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C++

• C++ was developed by Bell Labs in 
1979 as an extension of the C language

• Goal was to add object-oriented 
programming into the C language

• Still wanted to maintain low-level 
functionality of C

• Called “C with Classes”
• Changed to C++ in 1983

• Every few years a new C++ standard 
comes out

• C++11
• C++14
• C++17
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Why C++ For Graphics

• “I want a fast language, not a safe 
language” -- max slater, probably

• Computer graphics requires quick 
access of large data

• Pixel buffers
• Geometry buffers
• Textures
• Offscreen buffers

• C++ is very efficient at handling 
large data

• Many graphics APIs already exist in, or 
work closely with C++

• OpenGL
• Vulkan
• Direct3D
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Why C++ For Graphics

• "C makes it easy to shoot yourself in the 
foot; C++ makes it harder, but when you 
do it blows your whole leg off” -- Bjarne 
Stroustrup (1986) creator of C++

• You are responsible for dealing with your 
own memory

• Some safety features in C++, but 
since we’re working with large 
amounts of memory, easy run out of 
application memory

• With a lot of memory, easy to end up in 
the wrong place/index
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Why C++ For Graphics

• For many, this will be your first time 
using C++

• This course is designed to teach 
you BOTH graphics and C++

• C++ is ubiquitous in graphics 
academics, research, and industry

• Having a working knowledge of C++ 
is essential if continuing graphics

• Another language you can add to your 
resume :) WALL-E (2008) Pixar
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Classes

class A {

public:
    int x;
private:
    int y;
protected:
    int z:

};

class B: public A {
    void test1() {
 // works: B has access to public and protected
        return x + z;
    }
    void test2() {
 // fails: B doesn't have access to private
        return y;
    }
}

• Classes in C++ are defined with a 
class name and function/variable 
definitions

• public: values are accessible 
outside the class

• private: values are not accessible 
outside classes and can only be 
accessed inside class functions

• protected: values are private 
except to other classes that are 
derived from the class
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Classes

class A {
public:
    int x;
private:
    int y;
    // specify B is a friend class of A
    friend class B
protected:
    int z:
};
class B: public A {
    void test1() {
        // works: B has access to public and protected
        return x + z;
    }
    void test2() {
        // works: B is a friend class and 
        // can access private A values
        return y;    
    }
}

• test1() can execute 
because public and protected value
s of the base class A are visible to 
the derived class B

• test2() fails because a derived 
class does not have access 
to private values of a base class. 

• To fix this, we can declare B as 
a friend class of A 

• Classes trust friends with their 
private values!
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Classes
class Vertex {
public:

    HalfedgeRef& halfedge() {return _halfedge;}
    HalfedgeCRef halfedge() const {return _halfedge;}

    bool on_boundary() const;
    unsigned int degree() const;
    Vec3 normal() const;
    Vec3 center() const;
    Vec3 neighborhood_center() const;
    unsigned int id() const {return _id;}

    Vec3 pos;

private:
    Vertex(unsigned int id) : _id(id) {}
    Vec3 new_pos;
    bool is_new = false;
    unsigned int _id = 0;
    HalfedgeRef _halfedge;
    friend class Halfedge_Mesh;
};

• In Scotty3D, our classes obey these 
access patterns. 

• Here we have the Vertex class.

• The Vertex constructor is 
a private field

• In Scotty3D, we do not want just 
anyone creating Vertex objects

• We declare the constructor 
as private and give only certain 
classes access to create Vertex
objects using the friend class 
specifier
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Classes
class Vertex {
public:

    HalfedgeRef& halfedge() {return _halfedge;}
    HalfedgeCRef halfedge() const {return _halfedge;}

    bool on_boundary() const;
    unsigned int degree() const;
    Vec3 normal() const;
    Vec3 center() const;
    Vec3 neighborhood_center() const;
    unsigned int id() const {return _id;}

    Vec3 pos;

private:
    Vertex(unsigned int id) : _id(id) {}
    Vec3 new_pos;
    bool is_new = false;
    unsigned int _id = 0;
    HalfedgeRef _halfedge;
    friend class Halfedge_Mesh;
};

Vertex *c = vertexList[i];

