Final Review

15-462/662 | Computer Graphics Lecture RO2 | Final Review



Final Overview

e 80 minutes, 5 Problems worth 125 points in total
* Will be graded out of 100 points (anything after that is extra credit)
* First 4 problems (100pts) are based on lecture material found in these review slides
* 5t problem (extra 25pts) may or may not come from these review slides :)
* Cheat sheet: one 3x3 inch note (about the size of a post it note) front and back

* Please bring a pencil & pen to write your solutions

15-462/662 | Computer Graphics



If you need to review any slides more in depth,
look here for which lecture it came from

15-462/662 | Computer Graphics Lecture 03 | Transformations



* Al: Rasterization
* A2: Geometry
* A3: Rendering

* A4: Animation

15-462/662 | Computer Graphics Lecture R0O2 | Final Review



Pixel Pushing

e Shaders
* Vertex Shader
* Fragment Shader

* Texturing
* Nearest Neighbor
e Bilinear Filtering
e Trilinear Filtering

* Perspective Transform

* Scene Graphs

15-462/662 | Computer Graphics Lecture RO2 | Final Review



The Graphics Pipeline

Ventex/index buffer

l 9 * Sometimes called the:
e 1A2 3D Graphics Pipeline
! - * Rasterization Pipeline
e | | <] + GPU Pipeline
v 0 * GPU was designed specifically to run this pipeline fast
Tessellation 1-%2
* Entire pipeline was fixed-function.
Geomet:;shader 4@73 * You provide the data, a vertex shader, and a
N fragment shader, and the GPU does the rest.
v L e Fixed-function == fast!
Rasterization e o * By limiting what an architecture can do, that
HHH makes the architecture really good at what it
v T can do.
Fragment shader E_::::: - * |n graphics, we need to run the same

operations over millions of datapoints.

\ 4

Color blending

l Graphics Pipeline Tutorial (2019) Vulkan

Framebuffer

15-462/662 | Computer Graphics



Nearest Neighbor Sampling

* Idea: Grab texel nearest to requested location in
texture x" « round(x), y' « round(y)

* Requires: t « tex.lookup(x',y’)
* 1 memory lookup
* O linear interpolations

15-462/662 | Computer Graphics



Bilinear Interpolation Sampling

* |dea: Grab nearest 4 texels and blend them

together based on their inverse distance from x" « floor(x), y' « floor(y)
the requested location
» Blend two sets of pixels along one axis, Ax < x —x'
then blend the remaining pixels Ay «y =y
« Requires: txy) < tex.lookup(x',y")
* 4 memory lookup tx+1,y) < tex.lookup(x' +1,y")
* 3linear interpolations Lix,y+1) < tex. lookup(x',y" + 1)

tx+1,y+1) < tex.lookup(x’,+1y’ + 1)

Lerp 1&2 Lerp 3 t, < (1 —Ax) * t(x,y) + Ax * t(x+1,y)
. . oo o e ty « (1 - AX) * t(x,y+1) + Ax * t(x+1»3’+1)
o . ; - )
. . oo o — l t(_(l_Ay)*tx-l_Ay*ty

15-462/662 | Computer Graphics




Trilinear Interpolation Sampling

* ldea: Perform bilinear interpolation on two
layers of the mip-map that represents proper
minification/magnification, blending the results

together

* Requires:
8 memory lookup
e 7 linear interpolations

Level ceil(d)

Bilerp (3 Lerps)

Level floor(d)

—> (] ([ ]

15-462/662 | Computer Graphics

Bilerp (3 Lerps)

(1 Lerp)
—

[ 2 du® N dv*
x dx  dx
) du? N dv*
P —— —_—

Y ody dy

L « \/maX(sz,Lyz)
d < log, L

d' < floor(d)
Ad «d —d

ty < tex[d']. bilinear(x,y)
tg+q1 < tex[d + 1].bilinear(x,y)
t—(1—Ad)*ty;+Ad *ty,q




Perspective Projection

- parallelline
converge at
the horizon

15-462/662 | Computer Graphics



Perspective Projection

: (1,1,1)

L

i

(_11_11_1) ::

Original description Object relative to camera. Everything visible to camera
of object. Camera at origin looking down —z axis. mapped to a cube.

wh v

(1,1)
[ Rasterization Stage ] ‘— 4—
(O, 0) (_11_1)
Coordinates stretched to image dims. Everything visible to camera
Image flipped upside down. mapped to a cube.

