
Final Review

15-462/662 | Computer Graphics Lecture R02 | Final Review

15-462/662 | Computer Graphics Lecture R02 | Final Review

Final Overview

• 80 minutes, 5 Problems worth 125 points in total
• Will be graded out of 100 points (anything after that is extra credit)

• First 4 problems (100pts) are based on lecture material found in these review slides
• 5th problem (extra 25pts) may or may not come from these review slides :)

• Cheat sheet: one 3x3 inch note (about the size of a post it note) front and back

• Please bring a pencil & pen to write your solutions

15-462/662 | Computer Graphics

3D Inverse Rotations

Lecture 03 | Transformations

𝑹𝑻𝑹 = 𝑰	 ⇒	 𝑹𝑻= 𝑹"𝟏

If you need to review any slides more in depth,
look here for which lecture it came from

15-462/662 | Computer Graphics

• A1: Rasterization

• A2: Geometry

• A3: Rendering

• A4: Animation

Lecture R02 | Final Review

15-462/662 | Computer Graphics Lecture R02 | Final Review

Pixel Pushing

• Shaders
• Vertex Shader
• Fragment Shader

• Texturing
• Nearest Neighbor
• Bilinear Filtering
• Trilinear Filtering

• Perspective Transform

• Scene Graphs

15-462/662 | Computer Graphics Lecture 01 | Introduction

The Graphics Pipeline

• Sometimes called the:
• 3D Graphics Pipeline
• Rasterization Pipeline
• GPU Pipeline

• GPU was designed specifically to run this pipeline fast

• Entire pipeline was fixed-function.
• You provide the data, a vertex shader, and a

fragment shader, and the GPU does the rest.
• Fixed-function == fast!

• By limiting what an architecture can do, that
makes the architecture really good at what it
can do.
• In graphics, we need to run the same

operations over millions of datapoints.

Graphics Pipeline Tutorial (2019) Vulkan

15-462/662 | Computer Graphics

Nearest Neighbor Sampling

• Idea: Grab texel nearest to requested location in
texture

• Requires:
• 1 memory lookup
• 0 linear interpolations

Lecture 05 | Texturing

𝑥! ← 𝑟𝑜𝑢𝑛𝑑 𝑥 , 	 𝑦′ ← 𝑟𝑜𝑢𝑛𝑑 𝑦

𝑡 ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥!, 𝑦!

15-462/662 | Computer Graphics

Bilinear Interpolation Sampling

• Idea: Grab nearest 4 texels and blend them
together based on their inverse distance from
the requested location
• Blend two sets of pixels along one axis,

then blend the remaining pixels

• Requires:
• 4 memory lookup
• 3 linear interpolations

Lecture 05 | Texturing

𝑥! ← 𝑓𝑙𝑜𝑜𝑟 𝑥 , 	 𝑦′ ← 𝑓𝑙𝑜𝑜𝑟 𝑦

∆𝑥 ← 𝑥 − 𝑥′
∆𝑦 ← 𝑦 − 𝑦′

𝑡(#,%) ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥!, 𝑦!

𝑡(#'(,%) ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥! + 1, 𝑦!
𝑡(#,%'() ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥!, 𝑦! + 1
𝑡(#'(,%'() ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥!, +1	𝑦! + 1

𝑡# ← 1 − ∆𝑥 ∗ 𝑡(#,%) + ∆𝑥 ∗ 𝑡(#'(,%)
𝑡% ← 1 − ∆𝑥 ∗ 𝑡(#,%'() + ∆𝑥 ∗ 𝑡(#'(,%'()

𝑡 ← 1 − ∆𝑦 ∗ 𝑡#	 + ∆𝑦 ∗ 𝑡%

Lerp 1 & 2 Lerp 3

15-462/662 | Computer Graphics

Trilinear Interpolation Sampling

• Idea: Perform bilinear interpolation on two
layers of the mip-map that represents proper
minification/magnification, blending the results
together

