Final Review

Final Overview

- 80 minutes, 5 Problems worth 125 points in total
- Will be graded out of $\mathbf{1 0 0}$ points (anything after that is extra credit)
- First 4 problems (100pts) are based on lecture material found in these review slides
- $5^{\text {th }}$ problem (extra 25pts) may or may not come from these review slides :)
- Cheat sheet: one 3×3 inch note (about the size of a post it note) front and back
- Please bring a pencil \& pen to write your solutions

3D Inverse Rotations

If you need to review any slides more in depth, look here for which lecture it came from

- A1: Rasterization
- A2: Geometry
- A3: Rendering
- A4: Animation

Pixel Pushing

- Shaders
- Vertex Shader
- Fragment Shader
- Texturing
- Nearest Neighbor
- Bilinear Filtering
- Trilinear Filtering
- Perspective Transform
- Scene Graphs

The Graphics Pipeline

- Sometimes called the:
- 3D Graphics Pipeline
- Rasterization Pipeline
- GPU Pipeline
- GPU was designed specifically to run this pipeline fast
- Entire pipeline was fixed-function.
- You provide the data, a vertex shader, and a fragment shader, and the GPU does the rest.
- Fixed-function == fast!
- By limiting what an architecture can do, that makes the architecture really good at what it can do.
- In graphics, we need to run the same operations over millions of datapoints.

Nearest Neighbor Sampling

- Idea: Grab texel nearest to requested location in texture
- Requires:

$$
\begin{aligned}
& x^{\prime} \leftarrow \operatorname{round}(x), \quad y^{\prime} \leftarrow \operatorname{round}(y) \\
& t \leftarrow \operatorname{tex} . \operatorname{lookup}\left(x^{\prime}, y^{\prime}\right)
\end{aligned}
$$

Bilinear Interpolation Sampling

- Idea: Grab nearest 4 texels and blend them together based on their inverse distance from the requested location
- Blend two sets of pixels along one axis, then blend the remaining pixels
- Requires:
- 4 memory lookup
- 3 linear interpolations

$x^{\prime} \leftarrow$ floor $(x), \quad y^{\prime} \leftarrow f \operatorname{loor}(y)$
$\Delta x \leftarrow x-x^{\prime}$
$\Delta y \leftarrow y-y^{\prime}$
$t_{(x, y)} \leftarrow$ tex.lookup $\left(x^{\prime}, y^{\prime}\right)$
$t_{(x+1, y)} \leftarrow$ tex. lookup $\left(x^{\prime}+1, y^{\prime}\right)$
$t_{(x, y+1)} \leftarrow$ tex.lookup $\left(x^{\prime}, y^{\prime}+1\right)$
$t_{(x+1, y+1)} \leftarrow$ tex. lookup $\left(x^{\prime},+1 y^{\prime}+1\right)$
$t_{x} \leftarrow(1-\Delta x) * t_{(x, y)}+\Delta x * t_{(x+1, y)}$
$t_{y} \leftarrow(1-\Delta x) * t_{(x, y+1)}+\Delta x * t_{(x+1, y+1)}$
$t \leftarrow(1-\Delta y) * t_{x}+\Delta y * t_{y}$

Trilinear Interpolation Sampling

- Idea: Perform bilinear interpolation on two layers of the mip-map that represents proper minification/magnification, blending the results together
- Requires:
- 8 memory lookup
- 7 linear interpolations

$$
L \leftarrow \sqrt{\max \left(L_{x}^{2}, L_{y}^{2}\right)}
$$

$$
\begin{aligned}
& L_{x}{ }^{2} \leftarrow \frac{d u^{2}}{d x}+\frac{d v^{2}}{d x} \\
& L_{y}{ }^{2} \leftarrow \frac{d u^{2}}{d y}+\frac{d v^{2}}{d y}
\end{aligned}
$$

$$
d \leftarrow \log _{2} L
$$

$$
d^{\prime} \leftarrow \text { floor }(d)
$$

$$
\Delta d \leftarrow d-d^{\prime}
$$

$\xrightarrow{(1 \text { Lerp) }}$
$t_{d} \leftarrow$ tex $\left[d^{\prime}\right]$. bilinear (x, y)
$t_{d+1} \leftarrow$ tex $\left[d^{\prime}+1\right]$. bilinear (x, y)
$t \leftarrow(1-\Delta d) * t_{d}+\Delta d * t_{d+1}$

Perspective Projection

Perspective Projection

Original description of object.

