3D Rotations and Complex Representations

Computer Graphics
CMU 15-462/15-662, Spring 2018

Rotations in 3D

- What is a rotation, intuitively?
- How do you know a rotation when you see it?
- length/distance is preserved (no stretching/shearing)
- orientation is preserved (e.g., text remains readable)

3D Rotations—Degrees of Freedom

- How many numbers do we need to specify a rotation in 3D?
- For instance, we could use rotations around X, Y, Z. But do we need all three?

■ Well, to rotate Pittsburgh to another city (say, São Paulo), we have to specify two numbers: latitude \& longitude:

- Do we really need both latitude and longitude? Or will one suffice?
- Is that the only rotation from Pittsburgh to São Paulo? (How many more numbers do we need?)

NO: We can keep São Paulo fixed as we rotate the globe.

Hence, we MUST have three degrees of freedom.

Commutativity of Rotations-2D

- In 2D, order of rotations doesn't matter:

rotate by 40°

rotate by 20°

rotate by 20°

$\xrightarrow{\text { rotate by } 40^{\circ}}$

Same result! ("2D rotations commute")

Commutativity of Rotations-3D

■ What about in 3D?
■ IN-CLASS ACTIVITY:

- Rotate 90° around Y, then 90° around Z, then 90° around X
- Rotate 90° around Z, then 90° around Y, then 90° around X
- (Was there any difference?)

CONCLUSION: bad things can happen if we're not careful about the order in which we apply rotations!

Representing Rotations-2D

■ First things first: how do we get a rotation matrix in 2D? (Don't just regurgitate the formula!)

- Suppose I have a function $S(\theta)$ that for a given angle θ gives me the point (x, y) around a circle (CCW).
- Right now, I do not care how this function is expressed!*

■ What's e1 rotated by θ ? $\tilde{\mathbf{e}}_{1}=S(\theta)$

- What's $\mathbf{e 2}$ rotated by $\boldsymbol{\theta}$? $\tilde{\mathbf{e}}_{2}=S(\theta+\pi / 2)$

■ How about $\mathbf{u}:=a \mathbf{e}_{1}+b \mathbf{e}_{2}$?

$$
\mathbf{u}:=a S(\theta)+b S(\theta+\pi / 2)
$$

What then must the matrix look like?
$\left[\begin{array}{ll}S(\theta) & S(\theta+\pi / 2)\end{array}\right]=\left[\begin{array}{ll}\cos (\theta) & \cos (\theta+\pi / 2) \\ \sin (\theta) & \sin (\theta+\pi / 2)\end{array}\right]=\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$
*..e., I don't yet care about sines and cosines and so forth.

Representing Rotations in 3D—Euler Angles

- How do we express rotations in 3D?

■ One idea: we know how to do 2D rotations.

- Why not simply apply rotations around the three axes? (X, Y, \mathbf{Z})

■ Scheme is called Euler angles
■ PROBLEM: "Gimbal Lock" [DEMO]

Rotation from Axis/Angle

- Alternatively, there is a general expression for a matrix that performs a rotation around a given axis u by a given angle θ :

$$
\left[\begin{array}{ccc}
\cos \theta+u_{x}^{2}(1-\cos \theta) & u_{x} u_{y}(1-\cos \theta)-u_{z} \sin \theta & u_{x} u_{z}(1-\cos \theta)+u_{y} \sin \theta \\
u_{y} u_{x}(1-\cos \theta)+u_{z} \sin \theta & \cos \theta+u_{y}^{2}(1-\cos \theta) & u_{y} u_{z}(1-\cos \theta)-u_{x} \sin \theta \\
u_{z} u_{x}(1-\cos \theta)-u_{y} \sin \theta & u_{z} u_{y}(1-\cos \theta)+u_{x} \sin \theta & \cos \theta+u_{z}^{2}(1-\cos \theta)
\end{array}\right]
$$

Just memorize this matrix! :-)

Complex Analysis—Motivation

- Natural way to encode geometric transformations in 2D
- Simplifies code / notation / debugging / thinking
- Moderate reduction in computational cost/bandwidth/ storage
- Fluency with complex analysis can lead into deeper/novel solutions to problems...

COMPLEX

DON’T: Think of these numbers as "complex."

D0: Imagine we're simply defining additional operations (like dot and cross).

Imaginary Unit

More importantly: obscures geometric meaning.

Imaginary Unit—Geometric Description

Imaginary unit is just a quarter-turn in the counter-clockwise direction.