• Requires:
• 8 memory lookup
• 7 linear interpolations

Lecture 05 | Texturing

𝐿#* ←
𝑑𝑢
𝑑𝑥

*

+
𝑑𝑣
𝑑𝑥

*

𝐿%* ←
𝑑𝑢
𝑑𝑦

*

+
𝑑𝑣
𝑑𝑦

*

𝐿 ← max(𝐿#*, 𝐿%*)

𝑑 ← 𝑙𝑜𝑔*	𝐿

𝑑′ ← 𝑓𝑙𝑜𝑜𝑟(𝑑)
∆𝑑 ← 𝑑	 − 𝑑′

𝑡+ ← 𝑡𝑒𝑥[𝑑!]. 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑥, 𝑦
𝑡+'(← 𝑡𝑒𝑥[𝑑! + 1]. 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑥, 𝑦
𝑡 ← 1 − ∆𝑑 ∗ 𝑡+ + ∆𝑑 ∗ 𝑡+'(

Level ceil(d)

Level floor(d)

Bilerp (3 Lerps)

Bilerp (3 Lerps)

(1 Lerp)

15-462/662 | Computer Graphics Lecture 04 | Rasterization

Perspective Projection

distant objects
appear smaller

parallel lines
converge at
the horizon

15-462/662 | Computer Graphics Lecture 04 | Rasterization

Perspective Projection

z
x

y

(-1,-1,-1)

(1,1,1)

(w, h)

(-1,-1)

(1,1)

Original description
of object.

[Rasterization Stage]

Object relative to camera.
Camera at origin looking down –z axis.

Everything visible to camera
mapped to a cube.

Everything visible to camera
mapped to a cube.

(0, 0)
Coordinates stretched to image dims.

Image flipped upside down.

15-462/662 | Computer Graphics Lecture 03 | Transformations

Scene Graph

• Suppose we want to build a skeleton out of cubes

• Idea: transform cubes in world space
• Store transform of each cube

• Problem: If we rotate the left upper leg, the lower left
leg won’t track with it
• Better Idea: store a hierarchy of transforms

• Known as a scene graph
• Each edge (+root) stores a linear

transformation
• Composition of transformations gets applied

to nodes
• Keep transformations on a stack to

reduce redundant multiplication

• Lower left leg transform: 𝐴*𝐴(𝐴,

𝐴F

𝐴G

𝐴H

15-462/662 | Computer Graphics Lecture 03 | Transformations

Instancing

• What if we want many copies of the same object in a
scene?
• Rather than have many copies of the geometry,

scene graph, we can just put a “pointer” node in
our scene graph
• Saves a reference to a shared geometry
• Specify a transform for each reference

• Careful: Modifying the geometry will
modify all references to it Realistic modeling and rendering of plant ecosystems

(1998) Deussen et al

15-462/662 | Computer Graphics

• A1: Rasterization

• A2: Geometry

• A3: Rendering

• A4: Animation

Lecture R02 | Final Review

15-462/662 | Computer Graphics Lecture R02 | Final Review

Meshes

• Types of Geometric Representations
• Algebraic Surfaces
• CSG
• Blobby
• Level Set
• Fractals
• Point Cloud
• Meshes

• Global Mesh Operations
• Subdivision
• Isotropic Remeshing

• Spatial Data Structures
• BVH
• KD-Tree
• Uniform Grid
• Quadtree/Octree

15-462/662 | Computer Graphics Lecture 06 | Geometry

Algebraic Surfaces [Implicit]

• Simple way to think of it: a surface built with algebra [math]
• Generally thought of as a surface where points are some radius
𝑟 away from another point/line/surface

• Easy to generate smooth/symmetric surfaces
• Difficult to generate impurities/deformations

15-462/662 | Computer Graphics Lecture 06 | Geometry

Constructive Solid Geometry [Implicit]

• Build more complicated shapes via Boolean operations
• Basic operations:

• Can be used to form complex shapes!