Object relative to camera. Camera at origin looking down -z axis.

$(-1,-1,-1)$

Everything visible to camera mapped to a cube.

Coordinates stretched to image dims.
Image flipped upside down.

Everything visible to camera mapped to a cube.

Scene Graph

- Suppose we want to build a skeleton out of cubes
- Idea: transform cubes in world space
- Store transform of each cube
- Problem: If we rotate the left upper leg, the lower left leg won't track with it
- Better Idea: store a hierarchy of transforms
- Known as a scene graph
- Each edge (+root) stores a linear transformation
- Composition of transformations gets applied to nodes
- Keep transformations on a stack to reduce redundant multiplication
- Lower left leg transform: $A_{2} A_{1} A_{0}$

Instancing

- What if we want many copies of the same object in a scene?
- Rather than have many copies of the geometry, scene graph, we can just put a "pointer" node in our scene graph
- Saves a reference to a shared geometry
- Specify a transform for each reference
- Careful: Modifying the geometry will modify all references to it

Realistic modeling and rendering of plant ecosystems (1998) Deussen et al

- A1: Rasterization
- A2: Geometry
- A3: Rendering
- A4: Animation

Meshes

- Types of Geometric Representations
- Algebraic Surfaces
- CSG
- Blobby
- Level Set
- Fractals
- Point Cloud
- Meshes
- Global Mesh Operations
- Subdivision
- Isotropic Remeshing
- Spatial Data Structures
- BVH
- KD-Tree
- Uniform Grid
- Quadtree/Octree

Algebraic Surfaces [Implicit]

- Simple way to think of it: a surface built with algebra [math]
- Generally thought of as a surface where points are some radius r away from another point/line/surface
- Easy to generate smooth/symmetric surfaces
- Difficult to generate impurities/deformations

Constructive Solid Geometry [Implicit]

- Build more complicated shapes via Boolean operations
- Basic operations:

- Can be used to form complex shapes!

Blobby Surfaces [Implicit]

- Instead of Booleans, gradually blend surfaces together:

- Easier to understand in 2D:

$$
\begin{array}{ll}
\phi_{p}(x):=e^{-|x-p|^{2}} & \text { (Gaussian centered at } \mathrm{p} \text {) } \\
f:=\phi_{p}+\phi_{q} & \text { (Sum of Gaussians centered at different points) }
\end{array}
$$

Level Set Methods [Implicit]

- Implicit surfaces have some nice features (e.g., merging/splitting)
- But, hard to describe complex shapes in closed form
- Alternative: store a grid of values approximating function

-.55	-.45	-.35	-.30	-.25
-.30	-.25	-.20	-.10	-.10

The aerodynamics of a cow:

- Surface is found where interpolated values equal zero
- Provides much more explicit control over shape (like a texture)
- Unlike closed-form expressions, runs into problems of aliasing!

Fractals [Implicit]

- No precise definition; exhibit self-similarity, detail at all scales
- New "language" for describing natural phenomena
- Hard to control shape!

Point Cloud [Explicit]

- Easiest representation: list of points (x, y, z)
- Often augmented with normal
- Easily represent any kind of geometry
- Easy to draw dense cloud (>>1 point/pixel)
- Easy for simulation
- Large lookup time
- Large memory overhead
- Hard to interpolate undersampled regions
- Hard to do processing / simulation /
- Result is just as good as the scan

Triangle Mesh [Explicit]

- Large memory overhead
- Store vertices as triples of coordinates (x, y, z)
- Store triangles as triples of indices (i,j,k)
- Easy interpolation with good approximation
- Use barycentric interpolation to define points inside triangles

[VERTICES]	[TRIANGLES]
$\mathbf{x} \quad \mathbf{y} \quad \mathbf{z}$	i j k
0: $-1-1-1$	021
1: 1 -1 1	032
2: $111-1$	301
3: -111	312

- Polygonal Mesh: shapes do not need to be triangles
- Ex: quads

Loop Subdivision

Loop Subdivision Using Local Ops

Step 1:

Split all edges in any order

Step 2:
Flip new edges until they touch two new vertices

Isotropic Remeshing

Step 2:

Step 3:

Step 4:

BVH Example

Bounding boxes will sometimes intersect!

