3D Rotations and Complex Representations
Rotations in 3D

- What is a rotation, intuitively?
- How do you know a rotation when you see it?
 - length/distance is preserved (no stretching/shearing)
 - orientation is preserved (e.g., text remains readable)
3D Rotations—Degrees of Freedom

- How many numbers do we need to specify a rotation in 3D?
- For instance, we could use rotations around X, Y, Z. But do we need all three?

- Well, to rotate Pittsburgh to another city (say, São Paulo), we have to specify two numbers: latitude & longitude:

- Do we really need both latitude and longitude? Or will one suffice?

- Is that the only rotation from Pittsburgh to São Paulo? (How many more numbers do we need?)

NO: We can keep São Paulo fixed as we rotate the globe.

Hence, we MUST have three degrees of freedom.
Commutativity of Rotations—2D

- In 2D, order of rotations doesn’t matter:

 rotate by 40° rotate by 20°
 rotate by 20° rotate by 40°

Same result! (“2D rotations commute”)
Commutativity of Rotations—3D

- What about in 3D?
- IN-CLASS ACTIVITY:
 - Rotate 90° around Y, then 90° around Z, then 90° around X
 - Rotate 90° around Z, then 90° around Y, then 90° around X
 - (Was there any difference?)

CONCLUSION: bad things can happen if we’re not careful about the order in which we apply rotations!
Representing Rotations—2D

First things first: how do we get a rotation matrix in 2D? (Don’t just regurgitate the formula!)

Suppose I have a function $S(\theta)$ that for a given angle θ gives me the point (x,y) around a circle (CCW).

- Right now, I do not care how this function is expressed!*

What’s \mathbf{e}_1 rotated by θ? $\tilde{\mathbf{e}}_1 = S(\theta)$

What’s \mathbf{e}_2 rotated by θ? $\tilde{\mathbf{e}}_2 = S(\theta + \pi/2)$

How about $\mathbf{u} := a\mathbf{e}_1 + b\mathbf{e}_2$?

$$\mathbf{u} := aS(\theta) + bS(\theta + \pi/2)$$

What then must the matrix look like?

$$\begin{bmatrix} S(\theta) & S(\theta + \pi/2) \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \cos(\theta + \pi/2) \\ \sin(\theta) & \sin(\theta + \pi/2) \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

I.e., I don’t yet care about sines and cosines and so forth.
Representing Rotations in 3D—Euler Angles

- How do we express rotations in 3D?
- One idea: we know how to do 2D rotations.
- Why not simply apply rotations around the three axes? (X,Y,Z)
- Scheme is called Euler angles
- PROBLEM: “Gimbal Lock” [DEMO]
Rotation from Axis/Angle

Alternatively, there is a general expression for a matrix that performs a rotation around a given axis \(u \) by a given angle \(\theta \):

\[
\begin{bmatrix}
\cos \theta + u_x^2 (1 - \cos \theta) & u_x u_y (1 - \cos \theta) - u_z \sin \theta & u_x u_z (1 - \cos \theta) + u_y \sin \theta \\
u_y u_x (1 - \cos \theta) + u_z \sin \theta & \cos \theta + u_y^2 (1 - \cos \theta) & u_y u_z (1 - \cos \theta) - u_x \sin \theta \\
u_z u_x (1 - \cos \theta) - u_y \sin \theta & u_z u_y (1 - \cos \theta) + u_x \sin \theta & \cos \theta + u_z^2 (1 - \cos \theta)
\end{bmatrix}
\]

Just memorize this matrix! :-)

...we’ll see a different way, later on.
Complex Analysis—Motivation

- Natural way to encode geometric transformations in 2D
- Simplifies code / notation / debugging / thinking
- Moderate reduction in computational cost/bandwidth/storage
- Fluency with complex analysis can lead into deeper/novel solutions to problems...

Truly: no good reason to use 2D vectors instead of complex numbers...
DON’T: Think of these numbers as “complex.”