15-462/662 | Computer Graphics



Scene Graph Ao

e Suppose we want to build a skeleton out of cubes

* Idea: transform cubes in world space
e Store transform of each cube

left
upper leg
right
upper leg
left
lower leg

right
lower leg

head

Gghtam

* Problem: If we rotate the left upper leg, the lower left
leg won’t track with it
* Better Idea: store a hierarchy of transforms
 Known as a scene graph
* Each edge (+root) stores a linear
transformation
* Composition of transformations gets applied

left arm body right arm

to nodes :
_ right left
* Keep transformations on a stack to upper leg upper leg
reduce redundant multiplication
: left
right lower leg

* Lower left leg transform: A, A4, lower leg

15-462/662 | Computer Graphics



Instancing

* What if we want many copies of the same objectin a
scene?

e Rather than have many copies of the geometry,
scene graph, we can just put a “pointer” node in
our scene graph

e Saves a reference to a shared geometry
* Specify a transform for each reference
e Careful: Modifying the geometry will
modify all references to it

Realistic modeling and rendering of plant ecosystems
(1998) Deussen et al

________
.- S~

---------------------------- ’

. dandelion

~
~

-
~
----------

--------
- S~

-
~
---------

15-462/662 | Computer Graphics



* A2: Geometry
* A3: Rendering

* A4: Animation

15-462/662 | Computer Graphics Lecture R0O2 | Final Review



Meshes

e Types of Geometric Representations
e Algebraic Surfaces
* (CSG
e Blobby
e Level Set
* Fractals
* Point Cloud
* Meshes

e Global Mesh Operations
e Subdivision
* Isotropic Remeshing

e Spatial Data Structures
e BVH

e KD-Tree
* Uniform Grid
 Quadtree/Octree

15-462/662 | Computer Graphics



Algebraic Surfaces [Implicit]

Assume a spherical cow of uniform density.

* Simple way to think of it: a surface built with algebra [math]
* Generally thought of as a surface where points are some radius
r away from another point/line/surface

* Easy to generate smooth/symmetric surfaces
 Difficult to generate impurities/deformations

OOV

ety 22 =1 — V22 +y2)? 4 2% =1 (22 +T+Z

9y? 23

2.3
x°zw + 30

15-462/662 | Computer Graphics Lecture 06 | Geometry



Constructive Solid Geometry [Implicit]

* Build more complicated shapes via Boolean operations
* Basic operations:

* Can be used to form complex shapes!

15-462/662 | Computer Graphics Lecture 06 | Geometry



Blobby Surfaces [Implicit]

* Instead of Booleans, gradually blend surfaces together:

28000006

. 2
* Easier to understand in2D: ¢, (z):=e 2=PI" " (Gaussian centered at p)

f = ¢p + ¢q (Sum of Gaussians centered at different points)

o, o

15-462/662 | Computer Graphics Lecture 06 | Geometry



Level Set Methods [Implicit]

* Implicit surfaces have some nice features (e.g., merging/splitting)
* But, hard to describe complex shapes in closed form
* Alternative: store a grid of values approximating function

The aerodynamics of a cow:

e Surface is found where interpolated values equal zero
* Provides much more explicit control over shape (like a texture)
* Unlike closed-form expressions, runs into problems of aliasing!

15-462/662 | Computer Graphics



Fractals [Implicit]

* No precise definition; exhibit self-similarity, detail at all scales
* New “language” for describing natural phenomena
* Hard to control shape!

15-462/662 | Computer Graphics



Point Cloud [Explicit]

* Easiest representation: list of points (x, y, z)
* Often augmented with normal

* Easily represent any kind of geometry
* Easy to draw dense cloud (>>1 point/pixel)
e Easy for simulation
e Large lookup time
e Large memory overhead
* Hard to interpolate undersampled regions

* Hard to do processing / simulation /
* Resultis just as good as the scan

15-462/662 | Computer Graphics



Triangle Mesh [Explicit]

3
e Large memory overhead
» Store vertices as triples of coordinates (x,y,z) [ VERTICES] [ TRIANGLES ]
» Store triangles as triples of indices (i,j, k) X y z i j k
0O: -1 -1 -1 0O 2 1 ”
e Easy interpolation with good approximation 1: 1 -1 1 0 3 2 0
* Use barycentric interpolation to define points 2: 1 1 -1 3 0 1
inside triangles 3: -1 1 1 3 1 2 |
1
* Polygonal Mesh: shapes do not need to be qb] P+ i+ = 1
. 1 ] -
triangles i, iy o > 0 P,
* Ex: quads J
; A " P
L i — b .
¢ p = ¢ip; + iP; + PxPx

