
Computer Graphics
CMU 15-462/15-662, Spring 2018

Lecture 4:

Drawing a Triangle
(and an Intro to Sampling)

 CMU 15-462/662, Spring 2018

HW 0.5 Due, HW 1 Out Today!
▪ GOAL: Implement a basic “rasterizer”

- (Topic of today’s lecture)
- We hand you a bunch of lines, triangles, etc.
- You draw them by lighting up pixels on the screen!

▪ Code skeleton available (later today) from course webpage

▪ DUE February 12

 CMU 15-462/662, Spring 2018

OpenGL tutorial session tomorrow
▪ You will use a very small amount of OpenGL in this project

- longstanding and standard rendering library
- get something up on the screen quickly
- have some understanding of how OpenGL “does things for

you”
- you will rewrite some of its functionality in the remainder

of the assignment

▪ Tutorial TOMORROW January 30
- 8-9pm
- location will be announced on Piazza

 CMU 15-462/662, Spring 2018

TODAY: Rasterization
▪ Two major techniques for “getting stuff on the screen”

▪ Rasterization
- for each primitive (e.g., triangle), which pixels light up?
- extremely fast (BILLIONS of triangles per second on GPU)
- harder (but not impossible) to achieve photorealism
- perfect match for 2D vector art, fonts, quick 3D preview, …

▪ Ray Tracing
- for each pixel, which primitives are seen?
- easier to get photorealism
- generally slower
- much more later in the semester!

 CMU 15-462/662, Spring 2018

Let’s draw some triangles on the screen

Question 1: what pixels does the triangle overlap?
(“coverage”)

Question 2: what triangle is closest to
the camera in each pixel? (“occlusion”)

Pixel

 CMU 15-462/662, Spring 2018

The visibility problem
▪ An informal definition: what scene geometry is visible

within each screen pixel?
- What scene geometry projects into a screen pixel? (coverage)

- Which geometry is visible from the camera at that pixel? (occlusion)

Pinhole
Camera

(0,0)
Virtual
Sensor

(x,z)

1

x/z
z-axis

x-axis

(Recall pinhole camera from first lecture)

 CMU 15-462/662, Spring 2018

The visibility problem

Pinhole
Camera

(0,0)
Virtual
Sensor

(x,z)

1

x/z

z-axis

x-axis

▪ An informal definition: what scene geometry is visible
within each screen pixel?
- What scene geometry projects into a screen pixel? (coverage)

- Which geometry is visible from the camera at that pixel? (occlusion)

 CMU 15-462/662, Spring 2018

The visibility problem (said differently)
▪ In terms of rays:

- What scene geometry is hit by a ray from a pixel through the pinhole? (coverage)

- What object is the first hit along that ray? (occlusion)

Pinhole
Camera

(0,0)
Virtual
Sensor

(x,z)

z-axis

x-axis

Hold onto this thought for later in the semester.

 CMU 15-462/662, Spring 2018

Input:
projected position of triangle vertices: P0, P1, P2

Computing triangle coverage

Output:
set of pixels “covered” by the triangle

What pixels does the triangle overlap?

 CMU 15-462/662, Spring 2018

What does it mean for a pixel to be covered by a triangle?
Question: which triangles “cover” this pixel?

Pixel

1

2

3

4

 CMU 15-462/662, Spring 2018

One option: compute fraction of pixel area covered by triangle, then
color pixel according to this fraction.

10%

35%

60%

85%

15%

Intuition: if triangle covers 10%
of pixel, then pixel should be
10% red.

 CMU 15-462/662, Spring 2018

Coverage gets tricky when considering occlusion

Two regions of triangle 1 contribute to pixel.
One of these regions is not even convex.