// works: public variable       
c->pos = Vec3(1.f,0.f,0.f);

// fails: private variable
c->new_pos = Vec3(1.f,0.f,0.f);

• Some features we can edit directly 
without using a class function, but 
other features are private and 
cannot be edited

• So how do we edit new_pos ?
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Classes
class Vertex {

...

private:

    ...
    // we give Halfedge_Mesh access to private values
    friend class Halfedge_Mesh;
};

class Halfedge_Mesh {
public:
    // access to public & private values in Vertex class
    class Vertex;
    class Edge;
    class Face;
    class Halfedge;

    std::optional<FaceRef> bevel_vertex(VertexRef v);
    std::optional<FaceRef> bevel_edge(EdgeRef e);
    std::optional<FaceRef> bevel_face(FaceRef f);
}

• Classes can inherit attributes from 
other classes, gaining access 
to public and private values in those 
classes

• The Halfedge_Mesh class is built 
using Vertex, Edge, Face, 
and Halfedge components

• We can declare Halfedge_Mesh 
as a friend class in the Vertex 
class
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Classes
class Vertex {

...

private:

    ...
    // we give Halfedge_Mesh access to private values
    friend class Halfedge_Mesh;
};

class Halfedge_Mesh {
public:
    // access to public & private values in Vertex class
    class Vertex;
    class Edge;
    class Face;
    class Halfedge;

    std::optional<FaceRef> bevel_vertex(VertexRef v);
    std::optional<FaceRef> bevel_edge(EdgeRef e);
    std::optional<FaceRef> bevel_face(FaceRef f);
}

auto halfedge_Mesh::bevel(VertexRef v) {

    // works: public variable
    v->pos = Vec3(1.f,0.f,0.f);
    // works: Halfedge_Mesh is friend
    v->new_pos = Vec3(1.f,0.f,0.f);
}

• Now in our Halfedge_Mesh class, we 
can write functions that access these 
private values from the Vertex class

• We chose to make variables in 
classes private in order to ensure 
classes that we don't want modifying 
these variables will never have access 
to it
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Templates
class Cache {

public:

    Cache(int N) {
        data = calloc(N, sizeof(datatype));
        freq = calloc(N, sizeof(int));
        size = N;
    }
    datatype get(int idx) {
        freq[idx]++;
        return data[idx];
    }

private:

    datatype *data;
    int *freq;
    int size;
}

• Templates help define a generic 
datatype that you can use to write 
versatile code without explicitly 
defining the interface for each type 

• Your compiler writes the template 
code only if it is called, otherwise 
the compiler avoids it

• Templating can be thought of as 
getting the compiler to write your 
code

• Say we'd like to create a new set of 
classes that will track query usage per 
element to help for analytics. We can 
call this class our cache
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Templates
class CacheInt {

public:

    CacheInt(int N) {
        data = calloc(N, sizeof(int));
        freq = calloc(N, sizeof(int));
        size = N;
    }
    int get(int idx) {
        freq[idx]++;
        return data[idx];
    }

private:

    int *data;
    int *freq;
    int size;
}

• Here is our class for ints
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Templates
class CacheFloat {

public:

    CacheFloat (int N) {
        data = calloc(N, sizeof(float));
        freq = calloc(N, sizeof(float));
        size = N;
    }
    float get(int idx) {
        freq[idx]++;
        return data[idx];
    }

private:

    float *data;
    int *freq;
    int size;
}

• Here is our class for floats
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Templates
class CacheDouble {

public:

    CacheDouble (int N) {
        data = calloc(N, sizeof(double));
        freq = calloc(N, sizeof(double));
        size = N;
    }
    double get(int idx) {
        freq[idx]++;
        return data[idx];
    }

private:

    double *data;
    int *freq;
    int size;
}

• Here is our class for doubles
• This is getting to be a lot of code…
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Templates
Template<typename T>
class Cache {

public:

    Cache(int N) {
        data = calloc(N, sizeof(T));
        freq = calloc(N, sizeof(int));
        size = N;
    }
    T get(int idx) {
        freq[idx]++;
        return data[idx];
    }

private:

    T *data;
    int *freq;
    int size;
}

• We can use Template<typename T> 
to create a generic datatype and bind 
it on compile time

• Then we can create instances of int, 
float and double caches easily

// creates int class
Cache<int> a = Cache<int>(10);
// creates float class
Cache<float> b = Cache<float>(10);
// creates double class
Cache<double> c = Cache<double>(10);
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Templates
Template<typename T>
class Cache {

public:

    Cache(int N) {
        data = calloc(N, sizeof(T));
        freq = calloc(N, sizeof(int));
        size = N;
    }
    T get(int idx) {
        freq[idx]++;
        return data[idx];
    }

private:

    T *data;
    int *freq;
    int size;
}

• The best way to think about this is that every 
time we create a new template datatype for 
the Cache class, it makes a copy of the 
string defining the class and swaps out 
every instance of the typename T before 
inserting it into the file and compiling it

• If we never make a call to Cache with 
type T, then the template is ignored 
and we never compile it (yet another 
optimization on the compiler's part!)

// creates int class
Cache<int> a = Cache<int>(10);
// creates float class
Cache<float> b = Cache<float>(10);
// double class never created!
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Templates

Template<typename T>
class Spline {
public:

    T at(float time) const;

    void set(float time, T value) { control_points[time] = value; }
    void erase(float time) { control_points.erase(time); }
    bool has(float t) const { return control_points.count(t); }
    bool any() const { return !control_points.empty(); }
    void clear() { control_points.clear(); }

private:
    // records keyframe values at specific times
    std::map&ltfloat, T&gt control_points;
};

• We use templates a lot in Scotty3D, and you'll even work to implement some template classes 
in the Animation unit. For example:
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Templates
Spline<int> S;
S.add(0.f, 0);
S.add(1.f, 61848);
// prints 15462
printf("%d\n", S.at(0.25))

• The program will then the below string of code, 
replacing typename T with Spline, making a 
strong-typed class interface for the type

Template<typename T>
class Spline {
public:

    T at(float time) const;

    void set(float time, T value) { control_points[time] = value; }
    void erase(float time) { control_points.erase(time); }
    bool has(float t) const { return control_points.count(t); }
    bool any() const { return !control_points.empty(); }
    void clear() { control_points.clear(); }

private:
    // records keyframe values at specific times
    std::map&ltfloat, T&gt control_points;
};
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Templates

• Many other library classes and data structures 
also use templates to exploit generic types. 
C++ classes like the ones below use templates 
to avoid redundant coding:

std::map<T1, T2> A;            // list of key-value pairs
std::unordered_map<T1, T2> B;  // unordered list of key-value pairs
std::set<T> C;                 // list without duplicates
std::unordered_set<T> D;       // unordered list without duplicates
std::list<T> E;                // dumb list
std::vector<T> F;              // fancy list
std::deque<T> G;               // list with multi-side insertion/deletion
std::pair<T1, T2> H;           // two-element list
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Iterators

class HalfedgeMesh {

public:

    list<Vertex> vertices;
    ...
    typedef list<Vertex>::iterator VertexIter;
    ...
    VertexIter verticesBegin() { return vertices.begin(); }
    VertexIter verticesEnd() { return vertices.end(); }
    ...

};

• Iterators allow you it iterate 
through ordered and unordered 
structs (like sets and unordered 
maps) using the ::iterator 
attribute

• We can see that mesh.vertices 
holds a list of Vertex objects. 
vertices.begin() returns the first 
iterator in our list, and we 
increment that until we reach the 
last iterator vertices.end() (non-
inclusive)

• We typedef 
list<Vertex>::iterator as 
VertexIter for easy notation
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Iterators

class HalfedgeMesh {

public:

    list<Vertex> vertices;
    ...
    typedef list<Vertex>::iterator VertexIter;
    ...
    VertexIter verticesBegin() { return vertices.begin(); }
    VertexIter verticesEnd() { return vertices.end(); }
    ...

