Lecture 7:

Perspective Projection and
Texture Mapping

Computer Graphics
CMU 15-462/15-662, Spring 2018



Perspective & Texture

m PREVIOUSLY: W7 WA !
- transformation (how to manipulate

m TODAY:

primitives in space)

rasterization (how to turn primitives
into pixels)

see where these two ideas come
crashing together!

revisit perspective transformations

talk about how to map texture onto a
primitive to get more detail

Why is it hard to render
an image like this?

...and how perspective creates
challenges for texture mapping!
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Perspective Projection
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Perspective projection
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Early painting: incorrect perspective
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Carolingian painting from the 8-9th century CMU 15-462/662, Spring 2018



Evolution toward correct perspective

Ambrogio Lorenzetti
/| Annunciation, 1344

Brunelleschi, elevation of Santo Spirito, Masaccio — The Tribute Money ¢.1426-27

1434-83, Florence Fresco, The Brancacci Chapel, Florence
(MU 15-462/662, Spring 2018



Later. .. rejection of proper perspective projection

”
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Return of perspective in computer graphics
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(MU 15-462/662, Spring 2018
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Transformations: From Objects to the Screen
[WORLD COORDINATES] [VIEW COORDINATES] [CLIP COORDINATES]

; — . i i

('11'11'1)

original description all positions now expressed everything visible to the
of objects relative to camera; camera camera is mapped to unit
is sitting at origin looking cube for easy “clipping”
down -z direction l
[WINDOW COORDINATES] [NORMALIZED COORDINATES]
(w, h) (1,1)
primitives are now 2D « =
and can be drawn via
rasterization % %
(0,0) (-1,-1)
Screen transform: unit cube mapped to unit
objects now in 2D screen coordinates square via perspective divide
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Review: simple camera transform

Consider object positioned in world at (10, 2, 0)
Consider camera at (4, 2, 0), looking down x axis

y

X

4

What transform places in the object in a coordinate space where the camera is at the
origin and the camera is looking directly down the -z axis?

B Translating object vertex positions by (-4, -2, 0) yields position relative to camera
® Rotation about y by 7 /2 gives position of object in new coordinate system
where camera’s view direction is aligned with the -z axis
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Camera looking in a different direction

Consider camera looking in direction W

What transform places in the object in a coordinate space where the camera is at the origin and the
camera is looking directly down the -z axis?

z How do we invert?
Form orthonormal basis around wW: (see 1 and v) T u w.
X Y z
Consider rotation matrix: R RI1=RT=]| v, v, V.
_ux VCU _WCE— __Wx _Wy _WZ_
R=lu v —w Why is that the inverse?
y vy Y - _ T T
u, vV, —W, Ru:_u-u V-u —W-u} :[1 0 O}
Riv=[u-v v v —W-V}T:[O 1 O]T
R maps x-axis to u, y-axis to v, z axis to -w - I - -
RW:_u-w VW —W-W} :[O 0 —1]
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View frustum

View frustum is region the camera can see:

X Pinhole
Camera
(0,0)

- Top/bottom/left/right planes correspond to sides of screen
- Near/far planes correspond to closest/furthest thing we want to draw

(MU 15-462/662, Spring 2018



Clipping

B |nreal-time graphics pipeline, “clipping” is the process of eliminating triangles that
aren’t visible to the camera

- Don't waste time computing pixels (or really, fragments) you can’t see!
- Even“tossing out” individual fragments is expensive (“fine granularity”)
- Makes more sense to toss out whole primitives (“coarse granularity”)

- Still need to deal with primitives that are partially clipped...

(MU 15-462/662, Spring 2018



Aside: Near/Far Clipping

B But why near/far clipping?

- Some primitives (e.g., triangles) may have vertices both in front & behind eye!
(Causes headaches for rasterization, e.g., checking if fragments are behind eye)

- Also important for dealing with finite precision of depth buffer / limitations on
storing depth as floating point values

near =10
far=10°

near =101
far=103

[DEMO]

163

|

Z-fighting

floating point has more “resolution” near zero—hence more precise resolution of primitive-primitive intersection
(MU 15-462/662, Spring 2018
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zfar

Why do we do this?