1
2 2

1

2

1

Interpenetration of triangles: even trickier

Pixel covered by triangle 1, other
half covered by triangle 2

 CMU 15-462/662, Spring 2018

Sampling 101

 CMU 15-462/662, Spring 2018

1D signal

x

f (x)

 CMU 15-462/662, Spring 2018

Sampling: taking measurements a signal

x1x0 x2 x3 x4

f(x0)
f(x1) f(x2) f(x3)

f(x4)

f (x)

Below: 5 measurements (“samples”) of f(x)

 CMU 15-462/662, Spring 2018

Audio file: stores samples of a 1D signal

time

Amplitude

Most consumer audio is sampled at 44.1 KHz

 CMU 15-462/662, Spring 2018

Reconstruction: given a set of samples, how might
we attempt to reconstruct the original signal f(x)?

x1x0 x2 x3 x4

f(x0) f(x1) f(x2)

f(x3)

f(x4)

 CMU 15-462/662, Spring 2018

Piecewise constant approximation

x1

f (x)

x0 x2 x3 x4

frecon (x)

frecon(x) approximates f (x)
frecon(x) = value of sample closest to x

 CMU 15-462/662, Spring 2018

Piecewise linear approximation

x1x0 x2 x3 x4

f (x)

frecon (x)

frecon(x) = linear interpolation between values of two closest samples to x

 CMU 15-462/662, Spring 2018

How can we represent the signal more accurately?

x1x0 x2 x3 x4 x5 x6 x7 x8

Sample signal more densely
(increase sampling rate)

 CMU 15-462/662, Spring 2018

Reconstruction from denser sampling

x1x0 x2 x3 x4 x5 x6 x7 x8

= reconstruction via linear interpolation
= reconstruction via nearest

 CMU 15-462/662, Spring 2018

Mathematical representation of sampling

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0where for all

Consider the Dirac delta:

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

�(x)

and

When applied to a function f, !(x) acts to pull out the value of f at x = 0:

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

 CMU 15-462/662, Spring 2018

Sampling via “Dirac Comb”

0 T 2T 3T 4T 5T 6T 7T 8T

Consider a sequence of impulses with period T:

0 T 2T 3T 4T 5T 6T 7T 8T

f (x)

0 T 2T 3T 4T 5T 6T 7T 8T

Discrete sampling of a continuous function f can
be expressed as product between f and Dirac comb:

(= Cyrillic “sha”)

 CMU 15-462/662, Spring 2018

Reconstruction via Convolution

output signal input signalfilter

It may be helpful to consider the effect of convolution with the simple unit-area “box” function:

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(y � x)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(y � x)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

f * g is a “smoothed” version of g

-0.5 0.5

1

 CMU 15-462/662, Spring 2018

Piecewise Constant Reconstruction: Box Filter

T

Sampled signal:
(with period T)

Reconstruction filter:
(unit area box of width T)

Reconstructed signal:

0 T 2T 3T 4T 5T 6T 7T 8T

(chooses nearest sample)

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

XT (x) = T
1X

i=�1
�(x� iT)

XT (x)f(x) = T
1X

i=�1
f(iT)�(x� iT)

g(x) = XT (x)f(x)

(h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT)�(x� y � iT)dy =

Z T/2

�T/2

1X

i=�1
f(iT)�(x� y � iT)

h(x) =

⇢
1/T |x| T/2
0 otherwise

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

XT (x) = T
1X

i=�1
�(x� iT)

XT (x)f(x) = T
1X

i=�1
f(iT)�(x� iT)

g(x) = XT (x)f(x)

frecon(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT)�(x� y � iT)dy =

Z T/2

�T/2

1X

i=�1
f(iT)�(x� y � iT)

h(x) =

⇢
1/T |x| T/2
0 otherwise

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

XT (x) = T
1X

i=�1
�(x� iT)

XT (x)f(x) = T
1X

i=�1
f(iT)�(x� iT)

g(x) = XT (x)f(x) = T
1X

i=�1
f(iT)�(x� iT)

frecon(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT)�(x� y � iT)dy =

Z T/2

�T/2

1X

i=�1
f(iT)�(x� y � iT)

h(x) =

⇢
1/T |x| T/2
0 otherwise

non-zero only for iT closest to x

 CMU 15-462/662, Spring 2018

Piecewise Linear Reconstruction: Triangle Filter
Sampled signal:
(with period T)

Reconstruction filter:
(unit area triangle of width T)

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

XT (x) = T
1X

i=�1
�(x� iT)

XT (x)f(x) = T
1X

i=�1
f(iT)�(x� iT)

g(x) = XT (x)f(x) = T
1X

i=�1
f(iT)�(x� iT)

frecon(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT)�(x� y � iT)dy =

Z T/2

�T/2

1X

i=�1
f(iT)�(x� y � iT)

h(x) =

⇢
1/T |x| T/2
0 otherwise T

0 T 2T 3T 4T 5T 6T 7T 8T

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

XT (x) = T
1X

i=�1
�(x� iT)