15-462/662 | Computer Graphics Lecture 06 | Geometry

Blobby Surfaces [Implicit]

• Instead of Booleans, gradually blend surfaces together:

• Easier to understand in 2D:

f=.5 f=.4 f=.3

(Gaussian centered at p)

(Sum of Gaussians centered at different points)

15-462/662 | Computer Graphics Lecture 06 | Geometry

Level Set Methods [Implicit]

• Implicit surfaces have some nice features (e.g., merging/splitting)
• But, hard to describe complex shapes in closed form
• Alternative: store a grid of values approximating function

• Surface is found where interpolated values equal zero
• Provides much more explicit control over shape (like a texture)
• Unlike closed-form expressions, runs into problems of aliasing!

15-462/662 | Computer Graphics Lecture 06 | Geometry

Fractals [Implicit]

• No precise definition; exhibit self-similarity, detail at all scales
• New “language” for describing natural phenomena
• Hard to control shape!

15-462/662 | Computer Graphics Lecture 06 | Geometry

Point Cloud [Explicit]

• Easiest representation: list of points	(𝑥, 𝑦, 𝑧)
• Often augmented with normal

• Easily represent any kind of geometry

• Easy to draw dense cloud (>>1 point/pixel)

• Easy for simulation

• Large lookup time

• Large memory overhead
• Hard to interpolate undersampled regions
• Hard to do processing / simulation /
• Result is just as good as the scan

15-462/662 | Computer Graphics Lecture 06 | Geometry

Triangle Mesh [Explicit]

• Large memory overhead
• Store vertices as triples of coordinates (x,y,z)
• Store triangles as triples of indices (i,j,k)

• Easy interpolation with good approximation
• Use barycentric interpolation to define points

inside triangles

• Polygonal Mesh: shapes do not need to be
triangles
• Ex: quads

0

1

2

3

x y z
0: -1 -1 -1
1: 1 -1 1
2: 1 1 -1
3: -1 1 1

[VERTICES]
i j k
0 2 1
0 3 2
3 0 1
3 1 2

[TRIANGLES]

15-462/662 | Computer Graphics Lecture 07 | Geometry Processing

Loop Subdivision

Step 1:

Step 2: Step 3:

Split triangle
into 4 triangles

Assign new coords Assign old coords
1/8

1/8

3/8 3/8

u u

u

uu

u

1 - nu

n - vertex degree
u - 3/16 if n=3
 3/(8n) otherwise

15-462/662 | Computer Graphics Lecture 07 | Geometry Processing

Loop Subdivision Using Local Ops

Step 1:

Step 2:
Flip new edges until they touch two new vertices

Split all edges in any order

flip

split

15-462/662 | Computer Graphics Lecture 07 | Geometry Processing

Isotropic Remeshing

Step 1: Step 2:

Step 3: Step 4:

collapsesplit

flip average

15-462/662 | Computer Graphics Lecture 08 | Spatial Structures

BVH Example

Bounding boxes will sometimes intersect!

15-462/662 | Computer Graphics Lecture 08 | Spatial Structures

K-D Trees

B

A

A

B C

C

D

E F

D E

F

• Recursively partition space via axis-aligned
partitioning planes
• Interior nodes correspond to spatial splits
• Node traversal proceeds in front-to-back order
• Unlike BVH, can terminate search after first hit

is found
• Still 𝑂(log(𝑁)) performance

15-462/662 | Computer Graphics Lecture 08 | Spatial Structures

Uniform Grid

• Partition space into equal sized volumes (volume-
elements or “voxels”)

• Each grid cell contains primitives that overlap voxel.
(very cheap to construct acceleration structure)