K-D Trees

- Recursively partition space via axis-aligned partitioning planes
- Interior nodes correspond to spatial splits
- Node traversal proceeds in front-to-back order
- Unlike BVH, can terminate search after first hit is found
- Still $O(\log (N))$ performance

Uniform Grid

- Partition space into equal sized volumes (volumeelements or "voxels")
- Each grid cell contains primitives that overlap voxel. (very cheap to construct acceleration structure)
- Walk ray through volume in order
- Very efficient implementation possible (think: 3D line rasterization)
- Only consider intersection with primitives in voxels the ray intersects
- What is a good number of voxels?
- Should be proportional to total number of primitives N
- Number of cells traversed is proportional to $O(\sqrt[3]{N})$
- A line going through a cube is a cubed root
- Still not as good as $O(\log (N))$

Quad-Tree/Octree

- Like uniform grid, easy to build
- Has greater ability to adapt to location of scene geometry than uniform grid
- Still not as good adaptability as K-D tree
- Quad-tree: nodes have 4 children
- Partitions 2D space
- Octree: nodes have 8 children
- Partitions 3D space
- A1: Rasterization
- A2: Geometry
- A3: Rendering
- A4: Animation

Color \& Radiometry

- Absorption vs Emission
- Eyes vs Cameras
- Pupil
- Lens
- Rods
- Cones
- Radiance
- Radiant Energy
- Radiant Energy Density
- Radiant Flux
- Irradiance
- Lambert's Law

Emission Spectrum Examples

Absorption Spectrum Examples

plants are green because they do not absorb green light

'Eye’ See What You Mean

- Eyes are biological cameras
- Light passes through the pupil [black dot in the eye]
- Iris controls how much light enters eye [colored ring around pupil]
- Eyes are sensitive to too much light
- Iris protects the eyes
- Lens behind the eye converges light rays to back of the eye
- Ciliary muscles around the lens allow the lens to be bent to change focus on nearby/far objects
- 130+ million retina cells at the back of the eye
- Cells pick up light and convert it to electrical signal
- Electric signal passes through optic nerve to reach the brain

The Biological Camera

- Pupil is the camera opening
- Allows light through

- Iris is the aperture ring
- Controls aperture
- Lens is the...well, lens
- Can change focus
- Retina is the sensor
- Converts light into electrical signal
- Brain is the CPU
- Performs additional compute to correct raw image signal

Rods \& Cones

- Rods are primary receptors far from fovea used under low-light viewing conditions
- Approx. 120 million rods in human eye

Human blind spot

- Cones are primary receptors near fovea used under high-light viewing conditions
- Approx. 6-7 million cones in the human eye
- Capture color
- Capture intensity

Spectral Response of Cones

- Long, Medium, and Small cones pick up Long, Medium, and Small wavelengths respectively
- Each cone picks up a range of colors given by their response functions
- Not much different than absorption spectrum
- Each cone integrates the emission \& response to produce a single signal to transmit to the brain

$$
\begin{aligned}
S & =\int_{\lambda} \Phi(\lambda) S(\lambda) d \lambda \\
M & =\int_{\lambda} \Phi(\lambda) M(\lambda) d \lambda \\
L & =\int_{\lambda} \Phi(\lambda) L(\lambda) d \lambda
\end{aligned}
$$

- Uneven distribution of cone types in eye
- $\sim 64 \%$ L cones, $\sim 32 \% \mathrm{M}$ cones $\sim 4 \%$ S cones

Radiant Recap

Radiant Energy

(total number of hits)
Joules (J)

Radiant Energy Density

(hits per unit area)
Joules per sq meter ($\mathrm{J} / \mathrm{m}^{2}$)

Radiant Flux

(total hits per second)
Watts (W)

Radiant Flux Density
a.k.a. Irradiance
(hits per second per unit area) Watts per sq meter $\left(W / m^{2}\right)$