XT (x)f(x) = T
1X

i=�1
f(iT)�(x� iT)

g(x) = XT (x)f(x) = T
1X

i=�1
f(iT)�(x� iT)

frecon(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT)�(x� y � iT)dy =

Z T/2

�T/2

1X

i=�1
f(iT)�(x� y � iT)

h(x) =

⇢
1/T |x| T/2
0 otherwise

h(x) =

⇢
(1� |x|

T)/T |x| T
0 otherwise

-T T

1/T

 CMU 15-462/662, Spring 2018

Summary
▪ Sampling = measurement of a signal

- Represent signal as discrete set of samples
- Mathematically described by multiplication by impulse train

▪ Reconstruction = generating signal from a discrete set of samples

- Convolution of sampled signal with a reconstruction filter

- Intuition: value of reconstructed function at any point in domain is a weighted
combination of sampled values

- We discussed simple box, triangle filters, but much higher quality filters exist

Truncated gaussian filterTruncated sinc filter

[Image credit: Wikipedia]

Normalized sinc filter

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

sinc(x) =
sin(⇡x))

⇡x

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

XT (x) = T
1X

i=�1
�(x� iT)

XT (x)f(x) = T
1X

i=�1
f(iT)�(x� iT)

g(x) = XT (x)f(x) = T
1X

i=�1
f(iT)�(x� iT)

frecon(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT)�(x� y � iT)dy =

Z T/2

�T/2

1X

i=�1
f(iT)�(x� y � iT)

h(x) =

⇢
1/T |x| T/2
0 otherwise

h(x) =

⇢
(1� |x|

T)/T |x| T
0 otherwise

 CMU 15-462/662, Spring 2018

Now back to computing coverage

 CMU 15-462/662, Spring 2018

Think of coverage as a 2D signal

coverage(x,y)	=	
1	

0	

if	the	triangle	
contains	point	(x,y)	

otherwise

 CMU 15-462/662, Spring 2018

Estimate triangle-screen coverage by sampling the binary
function: coverage(x,y)

Pixel (x,y)

1

2

3

4

Example:
Here I chose the coverage
sample point to be at a
point corresponding to the
pixel center.

= triangle covers sample, fragment generated for pixel

= triangle does not cover sample, no fragment generated

(x+0.5, y+0.5)

 CMU 15-462/662, Spring 2018

Edge cases (literally)

Is this sample point covered by triangle 1? or triangle 2? or both?

1

2

 CMU 15-462/662, Spring 2018

Breaking Ties*
▪ When edge falls directly on a screen sample point, the sample is classified as within

triangle if the edge is a “top edge” or “left edge”
- Top edge: horizontal edge that is above all other edges
- Left edge: an edge that is not exactly horizontal and is on the left side of the

triangle. (triangle can have one or two left edges)

*These are the rules used in OpenGL/Direct3D, i.e., in modern GPUs. Source: Direct3D Programming Guide, Microsoft

 CMU 15-462/662, Spring 2018

Results of sampling triangle coverage

 CMU 15-462/662, Spring 2018

I have a sampled signal, now I want to display it
on a screen

 CMU 15-462/662, Spring 2018

Pixels on a screen

LCD display
pixel on my
laptop

Each image sample sent to the display is
converted into a little square of light of
the appropriate color:
(a pixel = picture element)

* Thinking of each LCD pixel as emitting a square of uniform
intensity light of a single color is a bit of an approximation to
how real displays work, but it will do for now.

 CMU 15-462/662, Spring 2018

So if we send the display this:

 CMU 15-462/662, Spring 2018

We see this when we look at the screen
(assuming a screen pixel emits a square of perfectly uniform intensity of light)

 CMU 15-462/662, Spring 2018

Recall: the real coverage signal was this

 CMU 15-462/662, Spring 2018

Aliasing

 CMU 15-462/662, Spring 2018

Sound can be expressed as a
superposition of frequencies

f1(x) = sin("x)

f2(x) = sin(2"x)

f4(x) = sin(4"x)

f(x) = f1(x) + 0.75 f2(x) + 0.5 f4(x)

 CMU 15-462/662, Spring 2018

An audio spectrum analyzer shows the
amplitude of each frequency

Intensity of
low-frequencies (bass)