• Walk ray through volume in order
• Very efficient implementation possible (think: 3D

line rasterization)
• Only consider intersection with primitives in

voxels the ray intersects

• What is a good number of voxels?
• Should be proportional to total number of

primitives 𝑁
• Number of cells traversed is proportional to
𝑂(! 𝑁)
• A line going through a cube is a cubed root
• Still not as good as 𝑂(log(𝑁))

15-462/662 | Computer Graphics Lecture 08 | Spatial Structures

Quad-Tree/Octree

• Like uniform grid, easy to build
• Has greater ability to adapt to location of scene

geometry than uniform grid
• Still not as good adaptability as K-D tree

• Quad-tree: nodes have 4 children
• Partitions 2D space

• Octree: nodes have 8 children
• Partitions 3D space

15-462/662 | Computer Graphics

• A1: Rasterization

• A2: Geometry

• A3: Rendering

• A4: Animation

Lecture R02 | Final Review

15-462/662 | Computer Graphics Lecture R02 | Final Review

Color & Radiometry

• Absorption vs Emission

• Eyes vs Cameras
• Pupil
• Lens
• Rods
• Cones

• Radiance
• Radiant Energy
• Radiant Energy Density
• Radiant Flux
• Irradiance

• Lambert’s Law

15-462/662 | Computer Graphics Lecture 09 | Color

Emission Spectrum Examples

energy efficient

sun-like

15-462/662 | Computer Graphics Lecture 09 | Color

Absorption Spectrum Examples

plants are green because they do not absorb green light

15-462/662 | Computer Graphics Lecture 09 | Color

‘Eye’ See What You Mean

• Eyes are biological cameras
• Light passes through the pupil [black dot in the eye]
• Iris controls how much light enters eye [colored ring

around pupil]
• Eyes are sensitive to too much light
• Iris protects the eyes

• Lens behind the eye converges light rays to back of
the eye
• Ciliary muscles around the lens allow the lens

to be bent to change focus on nearby/far
objects

• 130+ million retina cells at the back of the eye
• Cells pick up light and convert it to electrical signal
• Electric signal passes through optic nerve to reach

the brain
Image appears backwards!

Don’t worry, brain flips it rig
ht-side up

15-462/662 | Computer Graphics Lecture 09 | Color

The Biological Camera

• Pupil is the camera opening
• Allows light through

• Iris is the aperture ring
• Controls aperture

• Lens is the…well, lens
• Can change focus

• Retina is the sensor
• Converts light into electrical signal

• Brain is the CPU
• Performs additional compute to correct

raw image signal

15-462/662 | Computer Graphics Lecture 09 | Color

Rods & Cones

Rods

Cones
(three types)

• Cones are primary receptors near fovea used under high-light viewing conditions
• Approx. 6-7 million cones in the human eye
• Capture color

• Rods are primary receptors far from fovea used under low-light viewing conditions
• Approx. 120 million rods in human eye
• Capture intensity

Best vision at center of cones!

Human blind spot

15-462/662 | Computer Graphics Lecture 09 | Color

Spectral Response of Cones

• Long, Medium, and Small cones pick up Long,
Medium, and Small wavelengths respectively

• Each cone picks up a range of colors given by their
response functions
• Not much different than absorption spectrum

• Each cone integrates the emission & response to
produce a single signal to transmit to the brain

• Uneven distribution of cone types in eye
• ~64% L cones, ~ 32% M cones ~4% S cones

A lot of green picked up!

15-462/662 | Computer Graphics

Radiant Recap

Radiant Energy
(total number of hits)

Joules (J)

Radiant Energy Density
(hits per unit area)

Joules per sq meter (J/𝑚$)

Radiant Flux
(total hits per second)

Watts (W)

Radiant Flux Density
a.k.a. Irradiance

(hits per second per unit area)
Watts per sq meter(W/𝑚$)

Lecture 10 | Radiometry

15-462/662 | Computer Graphics

Lambert’s Law

• Irradiance (𝐸) at surface is proportional to the flux (Φ) and
the cosine of angle (𝜃) between light direction and surface
normal:

• Consider rotating a plane away from light rays
• Plane will darken until it is perpendicular to light rays,

then it will be completely black

Lecture 10 | Radiometry

15-462/662 | Computer Graphics Lecture R02 | Final Review

The Rendering Equation

• The Rendering Equation

• Rendering Methods
• Forwards Path-Tracing
• Backwards Path-Tracing
• Bi-Directional Path-Tracing
• Metropolis Light Transport

• Variance Reduction
• Sampling Rate
• Ray Depth

• BRDFs
• Lambertian
• Mirror
• Glass

15-462/662 | Computer Graphics Lecture 11 | Rendering Equation

The Rendering Equation

outgoing radiance at point 𝐩 in outgoing direction 𝜔-

emitted radiance at point 𝐩 in outgoing direction 𝜔-

scattering function at point 𝐩 from incoming direction 𝜔. to outgoing direction 𝜔-

incoming radiance to point 𝐩 from direction 𝜔.

15-462/662 | Computer Graphics Lecture 11 | Rendering Equation

Example Of A Simple Renderer

Pinhole

• Yellow light ray generated from light source

• Ray hits orange specular surface
• Emits a ray in reflected direction
• Mixes yellow and orange color

• Ray hits blue specular surface
• Emits a ray in reflected direction
• Mixes blue and yellow and orange

• Ray passes through pinhole camera
• Light recorded on photoelectric cell
• Incident pixel will be brown in final image

15-462/662 | Computer Graphics Lecture 11 | Rendering Equation

Hemholtz Reciprocity

• Reversing the order of incoming and
outgoing light does not affect the BRDF
evaluation
• 𝑓/ p, 𝜔. → 𝜔- = 𝑓/ p, 𝜔- → 𝜔.

• Critical to reverse pathtracing algorithms
• Allows us to trace rays backwards and

still get the same BRDF affect

𝐩

𝜔. 𝜔,

𝐩

𝜔- 𝜔.

15-462/662 | Computer Graphics Lecture 11 | Rendering Equation

Example Of A Simple Backwards Renderer

Pinhole

𝐿 𝑝𝑖𝑥𝑒𝑙 = 𝐿0 𝑟𝑎𝑦(+ 𝑓/(𝑜𝑏𝑗()[𝐿0 𝑟𝑎𝑦* + 𝑓/(𝑜𝑏𝑗*)[𝐿0 𝑟𝑎𝑦1]]

𝐿 𝑝𝑖𝑥𝑒𝑙	 = 	 +𝑓/ 	 [+𝑓/ 	 []]

• Intersect , no emission
• Intersect , no emission
• Ray terminate, emission

[ray depth 2]

15-462/662 | Computer Graphics

Bidirectional Path Tracing

Lecture 13 | Variance Reduction

• If path tracing is so great, why not do it twice?
• Main idea of bidirectional!

• Trace a ray from the camera into the scene
• Trace a ray from the light into the scene

• Connect the rays at the end

• Unbiased algorithm
• No longer trying to connect rays through

non-volume sources

• Can set different lengths per ray
• Example: Forward m = 2, Backward m = 1

15-462/662 | Computer Graphics

Metropolis Light Transport

Lecture 13 | Variance Reduction

[Path Tracing] [Metropolis Light Transport]

• Similar idea: mutate good paths

• Water causes paths to refract a lot
• Small mutations allows renderer to find

contributions faster

• Path Tracing and MLT rendered in the same time

15-462/662 | Computer Graphics

Number Of Ray Samples

• Number of Rays
• How many rays we trace into the scene

• Measured as samples (rays) per pixel [spp]

• Increasing the number of rays increases the quality
of the image
• Anti-aliasing
• Reduces black spots from terminating emission

occlusion [16 spp]
[1 spp]

