w ·w

⇤T
=

⇥
0 0 1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Homogeneous:

x =
⇥
xx xy 1

⇤T

wx =
⇥
wxx wxy w

⇤T

Projection:

x

x2D =
⇥
xx/xz xy/xz

⇤T

x =
⇥
xx xy xz 1

⇤

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
xx xy xz xz

⇤T

x2D-H =
⇥
xx xy xz

⇤T

x2D =
⇥
xx/xz xy/xz

⇤T

Lecture 3 Math

Rotations arbitrary:

u� v �w

R�1 = RT

R =

2

4
ux vx wx

uy vy wy

uz vz wz

3

5

R�1 = RT =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

RTu =
⇥
u · u v · u w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w w ·w

⇤T
=

⇥
0 0 1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Homogeneous:

x =
⇥
xx xy 1

⇤T

wx =
⇥
wxx wxy w

⇤T

Projection:

x

x2D =
⇥
xx/xz xy/xz

⇤T

x =
⇥
xx xy xz 1

⇤

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
xx xy xz xz

⇤T

x2D-H =
⇥
xx xy xz

⇤T

x2D =
⇥
xx/xz xy/xz

⇤T

Lecture 3 Math

Rotations arbitrary:

u� v �w

R�1 = RT

R =

2

4
ux vx wx

uy vy wy

uz vz wz

3

5

R�1 = RT =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

RTu =
⇥
u · u v · u w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w w ·w

⇤T
=

⇥
0 0 1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Homogeneous:

x =
⇥
xx xy 1

⇤T

wx =
⇥
wxx wxy w

⇤T

Projection:

x

x2D =
⇥
xx/xz xy/xz

⇤T

x =
⇥
xx xy xz 1

⇤

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
xx xy xz xz

⇤T

x2D-H =
⇥
xx xy xz

⇤T

x2D =
⇥
xx/xz xy/xz

⇤T

 CMU 15-462/662, Spring 2018

Perspective vs. Orthographic Projection
▪ Most basic version of perspective matrix:

▪ Most basic version of orthographic matrix:

objects shrink
in distance

objects stay the
same size

…real projection matrices are a bit more complicated! :-)

 CMU 15-462/662, Spring 2018

Matrix for Perspective Transform

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

Real perspective matrix takes into account
geometry of view frustum:

left (l), right (r), top (t), bottom (b), near (n), far (f)

For a derivation: http://www.songho.ca/opengl/gl_projectionmatrix.html

 CMU 15-462/662, Spring 2018

Review: screen transform
After divide, coordinates in [-1,1] have to be “stretched” to fit the screen
Example:

All points within (-1,1) to (1,1) region are on screen
(1,1) in normalized space maps to (W,0) in screen

W

H (W,H)

(0,0)

Step 2: translate by (1,1)

(0,0)

(1,1)

Step 3: scale by (W/2,H/2)

Step 1: reflect about x-axis

Normalized coordinate space: Screen (W x H output image) coordinate space:

Lecture 3 Math

Rotations arbitrary:
u� v �w

R�1 = RT

R =

2

4
ux vx wx

uy vy wy

uz vz wz

3

5

R�1 = RT =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

RTu =
⇥
u · u v · u w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w w ·w

⇤T
=

⇥
0 0 1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Projection:
p

p2D =
⇥
px/pz py/pz

⇤T

p =
⇥
px py pz 1

⇤

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
xx xy xz xz

⇤T

p2D-H =
⇥
xx xy xz

⇤T

p2D =
⇥
xx/xz xy/xz

⇤T

Lecture 3 Math

Rotations arbitrary:
u� v �w

R�1 = RT

R =

2

4
ux vx wx

uy vy wy

uz vz wz

3

5

R�1 = RT =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

RTu =
⇥
u · u v · u w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w w ·w

⇤T
=

⇥
0 0 1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Projection:
p

p2D =
⇥
px/pz py/pz

⇤T

p =
⇥
px py pz 1

⇤

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
xx xy xz xz

⇤T

p2D-H =
⇥
xx xy xz

⇤T

p2D =
⇥
xx/xz xy/xz

⇤T

 CMU 15-462/662, Spring 2018

Transformations: From Objects to the Screen

original description
of objects

[WORLD COORDINATES]

all positions now expressed
relative to camera; camera
is sitting at origin looking

down -z direction

z
x

y

[VIEW COORDINATES]

everything visible to the
camera is mapped to unit

cube for easy “clipping”