Pk

15-462/662 | Computer Graphics



Loop Subdivision

Step 1:
Split triangle
into 4 triangles

Step 2:

Assign new coords

1/8

3/8

1/8

3/8

Step 3:
Assign old coords

n - vertex degree
u-3/16if n=3
3/(8n) otherwise

1-nu

15-462/662 | Computer Graphics




Loop Subdivision Using Local Ops

Step 1:
Split all edges in any order

split VANV
N
Step 2:

Flip new edges until they touch two new vertices

sy AW v flip T A Yy v,
VOAN VDAVAAN

15-462/662 | Computer Graphics



Isotropic Remeshing

Step 1: Step 2:
flip average
Step 3: Step 4.
split collapse
— —

15-462/662 | Computer Graphics Lecture 07 | Geometry Processing



BVH Example

VARRAN

_MA

Bounding boxes will sometimes intersect!

15-462/662 | Computer Graphics



K-D Trees

e Recursively partition space via axis-aligned
partitioning planes
* Interior nodes correspond to spatial splits
* Node traversal proceeds in front-to-back order
* Unlike BVH, can terminate search after first hit
is found
 Still O(log(N)) performance

A

15-462/662 | Computer Graphics Lecture 08 | Spatial Structures



Uniform Grid

* Partition space into equal sized volumes (volume-
elements or “voxels”)
* Each grid cell contains primitives that overlap voxel.
(very cheap to construct acceleration structure)
* Walk ray through volume in order
* Very efficient implementation possible (think: 3D
line rasterization)
* Only consider intersection with primitives in
voxels the ray intersects

 What is a good number of voxels?
e Should be proportional to total number of
primitives N
* Number of cells traversed is proportional to
0(VN)
* Aline going through a cube is a cubed root
* Still not as good as O (log(N))

15-462/662 | Computer Graphics



Quad-Tree/Octree

e Like uniform grid, easy to build
* Has greater ability to adapt to location of scene
geometry than uniform grid
» Still not as good adaptability as K-D tree

* Quad-tree: nodes have 4 children
* Partitions 2D space

* Octree: nodes have 8 children
* Partitions 3D space

15-462/662 | Computer Graphics



o f Gogeetry
* A3: Rendering

* A4: Animation

15-462/662 | Computer Graphics Lecture R0O2 | Final Review



Color & Radiometry

e Absorption vs Emission

* Eyes vs Cameras
* Pupil
* Lens
* Rods
* Cones

e Radiance
e Radiant Energy
e Radiant Energy Density
e Radiant Flux
* Irradiance

e Lambert’s Law

15-462/662 | Computer Graphics



Emission Spectrum Examples

sun-like

Daylight N g

energy efficient

500 600 500 400 7 . 500 00
wavelength [nm) -'cwe ergth r| we ength (nm)
Halogen Cool White LED
! 105-
A0
=3 % 60-
o o
< T 404
204

- 500 600 a d me sy

5 400 S0 :
500 , tln.'.') 500 400 ADVANCED MEASUREMENT SYSTEMS
waveength (nm)| wavelengtnh [nm) wavelength [rm)

15-462/662 | Computer Graphics



100

Absorption Spectrum Examples

50—

Percent Absorption

Absorption Spectrum of
Chlorophyll a

/),/5

4

|
650 700

plants are green because they do not absorb green light

15-462/662 | Computer Graphics



‘Eye’ See What You Mean

Ciliary body

Sclera
Choroid

Retina

* Eyes are biological cameras
* Light passes through the pupil [black dot in the eye]

* Iris controls how much light enters eye [colored ring
around pupil]
* Eyes are sensitive to too much light
* lris protects the eyes
* Lens behind the eye converges light rays to back of
the eye
e Ciliary muscles around the lens allow the lens Cornea
to be bent to change focus on nearby/far

objects

Fovea centralis

Optic disc
(bI|nd spot)