1. Makes clipping much easier!
- can quickly discard points outside range [-1,1]
- need to think a bit about partially-clipped triangles

2. Different maps to cube yield different effects
- specifically perspective or orthographic view
- perspective is affine transformation, implemented via

homogeneous coordinates

- for orthographic view, just use identity matrix!

Mapping frustum to unit cube

Before mapping to 2D, map corners of frustum to corners of cube:

Perspective:

/- /
Z

Set homogeneous coord to
Distant objects get smaller

Orthographic:

ll1 n

Set homogeneous coord to
Distant objects remain same size

(MU 15-462/662, Spring 2018



Review: homogeneous coordinates

*
*
*
*
*
*
*
*
*
‘Q
*

*
*
*
*
*
*
*
*
*
*
.
*
*
*
’0
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
‘Q
*

Many points in 2D-H correspond to same point in 2D
X and wxX correspond to the same 2D point
(divide by wv to convert 2D-H back to 2D)
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Perspective vs. Orthographic Projection

m Most basic version of perspective matrix:

_ _ objects shrink
1 0 0 O X X T
o1o0o0lly]| |yl in distance
0 01 0 z | | z | ?

0 01 0 || w Z 1

. o o : Tw e .
Most basic version of orthographic matrix: objects stay the

1.0 0 0]« X same size
0 1 0 O vy |y | N

0O 0 1 O Z |z

00 0 1]]1 1 1

...real projection matrices are a bit more complicated! :-)
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Matrix for Perspective Transform

Real perspective matrix takes into account
geometry of view frustum:

20 0

0o 2 b 0

0 0 YEm 2
0 0 —1 0

left (1), right (r), top (t), bottom (b), near (n), far (f)

For a derivation: http://www.songho.ca/opengl/gl_projectionmatrix.html
(MU 15-462/662, Spring 2018



Review: screen transform

After divide, coordinates in [-1,1] have to be “stretched” to fit the screen
Example:

All points within (-1,1) to (1,1) region are on screen

(1,1) in normalized space maps to (W,0) in screen

Normalized coordinate space: Screen (W x H output image) coordinate space:
(0,0) W
H (W,H)

Step 1: reflect about x-axis
Step 2: translate by (1,1)
Step 3: scale by (W/2,H/2)

(MU 15-462/662, Spring 2018



Transformations: From Objects to the Screen

[WORLD COORDINATES] [VIEW COORDINATES] [CLIP COORDINATES]
//\ (1,1,1)
view projection &
transform transform ijﬂ
# — g‘ ﬁ # %@%
% — X %
(-1,-1,-1)
original description all positions now expressed everything visible to the
of objects relative to camera; camera camera is mapped to unit
is sitting at origin looking cube for easy “clipping”
down -z direction
l perspective
divide
[WINDOW COORDINATES] [NORMALIZED COORDINATES]
(w, h) (1,1)
primitives are now 2D « =
and can be drawn via
rasterization % screen %
transform
(0,0) (0,0)
Screen transform: unit cube mapped to unit
objects now in 2D screen coordinates square via perspective divide
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Coverage(x,y)

In lecture 2 we discussed how to sample
coverage given the 2D position of the C
triangle’s vertices.

(MU 15-462/662, Spring 2018



Consider sampling color(x,y)

C
blue[0,0,1]

b
green [0,1,0]

A
red[0,0,1]

What is the triangle’s color at the point x ?

(MU 15-462/662, Spring 2018



Review: interpolationin 1D

[recon(x) = linear interpolation between values of two closest samples to x

‘ J(x)

Between: x2 and x3:
frecon(t) — (1 — t)f(xQ) - tf(il?g)
where:
L (x — x9)

N L3 — I9

f(x2) /e f(x3)
: : : —p
X0 x1 X2 x3 x4

(MU 15-462/662, Spring 2018



Consider similar behavior on triangle

C
blue [0,0,1]

Color depends on distance from b — a

colorat x=(1—-¢)[0 0 1]+¢|0 0 O

_ distancefromx to b — a
t .
distancefromCc to b — a

b

black[0,0,0]
A

black[0,0,0]

How can we interpolate in 2D between three values?