Lambert's Law

- Irradiance (E) at surface is proportional to the flux (Φ) and the cosine of angle (θ) between light direction and surface normal:

$$
E=\frac{\Phi}{A^{\prime}}=\frac{\Phi \cos \theta}{A}
$$

- Consider rotating a plane away from light rays
- Plane will darken until it is perpendicular to light rays, then it will be completely black

$A=A^{\prime} \cos \theta$

The Rendering Equation

- The Rendering Equation
- Rendering Methods
- Forwards Path-Tracing
- Backwards Path-Tracing
- Bi-Directional Path-Tracing
- Metropolis Light Transport
- Variance Reduction
- Sampling Rate
- Ray Depth
- BRDFs
- Lambertian
- Mirror
- Glass

The Rendering Equation

$$
\begin{aligned}
L_{0}\left(\mathbf{p}, \omega_{0}\right) & =L_{e}\left(\mathbf{p}, \omega_{0}\right)+\int_{\mathcal{H}^{2}} f_{r}\left(\mathbf{p}, \omega_{i} \rightarrow \omega_{0}\right) L_{i}\left(\mathbf{p}, \omega_{i}\right) \cos \theta d \omega_{i} \\
L_{o}\left(\mathbf{p}, \omega_{0}\right) & \text { outgoing radiance at point } \mathbf{p} \text { in outgoing direction } \omega_{o} \\
L_{e}\left(\mathbf{p}, \omega_{0}\right) & \text { emitted radiance at point } \mathbf{p} \text { in outgoing direction } \omega_{o} \\
f_{r}\left(\mathbf{p}, \omega_{i} \rightarrow \omega_{0}\right) & \text { scattering function at point } \mathbf{p} \text { from incoming direction } \omega_{i} \text { to outgoing direction } \omega_{o} \\
L_{i}\left(\mathbf{p}, \omega_{i}\right) & \text { incoming radiance to point } \mathbf{p} \text { from direction } \omega_{i}
\end{aligned}
$$

Example Of A Simple Renderer

- Yellow light ray generated from light source
- Ray hits orange specular surface
- Emits a ray in reflected direction
- Mixes yellow and orange color
- Ray hits blue specular surface
- Emits a ray in reflected direction
- Mixes blue and yellow and orange
- Ray passes through pinhole camera
- Light recorded on photoelectric cell
- Incident pixel will be brown in final image

Hemholtz Reciprocity

- Reversing the order of incoming and outgoing light does not affect the BRDF evaluation
- $f_{r}\left(\mathbf{p}, \omega_{i} \rightarrow \omega_{o}\right)=f_{r}\left(\mathbf{p}, \omega_{o} \rightarrow \omega_{i}\right)$
- Critical to reverse pathtracing algorithms
- Allows us to trace rays backwards and still get the same BRDF affect

Example Of A Simple Backwards Renderer

[ray depth 2]

$$
L_{0}\left(\mathbf{p}, \omega_{0}\right)=L_{e}\left(\mathbf{p}, \omega_{0}\right)+\int_{\mathcal{H}^{2}} f_{r}\left(\mathbf{p}, \omega_{i} \rightarrow \omega_{0}\right) L_{i}\left(\mathbf{p}, \omega_{i}\right) \cos \theta d \omega_{i}
$$

- Intersect Δ, no emission
- Intersect Δ, no emission \square
- Ray terminate, emission

$$
\begin{gathered}
L(\text { pixel })=L_{e}\left(r a y_{1}\right)+f_{r}\left(o b j_{1}\right)\left[L_{e}\left(r a y_{2}\right)+f_{r}\left(o b j_{2}\right)\left[L_{e}\left(\text { ray }_{3}\right)\right]\right] \\
L(\text { pixel })=\square+f_{r}(\Delta)\left[\square+f_{r}(\Delta)[\square]\right]
\end{gathered}
$$

Bidirectional Path Tracing

- If path tracing is so great, why not do it twice?
- Main idea of bidirectional!
- Trace a ray from the camera into the scene
- Trace a ray from the light into the scene
- Connect the rays at the end
- Unbiased algorithm
- No longer trying to connect rays through non-volume sources
- Can set different lengths per ray
- Example: Forward $m=2$, Backward $m=1$

Metropolis Light Transport

- Similar idea: mutate good paths
- Water causes paths to refract a lot
- Small mutations allows renderer to find contributions faster
- Path Tracing and MLT rendered in the same time

