3D Rotations and Complex Representations

Computer Graphics CMU 15-462/15-662, Spring 2018

Rotations in 3D

- What is a rotation, intuitively?
- How do you know a rotation when you see it?
 - length/distance is preserved (no stretching/shearing)
 - orientation is preserved (e.g., text remains readable)

ee it? tching/shearing) mains readable)

3D Rotations—Degrees of Freedom

- How many numbers do we need to specify a rotation in 3D?
- For instance, we could use rotations around X, Y, Z. But do we need all three?
- Well, to rotate Pittsburgh to another city (say, São Paulo), we have to specify two numbers: latitude & longitude:
- Do we really need both latitude and longitude? Or will one suffice?
- Is that the only rotation from Pittsburgh to São Paulo? (How many more numbers do we need?)

NO: We can keep São Paulo fixed as we rotate the globe.

Hence, we MUST have three degrees of freedom.

São Paulo •

Commutativity of Rotations—2D

In 2D, order of rotations doesn't matter:

Same result! ("2D rotations commute")

Commutativity of Rotations—3D

- What about in 3D?
- **IN-CLASS ACTIVITY:**
- Rotate 90° around Y, then 90° around Z, then 90° around X
- Rotate 90° around Z, then 90° around Y, then 90° around X
- (Was there any difference?)

CONCLUSION: bad things can happen if we're not careful about the order in which we apply rotations!

Representing Rotations—2D

- First things first: how do we get a rotation matrix in 2D? (Don't just regurgitate the formula!)
- Suppose I have a function $S(\theta)$ that for a given angle θ gives me the point (x,y) around a circle (CCW).
 - **Right now, I do not care how this function is expressed!***
- What's e1 rotated by θ ? $\tilde{\mathbf{e}}_1 = S(\theta)$
- What's e2 rotated by θ ? $\tilde{\mathbf{e}}_2 = S(\theta + \pi/2)$
- How about $u := ae_1 + be_2$?

 $\mathbf{u} := aS(\theta) + bS(\theta + \pi/2)$

What then must the matrix look like?

 $\begin{bmatrix} S(\theta) & S(\theta + \pi/2) \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \cos(\theta + \pi/2) \\ \sin(\theta) & \sin(\theta + \pi/2) \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$

*I.e., I don't yet care about sines and cosines and so forth.

Representing Rotations in 3D—Euler Angles

- How do we express rotations in 3D?
- One idea: we know how to do 2D rotations.
- Why not simply apply rotations around the three axes? (X,Y,Z)
- **Scheme is called Euler angles**
- **PROBLEM: "Gimbal Lock" [DEMO]**

Rotation from Axis/Angle

Alternatively, there is a general expression for a matrix that performs a rotation around a given axis u by a given angle θ :

 $\cos\theta + u_x^2 \left(1 - \cos\theta\right)$ $u_y u_x \left(1 - \cos \theta\right) + u_z \sin \theta$ $\left[u_z u_x \left(1 - \cos\theta\right) - u_y \sin\theta\right]$

 $u_{x}u_{y}\left(1-\cos\theta\right)-u_{z}\sin\theta$ $u_z u_y \left(1 - \cos \theta\right) + u_x \sin \theta$

Just memorize this matrix! :-)

...we'll see a different way, later on.

Complex Analysis—Motivation

- Natural way to encode geometric transformations in 2D
- Simplifies code / notation / debugging / thinking
- Moderate reduction in computational cost/bandwidth/ storage
- Fluency with complex analysis can lead into deeper/novel solutions to problems... **COMPLEX**

Truly: no good reason to use 2D vectors instead of complex numbers...

DON'T: Think of these numbers as "complex."

DO: Imagine we're simply defining additional operations (like dot and cross).

Imaginary Unit

More importantly: obscures geometric meaning.

Imaginary Unit—Geometric Description

Imaginary unit is just a quarter-turn in the counter-clockwise direction.

Complex Numbers

- **Complex numbers are then just 2-vectors**
- Instead of e_1, e_1 , use "1" and "i" to denote the two bases
- Otherwise, behaves exactly like a real 2-dimensional space

...except that we're also going to get a very useful new notion of the product between two vectors.

COMPLEX

Complex Arithmetic

Same operations as before, plus one more:

Complex multiplication: "POLAR FORM"*: angles add $z_2 := (r_2, \theta_2)$ magnitudes multiply

 $z_1 z_2 = (r_1 r_2, \theta_1 + \theta_2)$

*Not quite how it really works, but basic idea is right.

Complex Product—Rectangular Form Complex product in "rectangular" coordinates (1, ι): $z_1 = (a + b\iota)$ $z_2 = (c + d\iota)$ two quarter turns $z_1 z_2 = ac + adi + bci + bdi^2 =$ (ac - bd) + (ad + bc)i. "real part" "imaginary part" $\operatorname{Re}(z_1 z_2)$ $\operatorname{Im}(z_1 z_2)$

- We used a lot of "rules" here. Can you justify them geometrically?
- **Does this product agree with our geometric description (last slide)?**

Complex Product—Polar Form Perhaps most beautiful identity in math: $e^{i\pi} + 1 = 0$ **Specialization of Euler's formula:**

$$e^{\imath\theta} = \cos(\theta) + \imath\sin(\theta)$$

Can use to "implement" complex product:

$$z_1 = ae^{i\theta}, \quad z_2 = be^{i\phi}$$

 $z_1 z_2 = abe^{i(\theta + \phi)}$

(as with real exponentiation, exponents add)

Q: How does this operation differ from our earlier, "fake" polar multiplication?