(MU 15-462/662, Spring 2018



Interpolation via barycentric coordinates

C b — a and ¢ — a form a non-orthogonal
blue [0,0,1] basis for points in triangle (origin at a)

x =a+ f(b—a)+~v(c—a)
=(1-8—7v)a+ b+ ~c
= aa + fb 4+ vyc

a+p+y=1

Color at x is linear combination of color at
three triangle vertices.

| | X‘.
: .
‘ 'A XCOIor B aacolor_I_ 6b€0|0r_|_ ﬁ)/ CC0|0I‘
f b

I

g green [0,1,0]

a b — a

red[1,0,0]

(MU 15-462/662, Spring 2018



Barycentric coordinates as scaled distances

C 3 proportional to distance from x toedge c — a
blue [0,0,1]

 Compute distance of x from line ca
- Divide by distance of a from line ca (“height”)

(Similiarly for other two barycentric coordinates)

green[0,1,0]

red [0,0,1]

(Q: Is the mapping from x to barycentric coords affine? Linear?)

(MU 15-462/662, Spring 2018



Barycentric coordinates as ratio of areas

C Also ratio of signed areas:

a=Ax/A
B=Ap/A
v =Ac/A

Why must coordinates sum to one?
Why must coordinates be between 0 and 1?

~A

£ ",
g

.

b
green[0,1,0]

a b — a

red [0,0,1]

(Similar idea also works for, e.g., a tetrahedron.)

(MU 15-462/662, Spring 2018



Perspective-incorrect interpolation

Due to perspective projection (homogeneous divide), barycentric interpolation of values
on a triangle with different depths is not an affine function of screen XY coordinates.

Attribute values must be interpolated linearly in 3D object space.

(MU 15-462/662, Spring 2018



Example: perspective incorrect interpolation

Good example is quadrilateral split into two triangles:

i

Flat Affine Correct

If we compute barycentric coordinates using 2D (projected)
coordinates, can lead to (derivative) discontinuity in
interpolation where quad was split.

(MU 15-462/662, Spring 2018



Perspective Correct Interpolation

m  Basicrecipe:
- To interpolate some attribute ...
- Compute depth z at each vertex

- Evaluate Z := 1/z and P := ¢p/z at each vertex
- Interpolate Z and P using standard (2D) barycentric coords

- At each fragment, divide interpolated P by interpolated Z
to get final value

For a derivation, see Low, “Perspective-Correct Interpolation” ,
(MU 15-462/662, Spring 2018



Texture Mapping
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Many uses of texture mapping

Define variation in surface reflectance

/) s ’ b
I

N\’

Pattern on ball Wood grain on floor

(MU 15-462/662, Spring 2018



Describe surface material properties

Multiple layers of texture maps for color, logos,
scratches, etc.

RYSI

(MU 15-462/662, Spring 2018



Normal & Displacement Mapping

normal mapping displacement mapping

Use texture value to perturb surface normal to dice up surface geometry into tiny triangles &
“fake” appearance of a bumpy surface offset positions according to texture values
(note smooth silhouette/shadow reveals that (note bumpy silhouette and shadow boundary)

surface geometry is not actually bumpy!) MU 15-462/662. Sorina 2018
- s 2pring



Represent precomputed lighting and shadows

Qniginal mode With ambient ocClusion EXracied amdneryl OCCiusion map

Grace Cathedral environment map

Environment map used in rendering CMU 15-462/662, Spring 2018



Texture coordinates

“Texture coordinates” define a mapping from surface coordinates (points on triangle)

to points in texture domain.

(0.0, 1.0) (0.5, 1.0) (1.0, 1.0)
¢

(0.0, 0.5) (1.0, 0.5)

myTex(u, V) isa function
(0.0, 0.0) (0.5, 0.0) ° (1.0, 0.0) defined on the [0,1]2 domain
(represented by 2048x2048 image)

Eight triangles (one face of cube) with
surface parameterization provided as per-

: Location of highligh riangl
vertex texture coordinates. ocation of highlighted triangle

in texture space shown in red.

(We'll assume surface-to-texture space mapping is provided as per vertex values)

Final rendered result (entire cube
shown).

Location of triangle after projection
onto screen shown in red.