Complex Numbers

- Complex numbers are then just 2 -vectors
- Instead of $\mathrm{e}_{1}, \mathrm{e}_{1}$, use " 1 " and " l " to denote the two bases
- Otherwise, behaves exactly like a real 2-dimensional space

- ...except that we're also going to get a very useful new notion of the product between two vectors.

Complex Arithmetic

- Same operations as before, plus one more:

- Complex multiplication:
- angles add
- magnitudes multiply
"POLAR FORM"*:

$$
\begin{aligned}
& z_{1}:=\left(r_{1}, \theta_{1}\right) \quad \begin{array}{l}
\text { have to be more } \\
\text { careful here! }
\end{array} \\
& z_{2}:=\left(r_{2}, \theta_{2}\right) \\
& z_{1} z_{2}=\left(r_{1} r_{2}, \theta_{1}+\theta_{2}\right)
\end{aligned}
$$

Complex Product—Rectangular Form

■ Complex product in "rectangular" coordinates (1, 1):

$$
\begin{aligned}
& z_{1}=(a+b \imath) \\
& z_{2}=(c+d \imath) \\
& z_{1} z_{2}=a c+a d \imath+b c \imath+b d\left(^{2}{ }^{2} \stackrel{\text { san }}{=}\right. \\
& (a c-b d)+(a d+b c) \imath \text {. } \\
& \operatorname{Re}\left(z_{1} z_{2}\right) \\
& \text { "imaginary part" } \\
& \operatorname{Im}\left(z_{1} z_{2}\right)
\end{aligned}
$$

■ We used a lot of "rules" here. Can you justify them geometrically?

- Does this product agree with our geometric description (last slide)?

Complex Product—Polar Form

- Perhaps most beautiful identity in math:

$$
e^{\imath \pi}+1=0
$$

- Specialization of Euler's formula:

$$
e^{\imath \theta}=\cos (\theta)+\imath \sin (\theta)
$$

Leonhard Euler (1707-1783)

■ Can use to "implement" complex product:

$$
\begin{aligned}
& z_{1}=a e^{\imath \theta}, \quad z_{2}=b e^{\imath \phi} \\
& z_{1} z_{2}=a b e^{\imath(\theta+\phi)} \\
& \quad \text { (as with real exponentiation, exponents add) }
\end{aligned}
$$

Q: How does this operation differ from our earlier, "fake" polar multiplication?

2D Rotations: Matrices vs. Complex

- Suppose we want to rotate a vector u by an angle θ, then by an angle $\boldsymbol{\phi}$.

REAL / RECTANGULAR

$$
\begin{aligned}
\mathbf{u}=(x, y) & \mathbf{A}
\end{aligned}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] .
$$

$$
\begin{aligned}
\mathbf{A} \mathbf{u} & =\left[\begin{array}{l}
x \cos \theta-y \sin \theta \\
x \sin \theta+y \cos \theta
\end{array}\right] \\
\mathbf{B A u} & =\left[\begin{array}{l}
(x \cos \theta-y \sin \theta) \cos \phi-(x \sin \theta+y \cos \theta) \sin \phi \\
(x \cos \theta-y \sin \theta) \sin \phi+(x \sin \theta+y \cos \theta) \cos \phi
\end{array}\right]
\end{aligned}
$$

$$
=\cdots \text { some trigonometry } \cdots=
$$

$$
\mathbf{B A} \mathbf{u}=\left[\begin{array}{c}
x \cos (\theta+\phi)-y \sin (\theta+\phi) \\
x \sin (\theta+\phi)+y \cos (\theta+\phi)
\end{array}\right]
$$

(...and simplification is not always this obvious.)

COMPLEX / POLAR

$$
\begin{aligned}
& u=r e^{\imath \alpha} \\
& a=e^{\imath \theta} \\
& b=e^{\imath \phi}
\end{aligned}
$$

$$
a b u=r e^{\imath(\alpha+\theta+\phi)}
$$

Pervasive theme in graphics:

Sure, there are often many "equivalent" representations.

...But why not choose the one that makes life easiest*?

Quaternions

- TLDR: Kind of like complex numbers but for 3D rotations
- Weird situation: can't do 3D rotations w/ only 3 components!