Blood vessels

Optic nerve

Suspensory
ligamgnt

e 130+ million retina cells at the back of the eye

e Cells pick up light and convert it to electrical signal as'
* Electric signal passes through optic nerve to reach o™, \(\»vs\d

the brain oe 2pP* ApS
ol

15-462/662 | Computer Graphics



The Biological Camera

* Pupil is the camera opening
e Allows light through

Shutter Button
Flash

Mirrors e lrisis the aperture ring
ﬁ(’% i * Controls aperture

* Lensis the...well, lens

Uikt -. @ Screen e (Can change focus
/ // * Retinais the sensor

/ % Sensor Plate * Converts light into electrical signal
Aperture Ring Mirror Shutter

* Brainis the CPU
* Performs additional compute to correct
raw image signal

15-462/662 | Computer Graphics



Rods & Cones

Ciliary body

Sclera

180 - cones
Choroid ROdS o
Retina _A i o After @sterberg 1935
Iris b
4 £ 140 4 '
—» £ ¥
i . > 2 - ¥
ovea centralis g < 32
— 2 100 4 i
) " v (I
Pupil Optic disc —. g 80 5 s
(blind spot) : e &
- *g_ 60 i3
Blood vessels ] ‘ . @ o
_— 8 40 L) g
(" x s
Cornea . CO nes 20 - ..g;
'0_“_#
Lens (three types) 0 +— —
X 70 60 50 40 30 20 10 0 10 30 40 50 60 70 80 90
Optic nerve Temporal Retina Eccentrici | Nasal Retina
Suspensory

ligament

Best Visio
e Cones are primary receptors near fovea used under high-light viewing conditions at Cente,
* Approx. 6-7 million cones in the human eye OfConeS,
* Capture color '
e Rods are primary receptors far from fovea used under low-light viewing conditions
e Approx. 120 million rods in human eye
* Capture intensity

15-462/662 | Computer Graphics



Spectral Response of Cones

* Long, Medium, and Small cones pick up Long,
Medium, and Small wavelengths respectively
e Each cone picks up a range of colors given by their
response functions
* Not much different than absorption spectrum

* Each cone integrates the emission & response to
produce a single signal to transmit to the brain

Normalized cone response (linear energy)

PRV AT

= A B(N)S(A)dA
v
-

* Uneven distribution of cone types in eye
* ~64% L cones, ~ 32% M cones ~“4% S cones

200 A0 500 55 600 650 700
Wavelength (nm)
DN M(N)dX
lot of
8.
(A)L(A)dA een Plckeq ),

15-462/662 | Computer Graphics



Radiant Energy
(total number of hits)

Radiant Recap

Radiant Energy Density
(hits per unit area)

Joules (J) Joules per sq meter (J/m?)
Radiant Flux Radiant Flux Pensﬂy
, a.k.a. Irradiance
(total hits per second) (hits per second per unit area)
Watts (W) P P

15-462/662 | Computer Graphics

Watts per sq meter(W/m?)




Lambert’s Law

* Irradiance (E) at surface is proportional to the flux (®) and A
the cosine of angle (@) between light direction and surface
normal:

b B ® cos

A A

E

* Consider rotating a plane away from light rays
* Plane will darken until it is perpendicular to light rays,

then it will be completely black

A= Acosb

15-462/662 | Computer Graphics




The Rendering Equation

* The Rendering Equation

* Rendering Methods
* Forwards Path-Tracing
e Backwards Path-Tracing
e Bi-Directional Path-Tracing
* Metropolis Light Transport

 Variance Reduction
e Sampling Rate
e Ray Depth

* BRDFs
* Lambertian
*  Mirror
* Glass

15-462/662 | Computer Graphics



The Rendering Equation

Lo(p, wo) Le(p, wo)+ /Hz fr(p,wi = w,)Li(p, w;) cos O dw;

outgoing radiance at point p in outgoing direction w,

L, (P/ Wo

scattering function at point p from incoming direction w; to outgoing direction w,

)
Le(p,wo)  emitted radiance at point p in outgoing direction w,
fr(p,wi = wo)

)

incoming radiance to point p from direction w;

Li(p, w;

15-462/662 | Computer Graphics



Example Of A Simple Renderer

* Yellow light ray generated from light source

e Ray hits orange specular surface
e Emits a ray in reflected direction
* Mixes yellow and orange color

* Ray hits blue specular surface Pinhole

e Emits a ray in reflected direction o
* Mixes blue and yellow and orange

e Ray passes through pinhole camera
e Light recorded on photoelectric cell
* Incident pixel will be brown in final image