Lecture 13 | Variance Reduction

15-462/662 | Computer Graphics

Number Of Ray Bounces

• Number of Ray Bounces
• How many times a ray bounces before it

terminates
• Measured as ray bounce or depth

• Increasing the number of ray bounces increases the
quality of the image
• Better color blending around images
• More details reflected in specular images

[8 depth]
[2 depth]

Lecture 13 | Variance Reduction

15-462/662 | Computer Graphics Lecture 12 | BRDFs

Lambertian Material

• Also known as diffuse

• Light is equally likely to be reflected in each output
direction
• BRDF is a constant, relying on albedo (𝜌)

• BRDF can be pulled out of the integral

• Easy! Pick any outgoing ray 𝑤-
Minions (2015) Illumination Entertainment

15-462/662 | Computer Graphics Lecture 12 | BRDFs

Reflective Material
[side view]

[top view]

• Reflectance equation described as:

• Why is the ray 𝜔. pointing away from the surface?
• Just syntax. Incoming and outgoing rays share

same origin point p

• BRDF represented by dirac delta (𝛿) function:

• 1 when ray is perfect reflection, 0 everywhere else
• All radiance gets reflected, nothing absorbed

• In practice, no hope of finding reflected direction via
random sampling
• Simply pick the reflected direction!

15-462/662 | Computer Graphics Lecture 12 | BRDFs

Refractive Material
[side view]

[top view]

• Refractive equation described as:

• Also known as Snell’s Law

• 𝜂. and 𝜂2 describe the index of refraction of the incoming
and outgoing mediums
• Example: 𝜂. is air, 𝜂2 is water

• 𝜂 is the ratio of the speed of light in a vacuum to that
in a second medium of greater density
• The larger the 𝜂, the denser the material

Vacuum
Air (sea level)
Water (20°C)
Glass
Diamond

1.0
1.00029
1.333
1.5-1.6
2.42

Medium 𝜼

15-462/662 | Computer Graphics Lecture 12 | BRDFs

Refractive Material
[side view]

[top view]

• Refractive equation described as:

• Also known as Snell’s Law

• Can rewrite the equation as:

15-462/662 | Computer Graphics Lecture 12 | BRDFs

Types of Reflectance Functions

Ideal Specular

• Perfect mirror

Ideal Diffuse

• Uniform in all directions

Glossy Specular

• Majority of light in reflected direction

Retroreflective

• Reflects light back towards source

15-462/662 | Computer Graphics

• A1: Rasterization

• A2: Geometry

• A3: Rendering

• A4: Animation

Lecture R02 | Final Review

15-462/662 | Computer Graphics Lecture R02 | Final Review

Principles Of Animation

• 12 Principles
• Easing
• Arcs
• Timing

• Motion Graphs
• Displacement
• Velocity
• Acceleration

• Splines
• Natural Splines
• Hermite/Bezier Curves
• B-Splines

15-462/662 | Computer Graphics Lecture 14 | Animation Principles

• Onion-Skinning is a tool that lets you see previous and
future frames at a lower opacity
• Helps when you have two keyframes and want to add

an in-between frame
• Based off translucency of cel paper

• Can also help visualize the spatial trajectory and motion of
objects
• Good debugging tool to make sure trajectories are arc

like and maintain proportions

Onion Skinning

Illusion of Life, 1999

15-462/662 | Computer Graphics Lecture 14 | Animation Principles

Easing

• Easing is a strategy where objects accelerate into and out
of their motion
• Derived from physics
• Objects with inertia have to feel a force in order to

ease their way into a new momentum

• Visualized in a 1D chart with tick marks with equal time
separation but varying spatial separation
• The closer the tick marks, the smaller the spatial

separation, and the slower the motion.