DO: Imagine we’re simply defining additional operations (like dot and cross).
Imaginary Unit

More importantly: obscures geometric meaning.
Imaginary unit is just a quarter-turn in the counter-clockwise direction.
Complex Numbers

- Complex numbers are then just 2-vectors
- Instead of e_1, e_1, use "1" and "i" to denote the two bases
- Otherwise, behaves exactly like a real 2-dimensional space

REAL

\[\mathbb{R}^2 \]

\[e_1 \]

\[e_2 \]

\[(a, b) \]

COMPLEX

\[\mathbb{C} \]

\[1 \]

\[i \]

\[a + bi \]

- ...except that we’re also going to get a very useful new notion of the product between two vectors.
Complex Arithmetic

- Same operations as before, plus one more:
 - Scalar multiplication
 - Vector addition
 - Complex multiplication

Complex multiplication:
- Angles add
- Magnitudes multiply

“POLAR FORM”*:
\[z_1 := (r_1, \theta_1) \]
\[z_2 := (r_2, \theta_2) \]
\[z_1z_2 = (r_1r_2, \theta_1 + \theta_2) \]

*Not quite how it really works, but basic idea is right.
Complex Product—Rectangular Form

- Complex product in “rectangular” coordinates \((1, i)\):

\[
z_1 = (a + bi) \\
z_2 = (c + di) \\
z_1z_2 = ac + adi + bci + bd i^2 = (ac - bd) + (ad + bc)i.
\]

- We used a lot of “rules” here. Can you justify them geometrically?

- Does this product agree with our geometric description (last slide)?
Complex Product—Polar Form

- Perhaps most beautiful identity in math:

\[e^{i\pi} + 1 = 0 \]

- Specialization of Euler’s formula:

\[e^{i\theta} = \cos(\theta) + i \sin(\theta) \]

- Can use to “implement” complex product:

\[z_1 = ae^{i\theta}, \quad z_2 = be^{i\phi} \]

\[z_1 z_2 = abe^{i(\theta+\phi)} \]

(as with real exponentiation, exponents add)

Q: How does this operation differ from our earlier, “fake” polar multiplication?
2D Rotations: Matrices vs. Complex

- Suppose we want to rotate a vector \(u \) by an angle \(\theta \), then by an angle \(\phi \).

<table>
<thead>
<tr>
<th>REAL / RECTANGULAR</th>
<th>COMPLEX / POLAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u = (x, y))</td>
<td>(u = re^{i\alpha})</td>
</tr>
<tr>
<td>(A = \begin{bmatrix} \cos \theta & -\sin \theta \ \sin \theta & \cos \theta \end{bmatrix})</td>
<td>(a = e^{i\theta})</td>
</tr>
<tr>
<td>(B = \begin{bmatrix} \cos \phi & -\sin \phi \ \sin \phi & \cos \phi \end{bmatrix})</td>
<td>(b = e^{i\phi})</td>
</tr>
</tbody>
</table>

\[
Au = \begin{bmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{bmatrix}
\]

\[
BAu = \begin{bmatrix} (x \cos \theta - y \sin \theta) \cos \phi - (x \sin \theta + y \cos \theta) \sin \phi \\ (x \cos \theta - y \sin \theta) \sin \phi + (x \sin \theta + y \cos \theta) \cos \phi \end{bmatrix}
= \cdots \text{some trigonometry} \cdots =
\]

\[
BAu = \begin{bmatrix} x \cos(\theta + \phi) - y \sin(\theta + \phi) \\ x \sin(\theta + \phi) + y \cos(\theta + \phi) \end{bmatrix}.
\]

\(abu = re^{i(\alpha+\theta+\phi)} \).

(...and simplification is not always this obvious.)
Pervasive theme in graphics:

Sure, there are often many “equivalent” representations.

…But why not choose the one that makes life easiest*?

*Or most efficient, or most accurate…
Quaternions

- **TLDR:** Kind of like complex numbers but for 3D rotations
- **Weird situation:** can’t do 3D rotations w/ only 3 components!