15-462/662 | Computer Graphics



Hemholtz Reciprocity

C()O “)i
* Reversing the order of incoming and \ /
outgoing light does not affect the BRDF .
p

evaluation
* fT‘(pr (l)i - wo) =f1‘(pl wo - wi)

e Critical to reverse pathtracing algorithms

w;j w
e Allows us to trace rays backwards and
still get the same BRDF affect \ /
@
p

o

15-462/662 | Computer Graphics



Lo(p, wo)

* Intersect /\ , no emission []
* Intersect /\ , no emission [] 4 Pinhole, p
* Ray terminate, emission o

Example Of A Simple Backwards Renderer
[ ray depth 2]

= Le(p,wo)+ /Hz fr(p,wi = wo)Li(p, w;) cos 6 dw;

_'-—
—__
—-—
—-—

L(pixel) = Le(ray1) + f(obj1)[Le(rayz) + fr-(0bjz)[Le (rays)]]

L(pixel) = O +£(A)[ O +£CA)[ 7 1]

—

15-462/662 | Computer Graphics

—

-



Bidirectional Path Tracing

e If path tracing is so great, why not do it twice? * Unbiased algorithm
* Main idea of bidirectional! * No longer trying to connect rays through
non-volume sources
* Trace a ray from the camera into the scene
* Trace aray from the light into the scene e (Can set different lengths per ray
e Connect the rays at the end  Example: Forward m = 2, Backward m=1

15-462/662 | Computer Graphics



Metropolis Light Transport

e Similar idea: mutate good paths Q

* Water causes paths to refract a lot
 Small mutations allows renderer to find —
contributions faster

e Path Tracing and MLT rendered in the same time

| [ Path Tracing ] [ Metrpolis Light Transport ]

15-462/662 | Computer Graphics



Number Of Ray Samples

* Number of Rays
 How many rays we trace into the scene

* Measured as samples (rays) per pixel [spp]

* Increasing the number of rays increases the quality

of the image
* Anti-aliasing
* Reduces black spots from terminating emission
occlusion

[ dds o7 |

15-462/662 | Computer Graphics



Number Of Ray Bounces

 Number of Ray Bounces
« How many times a ray bounces before it
terminates
 Measured as ray bounce or depth

* Increasing the number of ray bounces increases the
guality of the image
» Better color blending around images
* More details reflected in specular images




Lambertian Material

 Also known as diffuse

* Lightis equally likely to be reflected in each output
direction | |
* BRDF is a constant, relying on albedo (p)

* BRDF can be pulled out of the integral

Lo(w,) = fr Li(w;) cos8; dw;
H2

=, / L;(w;) cosB; dw;
H2
—fE

Minions (2015) Illumination Entertainment

e Easy! Pick any outgoing ray w,,

15-462/662 | Computer Graphics



[ side view ]

=]

[ top view ]

/.

/

Do

— i

Reflective Material

* Reflectance equation described as:

—

Wo = —w; + 2(w; - )M

* Why is the ray w; pointing away from the surface?
* Just syntax. Incoming and outgoing rays share
same origin point p

* BRDF represented by dirac delta () function:
d(cosf; — cosb,)

cos 0;

fT(9i7¢i;907¢0) - 5(¢Z—¢o:l:7'(')

* 1 when ray is perfect reflection, 0 everywhere else
* All radiance gets reflected, nothing absorbed

* In practice, no hope of finding reflected direction via
random sampling
* Simply pick the reflected direction!



Refractive Material

[ side view ]

—
1

* Refractive equation described as:
n; sin 6; = m; sin 6,

* Also known as Snell’s Law

* 1n; and n, describe the index of refraction of the incoming
and outgoing mediums

0.\ w * Example: n; is air, n; is water
[ top view ] Medium i
Vacuum 1.0
Air (sea level) 1.00029
ﬂbo Water (20°C) 1.333
| Glass 1.5-1.6

¢V Diamond 2.42

* 7 isthe ratio of the speed of light in a vacuum to that
¢ . _¢_ in a second medium of greater density
o ¢ « The larger the 1, the denser the material

15-462/662 | Computer Graphics




Refractive Material

[ side view ]

—
1

* Refractive equation described as:
n; sin 6; = m; sin 6,

* Also known as Snell’s Law

e Can rewrite the equation as:

\/]. — SiIl2 Ht
[ top view ]

0\ wi cos 0y

2
— /11— ("—) sin? 6
Ur:
| /%, =
(py =4/1— (%) (1 — cos? 6;)