};

• Our normal approach in C would 
be to determine the number of 
vertices in the list and use a for 
loop with indexing to query for 
each vertex and update its 
properties

• We can instead use iterators 
in our for-loop to simplify the 
code and speed up the 
process

HalfedgeMesh& mesh;

// iterate over list<Vertex> elements
for(VertexIter v = mesh.verticesBegin(); v != mesh.verticesEnd(); v++) {
    v->position = v->newPosition;
}
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Iterators

• An easy way to think about iterators are as pointers. We can 
iterate through our vector of ints and dereference the iterator 
we are on to get the value it points to. By incrementing our 
iterator, we are jumping sizeof(datatype) bytes in memory 
to get a pointer to the next value

vector<int> a = { 1, 5, 4, 6, 2 }; 
printf("I love ");

for(vector<int>::iterator ptr = a.begin(); ptr != a.end(); ptr++) {
    printf("%d", *ptr);
}
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Auto

• Sometimes (especially in graphics) datatypes in C++ can be 
very long. A good programmer will recognize when a dataype 
should be obvious and instead will alias the original datatype 
using the auto keyword. Consider the following example:

const std::vector<Mesh::Index>& Mesh::indices() const {
    return _idxs;
}

// long, annoying, hard to type
Mesh& mesh;
const std::vector<Mesh::Index>& idx = mesh.indices();
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Auto

• Sometimes (especially in graphics) datatypes in C++ can be 
very long. A good programmer will recognize when a dataype 
should be obvious and instead will alias the original datatype 
using the auto keyword. Consider the following example:

const std::vector<Mesh::Index>& Mesh::indices() const {
    return _idxs;
}

// long, annoying, hard to type
Mesh& mesh;
const std::vector<Mesh::Index>& idx = mesh.indices();

// easy, breezy, beautiful
Mesh& mesh;
const auto& idx = mesh.indices();
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Const
unsigned int Halfedge_Mesh::Face::degree() const {

    unsigned int d = 0;
    HalfedgeCRef h = _halfedge;

    do {
        d++;
        h = h->next();
    } while (h != _halfedge);

    return d;

}

• const prevents us from modifying the 
state of an object or variable. We can 
define a variable as const such that we 
cannot update it, or we can define a 
function in a class as const such that we 
cannot modify any of the properties of that 
class

• This helps optimize our code (telling 
the compiler that we don't need write 
access to the variable) and also helps 
create safer code by ensuring class 
variables won't be overwritten

• The following function starts by reading the 
_halfedge of the Face class and iterates 
through each halfedge to get the degree of 
the face. During the process we only read 
from but do not write to any class values
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Const
unsigned int Halfedge_Mesh::Face::degree() const {

    unsigned int d = 0;
    HalfedgeCRef h = _halfedge;

    do {
        d++;
        h = h->next();
    } while (h != _halfedge);

    return d;

}

• But wait! what’s HalfedgeCRef??

• It's a const_iterator! But wait! how are 
we able to update h if it's a 
const_iterator? 

• Let's look at a quick example

using HalfedgeCRef = list<Halfedge>::const_iterator;
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Const

int valA = 15462;
int valB = 15418;

int *a = &valA; // normal int pointer
a = &valB;      // success! we can modify what a points too
*a = 15213;     // success! we can modify the value at the address a points to

const int *b = &valA; // pointer to const int
b = &valB;            // success! we can modify what b points too
*b = 15213;           // fails: can't change value of const int

int const *c = &valA; // const pointer to int
c = &valB;            // fails: can't change pointer
*c = 15213;           // success! we can modify the value at the address c points to

const int const *d = &valA; // const pointer to a const int
d = &valB;                  // fails: can't change pointer
*d = 15213;                 // fails: can't change value of const int

• We normally define an int pointer as int* and can put the const symbol before the int datatype 
(const int *ptr) or after it (int const *ptr). Yet these lead to different behaviors as seen above
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Const
unsigned int Halfedge_Mesh::Face::degree() const {

    unsigned int d = 0;
    HalfedgeCRef h = _halfedge;

    do {
        d++;
        h = h->next();
    } while (h != _halfedge);

    return d;

}

• Where we place the const keyword 
matters as to whether we can change the 
address of the pointer or the value at the 
location of the pointer. 