(-1,-1,-1)

(1,1,1)

[CLIP COORDINATES]

(0, 0)

(w, h)

Screen transform:
objects now in 2D screen coordinates

[WINDOW COORDINATES]

(0, 0)

(1,1)

unit cube mapped to unit
square via perspective divide

[NORMALIZED COORDINATES]

primitives are now 2D
and can be drawn via

rasterization

perspective
divide

projection
transform

view
transform

screen
transform

 CMU 15-462/662, Spring 2018

Coverage(x,y)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x

In lecture 2 we discussed how to sample
coverage given the 2D position of the
triangle’s vertices.

x

 CMU 15-462/662, Spring 2018

Consider sampling color(x,y)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

green [0,1,0]

blue [0,0,1]

red [0,0,1]

x

What is the triangle’s color at the point ?

Lecture 3 Math

Rotations arbitrary:

u� v �w

R�1 = RT

R =

2

4
ux vx wx

uy vy wy

uz vz wz

3

5

R�1 = RT =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

RTu =
⇥
u · u v · u w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w w ·w

⇤T
=

⇥
0 0 1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Homogeneous:

x =
⇥
xx xy 1

⇤T

wx =
⇥
wxx wxy w

⇤T

Projection:

x

x2D =
⇥
xx/xz xy/xz

⇤T

x =
⇥
xx xy xz 1

⇤

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
xx xy xz xz

⇤T

x2D-H =
⇥
xx xy xz

⇤T

x2D =
⇥
xx/xz xy/xz

⇤T

 CMU 15-462/662, Spring 2018

Review: interpolation in 1D

x1x0 x2 x3 x4

f (x)

frecon(x) = linear interpolation between values of two closest samples to x

f(x2) f(x3)

� = c3

� = c4

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

3

� = c3

� = c4

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

3

Between: x2 and x3:

where:

 CMU 15-462/662, Spring 2018

Consider similar behavior on triangle

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

black [0,0,0]

blue [0,0,1]

black [0,0,0]

x

Color depends on distance from

color at

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

3

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

� = c3

� = c4

x = (1� t)
⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =
(x� x2)

x3 � x2

3

distance from to
distance from to

Lecture 3 Math

Rotations arbitrary:

u� v �w

R�1 = RT

R =

2

4
ux vx wx

uy vy wy

uz vz wz

3

5

R�1 = RT =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

RTu =
⇥
u · u v · u w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w w ·w

⇤T
=

⇥
0 0 1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Homogeneous:

x =
⇥
xx xy 1

⇤T

wx =
⇥
wxx wxy w

⇤T

Projection:

x

x2D =
⇥
xx/xz xy/xz

⇤T

x =
⇥
xx xy xz 1

⇤

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
xx xy xz xz

⇤T

x2D-H =
⇥
xx xy xz

⇤T

x2D =
⇥
xx/xz xy/xz

⇤T

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

How can we interpolate in 2D between three values?

 CMU 15-462/662, Spring 2018

Interpolation via barycentric coordinates

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

green [0,1,0]

blue [0,0,1]

red [1,0,0]

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

2

color

Lecture 3 Math

Rotations arbitrary:

u� v �w

R�1 = RT

R =

2

4
ux vx wx

uy vy wy

uz vz wz

3

5

R�1 = RT =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

RTu =
⇥
u · u v · u w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w w ·w

⇤T
=

⇥
0 0 1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Homogeneous:

x =
⇥
xx xy 1

⇤T

wx =
⇥
wxx wxy w

⇤T

Projection:

x

x2D =
⇥
xx/xz xy/xz

⇤T

x =
⇥
xx xy xz 1

⇤

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
xx xy xz xz

⇤T

x2D-H =
⇥
xx xy xz

⇤T

x2D =
⇥
xx/xz xy/xz

⇤T

=

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

2

color

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

color

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

color

 form a non-orthogonal
basis for points in triangle (origin at)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

and

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

Color at is linear combination of color at
three triangle vertices.