Image credit: ONYX Apps

Intensity of
high frequencies

 CMU 15-462/662, Spring 2018

Visualizing the frequency content of images

SpectrumSpatial domain result

 CMU 15-462/662, Spring 2018

Low frequencies only (smooth gradients)

Spectrum (after low-pass filter)
All frequencies above cutoff have 0 magnitude

Spatial domain result

 CMU 15-462/662, Spring 2018

Mid-range frequencies

Spatial domain result Spectrum (after band-pass filter)

 CMU 15-462/662, Spring 2018

Mid-range frequencies

Spatial domain result Spectrum (after band-pass filter)

 CMU 15-462/662, Spring 2018

High frequencies (edges)

Spatial domain result
(strongest edges)

Spectrum (after high-pass filter)
All frequencies below threshold

have 0 magnitude

 CMU 15-462/662, Spring 2018

An image as a sum of its frequency components

+ + +

=

 CMU 15-462/662, Spring 2018

1D example:
Undersampling high-frequency signals results in aliasing

Low-frequency signal: sampled
adequately for accurate
reconstruction

f1(x)

f2(x)

f3(x)

f4(x)

f5(x)

x

High-frequency signal is
insufficiently sampled:
reconstruction appears to be
from a low frequency signal

“Aliasing”: high frequencies in the original signal masquerade as
low frequencies after reconstruction (due to undersampling)

 CMU 15-462/662, Spring 2018

Temporal aliasing: wagon wheel effect

Camera’s frame rate (temporal sampling rate) is too low for rapidly spinning wheel.

https://www.youtube.com/watch?v=VNftf5qLpiA

https://www.youtube.com/watch?v=VNftf5qLpiA

 CMU 15-462/662, Spring 2018

Nyquist-Shannon theorem
▪ Consider a band-limited signal: has no frequencies above ω0

- 1D: consider low-pass filtered audio signal
- 2D: recall the blurred image example from a few slides ago

ω0-ω0

▪ The signal can be perfectly reconstructed if sampled with period T = 1 / 2ω0
▪ And reconstruction is performed using a “sinc filter”

▪ Ideal filter with no frequencies above cutoff (infinite extent!)

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

sinc(x) =
sin(⇡x))

⇡x

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

XT (x) = T
1X

i=�1
�(x� iT)

XT (x)f(x) = T
1X

i=�1
f(iT)�(x� iT)

g(x) = XT (x)f(x) = T
1X

i=�1
f(iT)�(x� iT)

frecon(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT)�(x� y � iT)dy =

Z T/2

�T/2

1X

i=�1
f(iT)�(x� y � iT)

h(x) =

⇢
1/T |x| T/2
0 otherwise

h(x) =

⇢
(1� |x|

T)/T |x| T
0 otherwise

 CMU 15-462/662, Spring 2018

▪ Our signals are not always band-limited in computer graphics.
Why?

Challenges of sampling-based approaches in graphics

Hint:

▪ Also, infinite extent of “ideal” reconstruction filter (sinc) is
impractical for efficient implementations. Why?

 CMU 15-462/662, Spring 2018

Aliasing artifacts in images
▪ Undersampling high-frequency signals and the use of non-

ideal resampling filters yields image artifacts
- “Jaggies” in a single image

- “Roping” or “shimmering” of images when animated

- Moiré patterns in high-frequency areas of images

 CMU 15-462/662, Spring 2018

Sampling a zone plate: sin(x2 + y2)

(0,0)

Rings in center-left:
Actual signal (low
frequency oscillation)

Rings on right:
aliasing from
undersampling high
frequency oscillation
and then resampling
back to Keynote slide
resolution

Middle: (interaction
between actual
signal and aliased
resconstruction)

Figure credit: Pat Hanrahan and Bryce Summers

 CMU 15-462/662, Spring 2018

Initial coverage sampling rate (1 sample per pixel)

 CMU 15-462/662, Spring 2018

Increase density of sampling coverage signal
(high frequencies exist in coverage signal because of triangle edges)

 CMU 15-462/662, Spring 2018

Supersampling Example: stratified sampling using
four samples per pixel

 CMU 15-462/662, Spring 2018

Resampling

Coarsely sampled signalReconstructed signal
(lacks high frequencies)

Dense sampling of
reconstructed signal

Converting from one discrete sampled representation to another

Original signal
(high frequency edge)

 CMU 15-462/662, Spring 2018

Resample to display’s pixel resolution
(Because a screen displays one sample value per screen pixel...)