[Path Tracing]

Number Of Ray Samples

- Number of Rays
- How many rays we trace into the scene
- Measured as samples (rays) per pixel [spp]
- Increasing the number of rays increases the quality of the image
- Anti-aliasing
- Reduces black spots from terminating emission occlusion

[dds I]

Number Of Ray Bounces

- Number of Ray Bounces
- How many times a ray bounces before it terminates
- Measured as ray bounce or depth
- Increasing the number of ray bounces increases the quality of the image
- Better color blending around images
- More details reflected in specular images

[بıdap 8]

Lambertian Material

- Also known as diffuse
- Light is equally likely to be reflected in each output direction

- BRDF is a constant, relying on albedo (ρ)

$$
f_{r}=\frac{\rho}{\pi}
$$

- BRDF can be pulled out of the integral

$$
\begin{aligned}
L_{o}\left(\omega_{o}\right) & =\int_{H^{2}} f_{r} L_{i}\left(\omega_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i} \\
& =f_{r} \int_{H^{2}} L_{i}\left(\omega_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i} \\
& =f_{r} E
\end{aligned}
$$

Minions (2015) Illumination Entertainment

- Easy! Pick any outgoing ray w_{o}

Reflective Material

[side view]

$\theta=\theta_{o}=\theta_{i}$
[top view]

- Reflectance equation described as:

$$
\omega_{o}=-\omega_{i}+2\left(\omega_{i} \cdot \overrightarrow{\mathrm{n}}\right) \overrightarrow{\mathrm{n}}
$$

- Why is the ray ω_{i} pointing away from the surface?
- Just syntax. Incoming and outgoing rays share same origin point \mathbf{p}
- BRDF represented by dirac delta (δ) function:

$$
f_{r}\left(\theta_{i}, \phi_{i} ; \theta_{o}, \phi_{o}\right)=\frac{\delta\left(\cos \theta_{i}-\cos \theta_{o}\right)}{\cos \theta_{i}} \delta\left(\phi_{i}-\phi_{o} \pm \pi\right)
$$

- 1 when ray is perfect reflection, 0 everywhere else
- All radiance gets reflected, nothing absorbed
- In practice, no hope of finding reflected direction via random sampling
- Simply pick the reflected direction!

Refractive Material

[side view]

[top view]

- Refractive equation described as:

$$
\eta_{i} \sin \theta_{i}=\eta_{t} \sin \theta_{t}
$$

- Also known as Snell's Law
- η_{i} and η_{t} describe the index of refraction of the incoming and outgoing mediums
- Example: η_{i} is air, η_{t} is water

Medium	$\boldsymbol{\eta}$
Vacuum	1.0
Air (sea level)	1.00029
Water $\left(20^{\circ} \mathrm{C}\right)$	1.333
Glass	$1.5-1.6$
Diamond	2.42

- η is the ratio of the speed of light in a vacuum to that in a second medium of greater density
- The larger the η, the denser the material

Refractive Material

[side view]

[top view]

- Refractive equation described as:

$$
\eta_{i} \sin \theta_{i}=\eta_{t} \sin \theta_{t}
$$

- Also known as Snell’s Law
- Can rewrite the equation as:

$$
\begin{aligned}
\cos \theta_{t} & =\sqrt{1-\sin ^{2} \theta_{t}} \\
& =\sqrt{1-\left(\frac{\eta_{i}}{\eta_{t}}\right)^{2} \sin ^{2} \theta_{i}} \\
& =\sqrt{1-\left(\frac{\eta_{i}}{\eta_{t}}\right)^{2}\left(1-\cos ^{2} \theta_{i}\right)}
\end{aligned}
$$

Types of Reflectance Functions

- A1: Rasterization
- A2: Geometry
- A3: Rendering
- A4: Animation

Principles Of Animation

- 12 Principles
- Easing
- Arcs
- Timing
- Motion Graphs
- Displacement
- Velocity
- Acceleration
- Splines
- Natural Splines
- Hermite/Bezier Curves
- B-Splines

Onion Skinning

- Onion-Skinning is a tool that lets you see previous and future frames at a lower opacity
- Helps when you have two keyframes and want to add an in-between frame
- Based off translucency of cel paper
- Can also help visualize the spatial trajectory and motion of objects
- Good debugging tool to make sure trajectories are arc like and maintain proportions