Lecture 3 Math

Rotations arbitrary:

u� v �w

R�1 = RT

R =

2

4
ux vx wx

uy vy wy

uz vz wz

3

5

R�1 = RT =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

RTu =
⇥
u · u v · u w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w w ·w

⇤T
=

⇥
0 0 1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Homogeneous:

x =
⇥
xx xy 1

⇤T

wx =
⇥
wxx wxy w

⇤T

Projection:

x

x2D =
⇥
xx/xz xy/xz

⇤T

x =
⇥
xx xy xz 1

⇤

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
xx xy xz xz

⇤T

x2D-H =
⇥
xx xy xz

⇤T

x2D =
⇥
xx/xz xy/xz

⇤T

 CMU 15-462/662, Spring 2018

Barycentric coordinates as scaled distances

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

green [0,1,0]

blue [0,0,1]

red [0,0,1]

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x

proportional to distance from to edge

Lecture 3 Math

Rotations arbitrary:

u� v �w

R�1 = RT

R =

2

4
ux vx wx

uy vy wy

uz vz wz

3

5

R�1 = RT =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

RTu =
⇥
u · u v · u w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w w ·w

⇤T
=

⇥
0 0 1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Homogeneous:

x =
⇥
xx xy 1

⇤T

wx =
⇥
wxx wxy w

⇤T

Projection:

x

x2D =
⇥
xx/xz xy/xz

⇤T

x =
⇥
xx xy xz 1

⇤

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
xx xy xz xz

⇤T

x2D-H =
⇥
xx xy xz

⇤T

x2D =
⇥
xx/xz xy/xz

⇤T

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

↵ = AA/A

� = AB/A

� = AC/A

Eac(x, y) = Ax+By + C

kEac(bx,by) = 1

kEac(xx,xy) = �

2

(Similiarly for other two barycentric coordinates)

• Compute distance of x from line ca
• Divide by distance of a from line ca (“height”)

(Q: Is the mapping from x to barycentric coords affine? Linear?)

 CMU 15-462/662, Spring 2018

Barycentric coordinates as ratio of areas

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

green [0,1,0]

blue [0,0,1]

red [0,0,1]

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x

AC

AB
AA

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

↵ = AA/A

� = AB/A

� = AC/A

2

(Similar idea also works for, e.g., a tetrahedron.)

Why must coordinates sum to one?

Also ratio of signed areas:

Why must coordinates be between 0 and 1?

 CMU 15-462/662, Spring 2018

Perspective-incorrect interpolation
Due to perspective projection (homogeneous divide), barycentric interpolation of values
on a triangle with different depths is not an affine function of screen XY coordinates.

Attribute values must be interpolated linearly in 3D object space.

Screen

A0

A1

(A0 + A1) / 2

 CMU 15-462/662, Spring 2018

Example: perspective incorrect interpolation
Good example is quadrilateral split into two triangles:

If we compute barycentric coordinates using 2D (projected)
coordinates, can lead to (derivative) discontinuity in

interpolation where quad was split.

 CMU 15-462/662, Spring 2018

Perspective Correct Interpolation
▪ Basic recipe:

- To interpolate some attribute ɸ…

- Compute depth z at each vertex

- Evaluate Z := 1/z and P := ɸ/z at each vertex

- Interpolate Z and P using standard (2D) barycentric coords

- At each fragment, divide interpolated P by interpolated Z
to get final value

For a derivation, see Low, “Perspective-Correct Interpolation”

 CMU 15-462/662, Spring 2018

Texture Mapping

 CMU 15-462/662, Spring 2018

Many uses of texture mapping
Define variation in surface reflectance

Pattern on ball Wood grain on floor

 CMU 15-462/662, Spring 2018

Describe surface material properties

Multiple layers of texture maps for color, logos,
scratches, etc.

 CMU 15-462/662, Spring 2018

Normal & Displacement Mapping

Use texture value to perturb surface normal to
“fake” appearance of a bumpy surface

(note smooth silhouette/shadow reveals that
surface geometry is not actually bumpy!)

dice up surface geometry into tiny triangles &
offset positions according to texture values

 (note bumpy silhouette and shadow boundary)

normal mapping displacement mapping

 CMU 15-462/662, Spring 2018
Grace Cathedral environment map Environment map used in rendering

Represent precomputed lighting and shadows

 CMU 15-462/662, Spring 2018

Texture coordinates

myTex(u,v) is a function
defined on the [0,1]2 domain
(represented by 2048x2048 image)

“Texture coordinates” define a mapping from surface coordinates (points on triangle)
to points in texture domain.