 CMU 15-462/662, Spring 2018

Resample to display’s pixel rate (box filter)

 CMU 15-462/662, Spring 2018

Resample to display’s pixel rate (box filter)

 CMU 15-462/662, Spring 2018

Displayed result (note anti-aliased edges)

100% 0%

50%

50%

100%

25%100%

 CMU 15-462/662, Spring 2018

Recall: the real coverage signal was this

 CMU 15-462/662, Spring 2018

Sampling coverage
▪ We want the light emitted from a display to be an accurate to

match the ground truth signal: coverage(x,y))

▪ Resampling a densely sampled signal (supersampled) integrates
coverage values over the entire pixel region. The integrated result
is sent to the display (and emitted by the pixel) so that the light
emitted by the pixel is similar to what would be emitted in that
screen region by an “infinite resolution display”

 CMU 15-462/662, Spring 2018

Sampling triangle coverage
(evaluating coverage(x,y) for a triangle)

 CMU 15-462/662, Spring 2018

Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Ei (x, y) = (x - Xi) dYi - (y - Yi) dXi
 = Ai x + Bi y + Ci

Ei (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

Compute triangle edge equations from projected positions of vertices

 CMU 15-462/662, Spring 2018

Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Ei (x, y) = (x - Xi) dYi - (y - Yi) dXi

 = Ai x + Bi y + Ci

Ei (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

 CMU 15-462/662, Spring 2018

Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Ei (x, y) = (x - Xi) dYi - (y - Yi) dXi

 = Ai x + Bi y + Ci

Ei (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

 CMU 15-462/662, Spring 2018

Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Ei (x, y) = (x - Xi) dYi - (y - Yi) dXi

 = Ai x + Bi y + Ci

Ei (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

 CMU 15-462/662, Spring 2018

Point-in-triangle test

P0

P1

P2
Sample point s = (sx, sy) is inside the
triangle if it is inside all three edges.

inside(sx, sy) =
E0 (sx, sy) < 0 &&
E1 (sx, sy) < 0 &&
E2 (sx, sy) < 0;

Note: actual implementation of
inside(sx,sy) involves ≤ checks based on
the triangle coverage edge rules (see
beginning of lecture)

Sample points inside triangle are highlighted red.

 CMU 15-462/662, Spring 2018

Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Ei (x, y) = (x - Xi) dYi - (y - Yi) dXi

 = Ai x + Bi y + Ci

Ei (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

Incremental triangle traversal

P0

P1

P2

Efficient incremental update:

dEi (x+1,y) = Ei (x,y) + dYi = Ei (x,y) + Ai

dEi (x,y+1) = Ei (x,y) + dXi = Ei (x,y) + Bi

Incremental update saves computation:
Only one addition per edge, per sample test

Many traversal orders are possible: backtrack, zig-zag, Hilbert/Morton curves (locality maximizing)

 CMU 15-462/662, Spring 2018

Modern approach: tiled triangle traversal

P0

P1

P2Traverse triangle in blocks

Test all samples in block against triangle in parallel

Advantages:
- Simplicity of wide parallel execution overcomes

cost of extra point-in-triangle tests (most
triangles cover many samples, especially when
super-sampling coverage)

- Can skip sample testing work: entire block not
in triangle (“early out”), entire block entirely
within triangle (“early in”)

- Additional advantaged related to accelerating
occlusion computations (not discussed today)

All modern GPUs have special-purpose hardware for efficiently performing point-in-triangle tests

 CMU 15-462/662, Spring 2018

Summary
▪ We formulated computing triangle-screen coverage as a

sampling problem
- Triangle-screen coverage is a 2D signal
- Undersampling and the use of simple (non-ideal) reconstruction filters may yield aliasing
- In today’s example, we reduced aliasing via supersampling

▪ Image formation on a display
- When samples are 1-to-1 with display pixels, sample values are handed directly to display
- When “supersampling”, resample densely sampled signal down to display resolution

▪ Sampling screen coverage of a projected triangle:
- Performed via three point-inside-edge tests
- Real-world implementation challenge: balance conflicting goals of avoiding unnecessary

point-in-triangle tests and maintaining parallelism in algorithm implementation