Leonhard Euler (1707 - 1783)

2D Rotations: Matrices vs. Complex Suppose we want to rotate a vector u by an angle θ , then by

an angle ϕ .

REAL / RECTANGULAR

 $\mathbf{u} = (x, y) \qquad \mathbf{A} = \begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix}$ $\mathbf{B} = \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix}$ $\mathbf{A}\mathbf{u} = \begin{vmatrix} x\cos\theta - y\sin\theta \\ x\sin\theta + y\cos\theta \end{vmatrix}$ $\mathbf{BAu} = \begin{bmatrix} (x\cos\theta - y\sin\theta)\cos\phi - (x\sin\theta + y\cos\theta)\sin\phi \\ (x\cos\theta - y\sin\theta)\sin\phi + (x\sin\theta + y\cos\theta)\cos\phi \end{bmatrix}$ $= \cdots$ some trigonometry $\cdots =$ $\mathbf{BAu} = \left[\begin{array}{c} x\cos(\theta + \phi) - y\sin(\theta + \phi) \\ x\sin(\theta + \phi) + y\cos(\theta + \phi) \end{array} \right].$ (...and simplification is not always this obvious.)

COMPLEX / POLAR

 $u = re^{i\alpha}$ $a = e^{i\theta}$ $b = e^{i\phi}$ $abu = re^{\iota(\alpha+\theta+\phi)}$

Pervasive theme in graphics:

Sure, there are often many "equivalent" representations.

...But why not choose the one that makes life easiest*?

*Or most efficient, or most accurate...

Quaternions

TLDR: Kind of like complex numbers but for 3D rotations Weird situation: can't do 3D rotations w/ only 3 components!

(Not Hamilton)

William Rowan Hamilton (1805-1865)

Quaternions in Coordinates

- Hamilton's insight: in order to do 3D rotations in a way that mimics complex numbers for 2D, actually need FOUR coords.
- **One real, three imaginary:**

"H" is for Hamilton!
$$q = a + bi + cj + cj$$

Quaternion product determined by

 $i^2 = j^2 = k^2 = ijk = -1$

together w/"natural" rules (distributivity, associativity, etc.)

WARNING: product no longer commutes! For $q, p \in \mathbb{H}$, $qp \neq pq$

(Why might it make sense that it doesn't commute?)

 $k\})$ $dk \in \mathbb{H}$

Quaternion Product in Components

Given two quaternions

$$q = a_1 + b_1 i + c_1 j + d_1$$

$$p = a_2 + b_2 i + c_2 j + d_2$$

Can express their product as

$$qp = a_1a_2 - b_1b_2 - c_1c_2 + (a_1b_2 + b_1a_2 + c_1d_2 - (a_1c_2 - b_1d_2 + c_1a_2 + (a_1d_2 + b_1c_2 - c_1b_2 + (a_1d_2 + b_1c_2 - c_1b_2 + b_1c_2 - c_1b_2))$$

k k

 $-d_1d_2$ $-d_1c_2)i$ $+d_1b_2)j$ $-d_1a_2)k$

... fortunately there is a (much) nicer expression.

Quaternions—Scalar + Vector Form

- If we have four components, how do we talk about pts in 3D?
- Natural idea: we have three imaginary parts—why not use these to encode 3D vectors?

 $(x, y, z) \mapsto 0 + xi + yj + zk$

- Alternatively, can think of a quaternion as a pair (scalar, vector) $\in \mathbb{H}$ \square \mathbb{R} \mathbb{R}^3
 - **Quaternion product then has simple(r) form:** $(a, \mathbf{u})(b, \mathbf{v}) = (ab - \mathbf{u} \cdot \mathbf{v}, a\mathbf{v} + b\mathbf{u} + \mathbf{u} \times \mathbf{v})$

3D Transformations via Quaternions

- Main use for quaternions in graphics? Rotations.
- Consider vector x ("pure imaginary") and unit quaternion q:

$$x \in \operatorname{Im}(\mathbb{H})$$

 $q \in \mathbb{H}, |q|^2 = 1$

otations. d unit quaternion q

always expresses some rotation

Rotation from Axis/Angle, Revisited

Given axis u, angle θ , quaternion q representing rotation is

$q = \cos(\theta/2) + \sin(\theta/2)u$

Slightly easier to remember (and manipulate) than matrix!

 $\begin{bmatrix} \cos\theta + u_x^2 \left(1 - \cos\theta\right) & u_x u_y \left(1 - \cos\theta\right) - u_z \sin\theta & u_x u_z \left(1 - \cos\theta\right) + u_y \sin\theta \\ u_y u_x \left(1 - \cos\theta\right) + u_z \sin\theta & \cos\theta + u_y^2 \left(1 - \cos\theta\right) & u_y u_z \left(1 - \cos\theta\right) - u_x \sin\theta \\ u_z u_x \left(1 - \cos\theta\right) - u_y \sin\theta & u_z u_y \left(1 - \cos\theta\right) + u_x \sin\theta & \cos\theta + u_z^2 \left(1 - \cos\theta\right) \end{bmatrix}$

More Quaternions and Rotation

- Don't have time to cover everything, but...
- Quaternions provide some very nice utility/perspective when it comes to rotations:
 - E.g., spherical linear interpolation ("slerp")
 - Easy way to smoothly transition between orientations
 - No gimbal lock!

lerp") veen orientations

Where else are (hyper-)complex numbers useful in computer graphics?

Generating Coordinates for Texture Maps Complex #s natural language for angle-preserving ("conformal") maps

Preserving angles in texture well-tuned to human perception...

Useless-But-Beautiful Example: Fractals Defined in terms of iteration on (hyper)complex numbers:

(Will see exactly how this works later in class.)