(We’ll assume surface-to-texture space mapping is provided as per vertex values)

(0.0, 0.0) (1.0, 0.0)

(1.0, 1.0)(0.0, 1.0)

(0.0, 0.5) (1.0, 0.5)(0.5, 0.5)

(0.5, 1.0)

(0.5, 0.0)

Eight triangles (one face of cube) with
surface parameterization provided as per-
vertex texture coordinates.

Final rendered result (entire cube
shown).

Location of triangle after projection
onto screen shown in red.

Location of highlighted triangle
in texture space shown in red.

 CMU 15-462/662, Spring 2018

Visualization of texture coordinates

(0.0, 0.0) (1.0, 0.0)

(0.0, 1.0)

(red)

(green)

Texture coordinates linearly interpolated over triangle

 CMU 15-462/662, Spring 2018

More complex mapping

u

v

Each vertex has a coordinate (u,v) in texture space.
(Actually coming up with these coordinates is another story!)

Visualization of texture coordinates Triangle vertices in texture space

 CMU 15-462/662, Spring 2018

Texture mapping adds detail

u

vRendered result Triangle vertices in texture space

 CMU 15-462/662, Spring 2018

Texture mapping adds detail
rendering with texturerendering without texture texture image

zo
om

Each triangle “copies” a piece of the image back to the surface.

 CMU 15-462/662, Spring 2018

Another example: Sponza

Notice texture coordinates repeat over surface.

 CMU 15-462/662, Spring 2018

Textured Sponza

 CMU 15-462/662, Spring 2018

Example textures used in Sponza

 CMU 15-462/662, Spring 2018

Texture Sampling 101
▪ Basic algorithm for mapping texture to surface:

- Interpolate U and V coordinates across triangle
- For each fragment

- Sample (evaluate) texture at (U,V)
- Set color of fragment to sampled texture value

…sadly not this easy in general!

 CMU 15-462/662, Spring 2018

Texture space samples

Sample positions are uniformly distributed in screen space
(rasterizer samples triangle’s appearance at these locations)

Texture sample positions in texture space (texture
function is sampled at these locations)

u

v

Sample positions in XY screen space Sample positions in texture space

1 2 3 4 5

1
2

3
4

5

 CMU 15-462/662, Spring 2018

Recall: aliasing
Undersampling a high-frequency signal can result in aliasing

f(x)

x
1D example

2D examples:
Moiré patterns, jaggies

 CMU 15-462/662, Spring 2018

Aliasing due to undersampling texture

Rendering using pre-filtered texture dataNo pre-filtering of texture data
(resulting image exhibits aliasing)

 CMU 15-462/662, Spring 2018

Aliasing due to undersampling (zoom)

Rendering using pre-filtered texture dataNo pre-filtering of texture data
(resulting image exhibits aliasing)

 CMU 15-462/662, Spring 2018

Filtering textures

Figure credit: Akeley and Hanrahan

▪ Minification:
- Area of screen pixel maps to large region of texture (filtering required -- averaging)
- One texel corresponds to far less than a pixel on screen
- Example: when scene object is very far away

▪ Magnification:
- Area of screen pixel maps to tiny region of texture (interpolation required)
- One texel maps to many screen pixels
- Example: when camera is very close to scene object (need higher resolution texture map)

 CMU 15-462/662, Spring 2018

Filtering textures

Actual texture: 64x64 image

Actual texture: 700x700 image
(only a crop is shown)

...
...

Texture minification

Texture magnification

 CMU 15-462/662, Spring 2018

Mipmap (L. Williams 83)

Level 2 = 32x32 Level 3 = 16x16

Level 4 = 8x8 Level 5 = 4x4

Level 1 = 64x64Level 0 = 128x128

Level 6 = 2x2 Level 7 = 1x1

Idea: prefilter texture data to remove high frequencies
Texels at higher levels store integral of the texture function over a region of texture space (downsampled images)

Texels at higher levels represent low-pass filtered version of original texture signal

 CMU 15-462/662, Spring 2018

Mipmap (L. Williams 83)

Williams’ original proposed
mip-map layout “Mip hierarchy”

level = d

u

v

Slide credit: Akeley and Hanrahan

What is the storage overhead of a mipmap?