• Draw a frame in the middle of frames 1 and 9 (call it 5),
then a frame between 1 and 5 (call it 4), then 1 and 4 (call
it 3), and then 1 and 3 (call it 2)
• Referred to as subdivision
• Easy strategy to guarantee appropriate easing

• Straight Ahead is the process of drawing in every frame
sequentially
• Easier to create more realistic movements this way,

but harder to keep proportions constant
• Characters end up being less dynamic and less

exaggerated

• Pose to Pose is the process of drawing in key frames
first, and then going back to draw in-betweens
• Allows for more controlled and dynamic posing
• Adopted more in animation settings where

computers are able to help out with the in-
between stages

• With Pose to Pose, senior artists draw keyframes, junior
artists draw in-betweens

The Animator’s Survival Kit (2001) Richard Williams

15-462/662 | Computer Graphics Lecture 14 | Animation Principles

Straight Ahead vs. Pose To Pose

• Timing is how the motions play out, and at what time intervals
• Used to determine how fast an object should be moving

• How many frames should be used for the motion?
• The more frames, the slower

• Temporal linear interpolation: velocity never changes
• Temporal non-linear interpolation: velocity changes

15-462/662 | Computer Graphics Lecture 14 | Animation Principles

Timing

• Arc Motions guarantee that spatial trajectories are arc-like
• Helps to build fluidity in the motion

• Joints rotate instead of translating
• Allows for arc-like movements

• Walk cycles are a combination of many arc movements

15-462/662 | Computer Graphics Lecture 14 | Animation Principles

Arc Motions

15-462/662 | Computer Graphics Lecture 15 | Kinematics

Natural Splines

• Can build a spline out of piecewise cubic polynomials 𝑝.
• Each polynomial extends from range 𝑡 = [0,1]
• Polynomials should connect on boundary

• Keyframes agree at endpoints [C0 continuity]:

• Tangents agree at endpoints [C1 continuity]:

• Curvature agrees at endpoints [C2 continuity]:

• Total equations:
• 2n + (n-1) + (n-1) = 4n – 2

• Total DOFs:
• 2n + n + n = 4n

• Set curvature at endpoints to 0 and solve

𝑝.(𝑡.) = 𝑓. , 𝑝.(𝑡.'() = 𝑓.'(, ∀𝑖 = 0, … , 𝑛 − 1

𝑝′. 𝑡.'(= 𝑝′.'(𝑡.'(, ∀𝑖 = 0, … , 𝑛 − 2

𝑝′′. 𝑡.'(= 𝑝′′.'(𝑡.'(, ∀𝑖 = 0, … , 𝑛 − 2

𝑝′, 𝑡, = 0, 𝑝′′, 𝑡.'(= 0

15-462/662 | Computer Graphics Lecture 15 | Kinematics

Hermite/Bézier Splines

• Each cubic “piece” specified by endpoints and tangents
• Keyframes set at endpoints:

• Tangents set at endpoint:

• Natural splines specify just keyframes
• Bezier splines specify keyframes and tangents
• Can get continuity if tangents are set equal

• Total equations:
• 2n + 2n = 4n

• Commonly used in vector art programs
• Illustrator
• Inkscape
• SVGs

𝑝.(𝑡.) = 𝑓. , 𝑝.(𝑡.'() = 𝑓.'(, ∀𝑖 = 0, … , 𝑛 − 1

𝑝′. 𝑡. = 𝑢.,	 𝑝′. 𝑡.'(= 𝑢.,'(, ∀𝑖 = 0, … , 𝑛 − 1

15-462/662 | Computer Graphics Lecture 15 | Kinematics

B-Splines

• Compute a weighted average of nearby keyframes when
interpolating

• B-spline basis defined recursively, with base condition:

• And inductive condition:

• B-spline is a linear combination of bases:
degree

15-462/662 | Computer Graphics Lecture 15 | Kinematics

Splines Review

[Interpolation] [Continuity] [Locality]