(MU 15-462/662, Spring 2018



Visualization of texture coordinates

Texture coordinates linearly interpolated over triangle

(0.0,1.0) (green)

(0.0, 0.0) (1.0,0.0) (red)

(MU 15-462/662, Spring 2018



More complex mapping

Visualization of texture coordinates vV Triangle vertices in texture space

e e T T et R S e 1, Wi
" e e R T P ————

-
.

Each vertex has a coordinate (u,v) in texture space.
(Actually coming up with these coordinates is another story!)

(MU 15-462/662, Spring 2018



Texture mapping adds detail

Rendered result V Triangle vertices in texture space

(MU 15-462/662, Spring 2018



Texture mapping adds detail

rendering without texture rendering with texture texture image

Z200Mm

Each triangle “copies” a piece of the image back to the surface.
(MU 15-462/662, Spring 2018



Another example: Sponza

Notice texture coordinates repeat over surface.

(MU 15-462/662, Spring 2018



Textured Sponza




Example textures used in Sponza

(MU 15-462/662, Spring 2018



Texture Sampling 101

m Basicalgorithm for mapping texture to surface:
- Interpolate U and V coordinates across triangle
- For each fragment
- Sample (evaluate) texture at (U,V)
- Set color of fragment to sampled texture value

...sadly not this easy in general!

(MU 15-462/662, Spring 2018



Texture space samples

Sample positions in XY screen space Sample positions in texture space

V
Sample positions are uniformly distributed in screen space Texture sample positions in texture space (texture
(rasterizer samples triangle’s appearance at these locations) function is sampled at these locations)

(MU 15-462/662, Spring 2018



Recall: aliasing

Undersampling a high-frequency signal can result in aliasing

| |
“““
a®

....... 1D example

by
N,
Ny
Ny
I~

2D examples:
Moire patterns, jaggies

(MU 15-462/662, Spring 2018



Aliasing due to undersampling texture

No pre-filtering of texture data Rendering using pre-filtered texture data
(resulting image exhibits aliasing)

V

y

(MU 15-462/662, Spring 2018



Aliasing due to undersampling (zoom)

No pre-filtering of texture data Rendering using pre-filtered texture data

(resulting image exhibits aliasing)

V

v

(MU 15-462/662, Spring 2018



Filtering textures

Image ~ Texture

Minification | <-\~

'’

Magnification |

B Minification:

- Area of screen pixel maps to large region of texture (filtering required -- averaging)
- One texel corresponds to far less than a pixel on screen
- Example: when scene object is very far away

m Magnification:

- Area of screen pixel maps to tiny region of texture (interpolation required)
- One texel maps to many screen pixels

- Example: when camera is very close to scene object (need higher resolution texture map)
Figure credit: Akeley and Hanrahan CMU 15-462/662, Spring 2018



Filtering textures

_Uu,

Actual texture: 700x700 image
(only a crop is shown) Texture minification

Vv
U

Actual texture: 64x64 image

Texture magnification

(MU 15-462/662, Spring 2018



Mipmap (L. Williams 83)

Level 0 =128x128 Level 1 = 64x64 Level 2 =32x32 Level 3 =16x16

Level 4 = 8x8 Level 5 =4x4 Level 6 = 2x2 Level 7 = 1x1

Idea: prefilter texture data to remove high frequencies
Texels at higher levels store integral of the texture function over a region of texture space (downsampled images)

Texels at higher levels represent low-pass filtered version of original texture signal
(MU 15-462/662, Spring 2018



-
-

G

Williams’ original proposed
mip-map layout

What is the storage overhead of a mipmap?