 CMU 15-462/662, Spring 2018

Computing Mip Map Level

Screen space Texture space

Compute differences between texture coordinate values of neighboring screen samples

u

v

 CMU 15-462/662, Spring 2018

Computing Mip Map Level
Compute differences between texture coordinate values of neighboring fragments

du/dx = u10-u00
du/dy = u01-u00

dv/dx = v10-v00
dv/dy = v01-v00

(u,v)00 (u,v)10

(u,v)01

L

mip-map d = log2 L

u

v
L

du/dx

dv/dx

 CMU 15-462/662, Spring 2018

Sponza (bilinear resampling at level 0)

 CMU 15-462/662, Spring 2018

Sponza (bilinear resampling at level 2)

 CMU 15-462/662, Spring 2018

Sponza (bilinear resampling at level 4)

 CMU 15-462/662, Spring 2018

Visualization of mip-map level
(bilinear filtering only: d clamped to nearest level)

 CMU 15-462/662, Spring 2018

“Tri-linear” filtering

mip-map texels: level d

mip-map texels: level d+1

Bilinear resampling:
four texel reads
3 lerps (3 mul + 6 add)

Trilinear resampling:
eight texel reads
7 lerps (7 mul + 14 add)

Figure credit: Akeley and Hanrahan

 CMU 15-462/662, Spring 2018

Visualization of mip-map level
(trilinear filtering: visualization of continuous d)

 CMU 15-462/662, Spring 2018

Pixel area may not map to isotropic region in texture

u

v

L

v=.25

v=.5
v=.75

u=.5 u=.75u=.25
L

Trilinear (Isotropic)
Filtering

Anisotropic Filtering

Overblurring in
u direction

Proper filtering requires anisotropic filter footprint

Texture space: viewed from
camera with perspective

(Modern solution:
Combine multiple
mip map samples)

 CMU 15-462/662, Spring 2018

Summary: texture filtering using the mip map

▪ Small storage overhead (33%)
- Mipmap is 4/3 the size of original texture image

▪ For each isotropically-filtered sampling operation
- Constant filtering cost (independent of mip map level)

- Constant number of texels accessed (independent of mip map level)

▪ Combat aliasing with prefiltering, rather than supersampling
- Recall: we used supersampling to address aliasing problem when sampling coverage

▪ Bilinear/trilinear filtering is isotropic and thus will “overblur” to
avoid aliasing
- Anisotropic texture filtering provides higher image quality at higher compute and

memory bandwidth cost (in practice: multiple mip map samples)

 CMU 15-462/662, Spring 2018

“Real” Texture Sampling
1. Compute u and v from screen sample x,y (via evaluation of attribute equations)

2. Compute du/dx, du/dy, dv/dx, dv/dy differentials from screen-adjacent samples.

3. Compute mip map level d

4. Convert normalized [0,1] texture coordinate (u,v) to texture coordinates U,V in [W,H]

5. Compute required texels in window of filter

6. Load required texels (need eight texels for trilinear)

7. Perform tri-linear interpolation according to (U, V, d)

Takeaway: a texture sampling operation is not just an image pixel
lookup! It involves a significant amount of math.

For this reason, modern GPUs have dedicated fixed-function hardware
support for performing texture sampling operations.

 CMU 15-462/662, Spring 2018

Texturing summary
▪ Texture coordinates: define mapping between points on triangle’s surface (object

coordinate space) to points in texture coordinate space

▪ Texture mapping is a sampling operation and is prone to aliasing

- Solution: prefilter texture map to eliminate high frequencies in texture signal

- Mip-map: precompute and store multiple multiple resampled versions of the
texture image (each with different amounts of low-pass filtering)

- During rendering: dynamically select how much low-pass filtering is required
based on distance between neighboring screen samples in texture space

- Goal is to retain as much high-frequency content (detail) in the texture as
possible, while avoiding aliasing