Linear

Natural

✓

Hermite

B-Spline

Bezier

Catmull-Rom

✓

✓

✓

✓

✗

✓

✗

✓

✓

✓

✓

✗

✓

✗

✗

✗

✓

15-462/662 | Computer Graphics Lecture R02 | Final Review

Simulations

• ODE vs PDE

• Time Integration
• Forwards Euler
• Symplectic Euler

• Lagrangian
• 2nd Derivative

• Boundary Conditions
• Dirichlet
• Neumann

15-462/662 | Computer Graphics

ODEs vs. PDEs

[PDE] yeeted rock lands in pond[ODE] yeeting a rock

𝑑$

𝑑𝑡$
𝐱(𝑡) = 𝐠

𝑑$

𝑑𝑡$
ℎ(𝑡, 𝑥, 𝑦) = Δℎ(𝑡, 𝑥, 𝑦)

Aren’t both a function of space and time?

A single object (rock) in time Millions of objects (droplets) in time

The region of droplets we want to
solve over is our spaceNo additional space parameter

Lecture 16 | Simulations

15-462/662 | Computer Graphics

Explicit Euler Methods

𝑞%&' = 𝑞% + 𝜏 ∗ 𝑣%

𝑣%&' = 𝑣% + 𝜏 ∗ 𝑎(𝑞%)

𝑞%&' = 𝑞% + 𝜏 ∗ 𝑣%&'

𝑣%&' = 𝑣% + 𝜏 ∗ 𝑎(𝑞%)
𝑞%&' = 𝑞% + 𝜏 ∗ 𝑣%&'

𝑣′%&' = 𝜏 ∗ 𝑎(𝑞%)

𝑣′′%&' = 𝜏 ∗ 𝑎(𝑞% +
𝑣(%&'
2

)

𝑣%&' = 𝑣% + 𝑣′′%&'

[Forward]

[Symplectic]

[RK2]

[Verlet]

𝑞%&' = 𝑞% + 𝜏 ∗ 𝑣%&'

𝑣%&' = 𝑣%&).+ +
𝜏
2 ∗ 𝑎(𝑞%)

𝑣%&'.+ = 𝑣%&' +
𝜏
2
∗ 𝑎(𝑞%)

𝑞%&' = 𝑞% +
'
,
(𝑣(%&' + 2𝑣′′%&'+ 2𝑣′′′%&'+ 𝑣′′′′%&')

𝑣′%&' = 𝜏 ∗ 𝑎(𝑞%)

𝑣′′%&' = 𝜏 ∗ 𝑎(𝑞% +
𝑣(%&'
2)

[RK4]

𝑣′′′%&' = 𝜏 ∗ 𝑎(𝑞% +
𝑣(′%&'
2

)

𝑣′′′′%&' = 𝜏 ∗ 𝑎(𝑞% + 𝑣(′′%&')

Lecture 16 | Simulations

15-462/662 | Computer Graphics

The Laplacian Operator

• All of our model equations used the Laplace operator
• Laplace Equation ∆𝑢 = 0
• Heat Equation 𝑢̇ = ∆𝑢
• Wave Equation 𝑢̈ = ∆𝑢

• Unbelievably important object showing up everywhere across physics,
geometry, signal processing, and more

• What does the Laplacian mean?
• Differential operator: eats a function, spits out its 2nd derivative
• What does that mean for a function: 𝑢:ℝ3 → ℝ?

• Divergence of gradient

• Sum of second derivatives

• Deviation from local average
• …

Lecture 16 | Simulations

15-462/662 | Computer Graphics

Dirichlet Boundary Conditions

Dirichlet: boundary data always set to fixed values

Example: 𝜙(0) = 𝑎, 𝜙(1) = 𝑏

Many possible functions interpolate values in between

Lecture 16 | Simulations

15-462/662 | Computer Graphics

Neumann Boundary Conditions

Neumann: specify derivatives across boundary

Example: 𝜙!(0) = 𝑢, 𝜙!(1) = 𝑣

Again, many possible functions

Lecture 16 | Simulations

15-462/662 | Computer Graphics

Good Luck!

Lecture 16 | Simulations