Easing

- Easing is a strategy where objects accelerate into and out of their motion
- Derived from physics
- Objects with inertia have to feel a force in order to ease their way into a new momentum
- Visualized in a 1D chart with tick marks with equal time separation but varying spatial separation
- The closer the tick marks, the smaller the spatial separation, and the slower the motion.
- Draw a frame in the middle of frames 1 and 9 (call it 5), then a frame between 1 and 5 (call it 4), then 1 and 4 (call it 3), and then 1 and 3 (call it 2)
- Referred to as subdivision

- Easy strategy to guarantee appropriate easing

Straight Ahead vs. Pose To Pose

- Straight Ahead is the process of drawing in every frame sequentially
- Easier to create more realistic movements this way, but harder to keep proportions constant
- Characters end up being less dynamic and less exaggerated
- Pose to Pose is the process of drawing in key frames first, and then going back to draw in-betweens
- Allows for more controlled and dynamic posing
- Adopted more in animation settings where computers are able to help out with the inbetween stages

The Animator's Survival Kit (2001) Richard Williams

- With Pose to Pose, senior artists draw keyframes, junior artists draw in-betweens

Timing

- Timing is how the motions play out, and at what time intervals
- Used to determine how fast an object should be moving
- How many frames should be used for the motion?
- The more frames, the slower
- Temporal linear interpolation: velocity never changes
- Temporal non-linear interpolation: velocity changes

Arc Motions

ARM MOVEMENTS

WHILLE The SHOULDER RISES UP AN Thu PASSING POSTMON

- Arc Motions guarantee that spatial trajectories are arc-like
- Helps to build fluidity in the motion
- Joints rotate instead of translating
- Allows for arc-like movements
- Walk cycles are a combination of many arc movements

The HAND IS AT The LOWEST PART of We NRCC

The wRIST MAINTAINS

 the ARC

Natural Splines

- Can build a spline out of piecewise cubic polynomials p_{i}
- Each polynomial extends from range $t=[0,1]$
- Polynomials should connect on boundary
- Keyframes agree at endpoints [CO continuity]:

$$
p_{i}\left(t_{i}\right)=f_{i}, \quad p_{i}\left(t_{i+1}\right)=f_{i+1}, \quad \forall i=0, \ldots, n-1
$$

- Tangents agree at endpoints [C1 continuity]:

$$
p_{i}^{\prime}\left(t_{i+1}\right)=p_{i+1}^{\prime}\left(t_{i+1}\right), \quad \forall i=0, \ldots, n-2
$$

- Curvature agrees at endpoints [C2 continuity]:

$$
p^{\prime \prime}{ }_{i}\left(t_{i+1}\right)={p^{\prime \prime}}_{i+1}\left(t_{i+1}\right), \quad \forall i=0, \ldots, n-2
$$

- Total equations:
- $2 n+(n-1)+(n-1)=4 n-2$
- Total DOFs:
- $2 \mathrm{n}+\mathrm{n}+\mathrm{n}=4 \mathrm{n}$
- Set curvature at endpoints to 0 and solve

$$
p_{0}^{\prime}{ }_{0}\left(t_{0}\right)=0, \quad p^{\prime \prime}{ }_{0}\left(t_{i+1}\right)=0
$$

Hermite/Bézier Splines

- Each cubic "piece" specified by endpoints and tangents
- Keyframes set at endpoints:

$$
p_{i}\left(t_{i}\right)=f_{i}, \quad p_{i}\left(t_{i+1}\right)=f_{i+1}, \quad \forall i=0, \ldots, n-1
$$

- Tangents set at endpoint:

$$
p_{i}^{\prime}{ }_{i}\left(t_{i}\right)=u_{i,} \quad p_{i}^{\prime}\left(t_{i+1}\right)=u_{i,+1}, \quad \forall i=0, \ldots, n-1
$$

- Natural splines specify just keyframes
- Bezier splines specify keyframes and tangents
- Can get continuity if tangents are set equal
- Total equations:
- $2 n+2 n=4 n$
- Commonly used in vector art programs