¢o — _¢i
15-462/662 | Computer Graphics




Types of Reflectance Functions

Ideal Specular

* Perfect mirror

\I/}
7« Ideal Diffuse
W}

|
[ ! Uniform in all directions
|

Glossy Specular

* Majority of light in reflected direction

Retroreflective
- » Reflects light back towards source

15-462/662 | Computer Graphics



* A4: Animation

15-462/662 | Computer Graphics Lecture R0O2 | Final Review



Principles Of Animation

e 12 Principles
* Easing
* Arcs
* Timing

* Motion Graphs
e Displacement
e Velocity
e Acceleration

e Splines
* Natural Splines
 Hermite/Bezier Curves
e B-Splines

15-462/662 | Computer Graphics



Onion Skinning

Onion-Skinning is a tool that lets you see previous and
future frames at a lower opacity
* Helps when you have two keyframes and want to add
an in-between frame
* Based off translucency of cel paper

Can also help visualize the spatial trajectory and motion of
objects
 Good debugging tool to make sure trajectories are arc
like and maintain proportions




Easing

* Easing is a strategy where objects accelerate into and out
of their motion

e Derived from physics |
* Objects with inertia have to feel a force in order to 7

ease their way into a new momentum "‘”@ ’W

* Visualized in a 1D chart with tick marks with equal time

separation but varying spatial separation ( ' -!5" {6 Z %?
* The closer the tick marks, the smaller the spatial I T
separation, and the slower the motion. ‘Oww@. ”\:CY“‘
Meme Sut eAoNG N il
* Draw a frame in the middle of frames 1 and 9 (call it 5), o custian it

then a frame between 1 and 5 (call it 4), then 1 and 4 (call
it 3), and then 1 and 3 (call it 2)
e Referred to as subdivision

» Easy strategy to guarantee appropriate easing

[llusion of Life, 1999

15-462/662 | Computer Graphics



Straight Ahead vs. Pose To Pose

* Straight Ahead is the process of drawing in every frame
sequentially
* Easier to create more realistic movements this way,
but harder to keep proportions constant
e Characters end up being less dynamic and less
exaggerated

CONTACT

* Pose to Pose is the process of drawing in key frames
first, and then going back to draw in-betweens
e Allows for more controlled and dynamic posing
e Adopted more in animation settings where
computers are able to help out with the in-
between stages

’
CONTACT

The Animator’s Survival Kit (2001) Richard Williams

* With Pose to Pose, senior artists draw keyframes, junior
artists draw in-betweens

15-462/662 | Computer Graphics



Timing

* Timing is how the motions play out, and at what time intervals
* Used to determine how fast an object should be moving
* How many frames should be used for the motion?
* The more frames, the slower

* Temporal linear interpolation: velocity never changes
* Temporal non-linear interpolation: velocity changes

p—1 Second ———

O—+++D

—-23 Seconds -

L]
“w

15-462/662 | Computer Graphics Lecture 14 | Animation Principles



Arc Motions

(" ARN bﬂi . /\iéNTS‘ ) whitg The SHOWDER RISES WP
\N:M MOYE — M Tle PASSING POS mioN
Tl HAND 18 AT Tt LOWEST PART of e AC

* Arc Motions guarantee that spatial trajectories are arc-like
* Helps to build fluidity in the motion

* Joints rotate instead of translating
* Allows for arc-like movements

* Walk cycles are a combination of many arc movements

15-462/662 | Computer Graphics



Natural Splines

* Can build a spline out of piecewise cubic polynomials p;
e Each polynomial extends from range t = [0,1]
e Polynomials should connect on boundary
* Keyframes agree at endpoints [CO continuity]:

pi(t:) = fi, Pi(tiv1) = fivr Vi=0,..,n—-1 P1-
* Tangents agree at endpoints [C1 continuity]:
P'i(tiv1) = D'iv1(tiv1), Vi=0,..,n—2

e Curvature agrees at endpoints [C2 continuity]:

p”i(ti+1) = p”i+1(ti+1), Vi=0,..,n—2 Po -

* Total equations:
e 2n+(n-1)+(n-1)=4n-2
e Total DOFs:
* 2n+n+n=4n
e Set curvature at endpoints to 0 and solve

p'o(te) =0, p"o(tiv1) =0

15-462/662 | Computer Graphics




Hermite/Bézier Splines

e Each cubic “piece” specified by endpoints and tangents
* Keyframes set at endpoints:

(t;) = [i (tiv1) = fi Vi=0,..,.n—1
pl( l) fl, pl( L+1) fl+1’ S File Edit Object Type Select Effect View Window Help

b TangentS Set at endp0|nt: Anchor Point Convert: T M  Handles: & m Anchors: " ;

Untitled-1* @ 100% (CMYK/GPU Preview) X

p'i(t) =u; pi(tiz1) =Uit1, vVi=0,..,n—1

N

* Natural splines specify just keyframes :
e Bezier splines specify keyframes and tangents *

e (Can get continuity if tangents are set equal 2
: .i'o“

e Total equations: -
* 2n+2n=4n /
O,

e Commonly used in vector art programs
e Illustrator
* Inkscape
* SVGs

15-462/662 | Computer Graphics




B-Splines

* Compute a weighted average of nearby keyframes when
interpolating

* B-spline basis defined recursively, with base condition:

1, ift; <t< tit1

0, otherwise

Bi71(t) —

e And inductive condition:

Bz,k(t) — tz‘+i:ii—tq; Bi,k—l(t) + tzj—l:it_zj-l Bi—l—l,k—l(t) L

* B-spline is a linear combination of bases:

f(t):

degree

e
> .. aiB; 4

15-462/662 | Computer Graphics



Splines Review

[ Interpolation ] [ Continuity ] [ Locality ]
Linear v X 4
Natural v v X
Hermite v X v
Bezier v X v
Catmull-Rom v X v
B-Spline X v v

15-462/662 | Computer Graphics



Simulations

* ODE vs PDE

* Time Integration
e Forwards Euler
e Symplectic Euler

* Lagrangian
« 2nd Derivative

* Boundary Conditions

e Dirichlet
* Neumann

15-462/662 | Computer Graphics Lecture RO2 | Final Review



ODEs vs. PDEs

Em—

ect (rock) in time .ﬁ-.:{_»Miﬂiohs of objects (droplets) in time

[ ODE ] yeeting a rock [ PDE ] yeeted rock lands in pond

15-462/662 | Computer Graphics Lecture 16 | Simulations



Explicit Euler Methods

[ Forward ] [RK2 ]

Vk+1 = Vg + T * a(qx) Vi1 = T * a(qy) ,
_ v
Qre+1 = Qe T T* Vg V' =T*a(qy + ’;1)

v = v, +v"
[ Symplectic ] fet1 k fet1
B Qie+1 = Qi T T * Vieyq
Vi+1 = Vg + T * a(qg)
Qr+1 = q T T * Vg1
[ RK4 ]
! J—
[ Verlet ] Vi1 = T *a(qr) ’
UV k+1
T 7 _
. v =Tx*xqQ +
Viet1 = Vi+os 5 * a(qx) fet1 (G 2 )

144
UV k+1

Qr+1 = qx T T * Vgyq V" 41 = Txa(qy + z )

T
. 1 _ 27,
Vi+1.5 = Vg1 T 7 * a(qx) V' ks =T*xa(qr V" k1)

— 1 4 144 1444 rrrr
A1 = Qi + 7 (Vw1 + 20 1+ 20

k+1t UV k1)

15-462/662 | Computer Graphics



The Laplacian Operator

e All of our model equations used the Laplace operator
e Laplace Equation Au =10
* Heat Equation u=Au
* Wave Equation u=Au

* Unbelievably important object showing up everywhere across physics,
geometry, signal processing, and more

 What does the Laplacian mean?
« Differential operator: eats a function, spits out its 2nd derivative
* What does that mean for a function: u: R™® —» R?
e Divergence of gradient

Au =YV - -Vu
 Sum of second derivatives

_ ou? Ou?
AU—8—$%+"°—|—@

e Deviation from local average

15-462/662 | Computer Graphics




Dirichlet Boundary Conditions

Dirichlet: boundary data always set to fixed values

Example: ¢(0) = a, (1) =b

Many possible functions interpolate values in between

15-462/662 | Computer Graphics Lecture 16 | Simulations



Neumann Boundary Conditions

Neumann: specify derivatives across boundary

Example: ¢'(0) = u, ¢'(1) =v

Again, many possible functions

15-462/662 | Computer Graphics Lecture 16 | Simulations



Good Luck!

Woosh. You will pass
your exams.

15-462/662 | Computer Graphics