Slide credit: Akeley and Hanrahan

Mipmap (L. Williams 83)

d

'

“Mip hierarchy”
level =d

(MU 15-462/662, Spring 2018



Computing Mip Map Level

Compute differences between texture coordinate values of neighboring screen samples

Screen space Texture sbace

(MU 15-462/662, Spring 2018



Computing Mip Map Level

Compute differences between texture coordinate values of neighboring fragments

du/dx = u19-Uoo
du/dy = uo1-uoo

dv/dx = V10-Voo
dv/dy = vo1-voo

L = max

(

\

EEERERC)
— | +|—| .. | —]| +|—
dx dx dy dy /
mip-map d = log: L

(MU 15-462/662, Spring 2018



Sponza (bilinear resampling at level 0)

(MU 15-462/662, Spring 2018



Sponza (bilinear resampling at level 2)

(MU 15-462/662, Spring 2018



Sponza (bilinear resampling at level 4)

(MU 15-462/662, Spring 2018



Visualization of mip-map level
(bilinear filtering only: d clamped to nearest level)

(MU 15-462/662, Spring 2018



lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

:IIIIIIIIIIIIIII:IIIIIIIIIIIIIII‘IIIIIIIIIIIIIII;IIIIIIIIIIIIIII;

-IIIIIIIIIIIIIII;IIIIIIIIIIIIIII'IIIIIIIIIIIIIII;IIIIIIIIIIIIIII;

}IIIIIIIIIIIIIII!IIIIIIIIIIIIIII'IIIIIIIIIIIIIII lllllllllllllllll

------------------------------------------------------------------

L

lerp(ta Vi, V?_) =V T+ t(VZ — Vl) ....... ....... il .......

lllllll
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Bilinear resamp"ng; :_,,.,., ....... jrenaen . ....... .. .......
four texel reads 00 QO :0:0:0:0:

3lerps (3 mul + 6 add) .....‘..
Trilinear resampling: ....... ....... ....... .......
eight texel reads ; 9:9: 9 : 9:9: 9
7 lerps (7 mul + 14 add)

------------------------------------------------------------------

mip-map texels: level d

Figure credit: Akeley and Hanrahan CMU 15-462/662, Spring 2018



Visualization of mip-map level
(trilinear filtering: visualization of continuous d)

(MU 15-462/662, Spring 2018



Pixel area may not map to isotropic region in texture

Proper filtering requires anisotropic filter footprint

v=.75

V
/ -
u=.25 u=.5 u=.75
_> .
u Texture space: viewed from

camera with perspective

Overblurring in
u direction

(Modern solution:
Combine multiple
mip map samples)

Trilinear (Isotropic)  Anisotropic Filtering
Filtering CMU 15-462/662, Spring 2018



Summary: texture filtering using the mip map

m Small storage overhead (33%)
- Mipmap is 4/3 the size of original texture image

B For each isotropically-filtered sampling operation
- Constant filtering cost (independent of mip map level)

- Constant number of texels accessed (independent of mip map level)

m Combat aliasing with prefiltering, rather than supersampling
- Recall: we used supersampling to address aliasing problem when sampling coverage

m Bilinear/trilinear filtering is isotropic and thus will “overblur” to

avoid aliasing

- Anisotropic texture filtering provides higher image quality at higher compute and
memory bandwidth cost (in practice: multiple mip map samples)

(MU 15-462/662, Spring 2018



“Real” Texture Sampling

. Compute u and v from screen sample x,y (via evaluation of attribute equations)

. Compute du/dx, du/dy, dv/dx, dv/dy differentials from screen-adjacent samples.

. Compute mip map level d

Convert normalized [0,1] texture coordinate (u,v) to texture coordinates U,V in [W,H]
Compute required texels in window of filter

Load required texels (need eight texels for trilinear)

N o ov AW o

Perform tri-linear interpolation according to (U, V, d)

Takeaway: a texture sampling operation is not just an image pixel
lookup! It involves a significant amount of math.

For this reason, modern GPUs have dedicated fixed-function hardware
support for performing texture sampling operations.

(MU 15-462/662, Spring 2018



Texturing summary

Texture coordinates: define mapping between points on triangle’s surface (object
coordinate space) to points in texture coordinate space

Texture mapping is a sampling operation and is prone to aliasing
- Solution: prefilter texture map to eliminate high frequencies in texture signal

- Mip-map: precompute and store multiple multiple resampled versions of the
texture image (each with different amounts of low-pass filtering)

- During rendering: dynamically select how much low-pass filtering is required
based on distance between neighboring screen samples in texture space

- Goal is to retain as much high-frequency content (detail) in the texture as
possible, while avoiding aliasing

(MU 15-462/662, Spring 2018