- Illustrator
- Inkscape
- SVGs

B-Splines

- Compute a weighted average of nearby keyframes when interpolating
- B-spline basis defined recursively, with base condition:

$$
B_{i, 1}(t):= \begin{cases}1, & \text { if } t_{i} \leq t<t_{i+1} \\ 0, & \text { otherwise }\end{cases}
$$

- And inductive condition:

$$
B_{i, k}(t):=\frac{t-t_{i}}{t_{i+k-1}-t_{i}} B_{i, k-1}(t)+\frac{t_{i+k}-t}{t_{i+k}-t_{i+1}} B_{i+1, k-1}(t)
$$

- B-spline is a linear combination of bases:

$$
f(t):=\sum_{i} a_{i} B_{i, d}
$$

Splines Review

Simulations

- ODE vs PDE
- Time Integration
- Forwards Euler
- Symplectic Euler
- Lagrangian
- $2^{\text {nd }}$ Derivative
- Boundary Conditions
- Dirichlet
- Neumann

ODEs vs. PDEs

Explicit Euler Methods

[Forward]

$$
\begin{aligned}
& v_{k+1}=v_{k}+\tau * a\left(q_{k}\right) \\
& q_{k+1}=q_{k}+\tau * v_{k}
\end{aligned}
$$

[Symplectic]

$$
\begin{aligned}
v_{k+1} & =v_{k}+\tau * a\left(q_{k}\right) \\
q_{k+1} & =q_{k}+\tau * v_{k+1}
\end{aligned}
$$

[Verlet]

$$
\begin{aligned}
v_{k+1} & =v_{k+0.5}+\frac{\tau}{2} * a\left(q_{k}\right) \\
q_{k+1} & =q_{k}+\tau * v_{k+1} \\
v_{k+1.5} & =v_{k+1}+\frac{\tau}{2} * a\left(q_{k}\right)
\end{aligned}
$$

[RK2]

$$
\begin{aligned}
v_{k+1}^{\prime} & =\tau * a\left(q_{k}\right) \\
v_{k+1}^{\prime \prime} & =\tau * a\left(q_{k}+\frac{v_{k+1}^{\prime}}{2}\right) \\
v_{k+1} & =v_{k}+v^{\prime \prime}{ }_{k+1} \\
q_{k+1} & =q_{k}+\tau * v_{k+1}
\end{aligned}
$$

[RK4]

$$
\begin{aligned}
{v^{\prime}}_{k+1} & =\tau * a\left(q_{k}\right) \\
v^{\prime \prime}{ }_{k+1} & =\tau * a\left(q_{k}+\frac{{v^{\prime}}_{k+1}}{2}\right) \\
{v^{\prime \prime \prime}}_{k+1} & =\tau * a\left(q_{k}+\frac{v^{\prime \prime}{ }_{k+1}}{2}\right) \\
{v^{\prime \prime \prime \prime}}_{k+1} & =\tau * a\left(q_{k}+v^{\prime \prime \prime}{ }_{k+1}\right) \\
q_{k+1} & =q_{k}+\frac{1}{6}\left(v_{k+1}^{\prime}+2 v_{k+1}^{\prime \prime}+2 v_{k+1}^{\prime \prime \prime}+v_{k+1}^{\prime \prime \prime}\right)
\end{aligned}
$$

The Laplacian Operator

- All of our model equations used the Laplace operator
- Laplace Equation $\Delta u=0$
- Heat Equation $\dot{u}=\Delta u$
- Wave Equation $\ddot{u}=\Delta u$
- Unbelievably important object showing up everywhere across physics, geometry, signal processing, and more
- What does the Laplacian mean?
- Differential operator: eats a function, spits out its 2 nd derivative
- What does that mean for a function: $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$?
- Divergence of gradient

$$
\Delta u=\nabla \cdot \nabla u
$$

- Sum of second derivatives

$$
\Delta u=\frac{\partial u^{2}}{\partial x_{1}^{2}}+\cdots+\frac{\partial u^{2}}{\partial x_{n}^{2}}
$$

- Deviation from local average
- ...

Dirichlet Boundary Conditions

Dirichlet: boundary data always set to fixed values

Many possible functions interpolate values in between

Neumann Boundary Conditions

Neumann: specify derivatives across boundary

Again, many possible functions

Good Luck!