William Rowan Hamilton (1805-1865)

(Not Hamilton)
Quaternions in Coordinates

- Hamilton’s insight: in order to do 3D rotations in a way that mimics complex numbers for 2D, actually need FOUR coords.
- One real, three imaginary:

 \[\mathbb{H} := \text{span}(\{1, i, j, k\}) \]
 \[q = a + bi + cj + dk \in \mathbb{H} \]

“H” is for Hamilton!

- Quaternion product determined by

 \[i^2 = j^2 = k^2 = ijk = -1 \]

 together w/ “natural” rules (distributivity, associativity, etc.)

- **WARNING**: product no longer commutes!

 \[\text{For } q, p \in \mathbb{H}, \quad qp \neq pq \]

 (Why might it make sense that it doesn’t commute?)
Quaternion Product in Components

Given two quaternions

\[q = a_1 + b_1 i + c_1 j + d_1 k \]
\[p = a_2 + b_2 i + c_2 j + d_2 k \]

Can express their product as

\[qp = a_1 a_2 - b_1 b_2 - c_1 c_2 - d_1 d_2 + (a_1 b_2 + b_1 a_2 + c_1 d_2 - d_1 c_2)i + (a_1 c_2 - b_1 d_2 + c_1 a_2 + d_1 b_2)j + (a_1 d_2 + b_1 c_2 - c_1 b_2 + d_1 a_2)k \]

...fortunately there is a (much) nicer expression.
Quaternions—Scalar + Vector Form

- If we have four components, how do we talk about pts in 3D?
- Natural idea: we have three imaginary parts—why not use these to encode 3D vectors?

\[(x, y, z) \mapsto 0 + xi + yj + zk\]

- Alternatively, can think of a quaternion as a pair

\[
\begin{aligned}
(\text{scalar, vector}) & \in \mathbb{H} \\
\cap & \quad \cap \\
\mathbb{R} & \quad \mathbb{R}^3
\end{aligned}
\]

- Quaternion product then has simple(r) form:

\[
(a, u)(b, v) = (ab - u \cdot v, av + bu + u \times v)
\]
3D Transformations via Quaternions

- Main use for quaternions in graphics? Rotations.
- Consider vector x ("pure imaginary") and unit quaternion q:

$$x \in \text{Im}(\mathbb{H})$$
$$q \in \mathbb{H}, \quad |q|^2 = 1$$

always expresses some rotation
Rotation from Axis/Angle, Revisited

- Given axis u, angle θ, quaternion q representing rotation is

$$q = \cos(\theta/2) + \sin(\theta/2)u$$

- Slightly easier to remember (and manipulate) than matrix!

$$\begin{bmatrix}
\cos \theta + u_x^2 (1 - \cos \theta) & u_x u_y (1 - \cos \theta) - u_z \sin \theta & u_x u_z (1 - \cos \theta) + u_y \sin \theta \\
u_y u_x (1 - \cos \theta) + u_z \sin \theta & \cos \theta + u_y^2 (1 - \cos \theta) & u_y u_z (1 - \cos \theta) - u_x \sin \theta \\
u_z u_x (1 - \cos \theta) - u_y \sin \theta & u_z u_y (1 - \cos \theta) + u_x \sin \theta & \cos \theta + u_z^2 (1 - \cos \theta)
\end{bmatrix}$$
More Quaternions and Rotation

- Don’t have time to cover everything, but...
- Quaternions provide some very nice utility/perspective when it comes to rotations:
 - E.g., spherical linear interpolation (“slerp”)
 - Easy way to smoothly transition between orientations
 - No gimbal lock!
Where else are (hyper-)complex numbers useful in computer graphics?
Generating Coordinates for Texture Maps

Complex #s natural language for angle-preserving ("conformal") maps

Preserving angles in texture well-tuned to human perception...
Useless-But-Beautiful Example: Fractals

- Defined in terms of iteration on (hyper)complex numbers:

(Will see exactly how this works later in class.)