William Rowan Hamilton (1805-1865)

Quaternions in Coordinates

- Hamilton's insight: in order to do 3D rotations in a way that mimics complex numbers for 2D, actually need FOUR coords.
- One real, three imaginary:

$$
\rightarrow \mathbb{H}:=\operatorname{span}(\{1, \imath, \jmath, k\})
$$

" H " is for Hamilton!

$$
q=a+b \imath+c \jmath+d k \in \mathbb{H}
$$

- Quaternion product determined by

$$
\imath^{2}=\jmath^{2}=k^{2}=\imath \jmath k=-1
$$

together w/ "natural" rules (distributivity, associativity, etc.)

■ WARNING: product no longer commutes!

$$
\text { For } q, p \in \mathbb{H}, \quad q p \neq p q
$$

(Why might it make sense that it doesn't commute?)

Quaternion Product in Components

- Given two quaternions

$$
\begin{aligned}
& q=a_{1}+b_{1} \imath+c_{1} \jmath+d_{1} k \\
& p=a_{2}+b_{2} \imath+c_{2} \jmath+d_{2} k
\end{aligned}
$$

- Can express their product as

$$
\begin{aligned}
& q p=a_{1} a_{2}-b_{1} b_{2}-c_{1} c_{2}-d_{1} d_{2} \\
& +\left(a_{1} b_{2}+b_{1} a_{2}+c_{1} d_{2}-d_{1} c_{2}\right) \downarrow \\
& +\left(a_{1} c_{2}-b_{1} d_{2}+c_{1} a_{2}+d_{1} b_{2}\right) \jmath \\
& +\left(a_{1} d_{2}+b_{1} c_{2}-c_{1} b_{2}+d_{1} a_{2}\right) k
\end{aligned}
$$

...fortunately there is a (much) nicer expression.

Quaternions-Scalar + Vector Form

- If we have four components, how do we talk about pts in 3D?
- Natural idea: we have three imaginary parts-why not use these to encode 3D vectors?

$$
(x, y, z) \mapsto 0+x \imath+y \jmath+z k
$$

- Alternatively, can think of a quaternion as a pair

$$
\begin{gathered}
\left(\begin{array}{c}
\text { scalar, } \text { vector }) \\
\Pi \\
\mathbb{R}
\end{array} \mathbb{R}^{3}\right.
\end{gathered}
$$

- Quaternion product then has simple(r) form:

$$
(a, \mathbf{u})(b, \mathbf{v})=(a b-\mathbf{u} \cdot \mathbf{v}, a \mathbf{v}+b \mathbf{u}+\mathbf{u} \times \mathbf{v})
$$

3D Transformations via Quaternions

- Main use for quaternions in graphics? Rotations.
- Consider vector x ("pure imaginary") and unit quaternion q:

$$
\begin{aligned}
& x \in \operatorname{Im}(\mathbb{H}) \\
& q \in \mathbb{H}, \quad|q|^{2}=1
\end{aligned}
$$

Rotation from Axis/Angle, Revisited

- Given axis u, angle θ, quaternion q representing rotation is

$$
q=\cos (\theta / 2)+\sin (\theta / 2) u
$$

■ Slightly easier to remember (and manipulate) than matrix!
$\left[\begin{array}{c}\cos \theta+u_{x}^{2}(1-\cos \theta) \\ u_{y} u_{x}(1-\cos \theta)+u_{z} \sin \theta \\ u_{z} u_{x}(1-\cos \theta)-u_{y} \sin \theta\end{array}\right.$

$$
\begin{gathered}
u_{x} u_{y}(1-\cos \theta)-u_{z} \sin \theta \\
\cos \theta+u_{y}^{2}(1-\cos \theta) \\
u_{z} u_{y}(1-\cos \theta)+u_{x} \sin \theta
\end{gathered}
$$

$$
u_{x} u_{z}(1-\cos \theta)+u_{y} \sin \theta 7
$$

$$
\cos \theta+u_{y}^{2}(1-\cos \theta) \quad u_{y} u_{z}(1-\cos \theta)-u_{x} \sin \theta
$$

$$
\cos \theta+u_{z}^{2}(1-\cos \theta)
$$

More Quaternions and Rotation

- Don't have time to cover everything, but...

■ Quaternions provide some very nice utility/perspective when it comes to rotations:

- E.g., spherical linear interpolation ("slerp")
- Easy way to smoothly transition between orientations
- No gimbal lock!

Where else are (hyper-)complex numbers useful in computer graphics?

Generating Coordinates for Texture Maps

Complex \#s natural language for angle-preserving ("conformal") maps

Preserving angles in texture well-tuned to human perception...

Useless-But-Beautiful Example: Fractals

■ Defined in terms of iteration on (hyper)complex numbers:

(Will see exactly how this works later in class.)