• With HalfedgeCRef, since it is a 
const_iterator, that means that it is an 
iterator to a const value in the list. Thus, 
we can change the address that h points 
to, and we never end up changing the 
actual values in the halfedge list 

• This prevents us from accidentally 
changing values in the halfedge lists, 
giving us read-only access to the data 
in order to compute the degree of the 
face via halfedge traversal

using HalfedgeCRef = list<Halfedge>::const_iterator;
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Static

struct Mat4 {

    static const Mat4 I;
    static const Mat4 Zero;

    static Mat4 transpose(const Mat4& m);
    static Mat4 inverse(const Mat4& m);
    static Mat4 translate(Vec3 t);
    static Mat4 rotate(float t, Vec3 axis);
    static Mat4 euler(Vec3 angles);
    static Mat4 rotate_to(Vec3 dir);
    static Mat4 rotate_z_to(Vec3 dir);
    static Mat4 scale(Vec3 s);
    static Mat4 axes(Vec3 x, Vec3 y, Vec3 z);
    ...
}

• The static keyword can be used in 
different contexts to mean different things. 
In general, we use static to help define 
that a resource is shared/accessible in a 
larger scope than it actually is

• Inside of a class, we can define both 
functions and variables as static

• For static functions, we can call them 
without creating an instance of the class by 
reference the Mat4:: class-name before 
calling the class function.

Vec3 t = Vec3(1.f,2.f,3.f);

// calling a Mat4 static function 
// without using an instance to call it
Mat4 m = Mat4::axes(t,t,t); 
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Static

const inline Mat4 Mat4::I = Mat4{Vec4{1.0f, 0.0f, 0.0f, 0.0f}, 
                Vec4{0.0f, 1.0f, 0.0f, 0.0f},
                Vec4{0.0f, 0.0f, 1.0f, 0.0f},
                Vec4{0.0f, 0.0f, 0.0f, 1.0f}};

const inline Mat4 Mat4::Zero = Mat4{Vec4{0.0f, 0.0f, 0.0f, 0.0f}, 
                Vec4{0.0f, 0.0f, 0.0f, 0.0f},
                Vec4{0.0f, 0.0f, 0.0f, 0.0f},
                Vec4{0.0f, 0.0f, 0.0f, 0.0f}};

• static variables are shared among all copies of object instances. In 
this case, regardless of how many Mat4 objects we create, they will 
always share the same I (identity) and Zero (zero matrix) values

• A program can also define the static variables and call functions without 
ever needing to create an instance. It does so by defining I and Zero 
as globally accessible parameters under the Mat4 struct namespace

• Once we define a static value, we cannot redefine it, thus making it 
constant
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Static

------------ main.cpp ------------ 

#include "library.h"
int numCores = 8;

------------ library.h ------------
 
int numCores = 1;

• Another instance of static variables (although not as commonly 
used) is declaring static global variables. The effect of this is to 
limit the scope of the variable to the current file only

• Your compiler will give you a warning when linking library.h that 
numCores has been redefined. To resolve this issue, we can use 
the static keyword to bind the variables to a file-only scope

------------ main.cpp ------------ 

#include "library.h"
int numCores = 8;

------------ library.h ------------
 
static int numCores = 1;
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Namespace

• Namespace help us encapsulate data 
and types into a group for easier 
referencing. It can also help us avoid 
conflicts if we have variables and 
functions of the same name. 

• In Scotty3D we use namespace to 
group together different pieces of the 
graphics pipeline. For example, one 
namespace you will be seeing a lot in 
A3 is PT (PathTracer).

namespace PT {

    class Tri_Mesh {

    public:
        Tri_Mesh() = default;
        Tri_Mesh(const GL::Mesh& mesh);

        BBox bbox() const;
        Trace hit(const Ray& ray) const;

 ...

        void build(const GL::Mesh& mesh);

    private:
        std::vector&ltTri_Mesh_Vert&gt verts;
        BVH&ltTriangle&gt triangles;

    };

}
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Namespace

• Here, we've enclosed the Tri_Mesh 
class in the namespace PT 

• If we'd like to reference an instance of 
this class, we can do so using the 
PT:: format

namespace PT {

    class Tri_Mesh {

    public:
        Tri_Mesh() = default;
        Tri_Mesh(const GL::Mesh& mesh);

        BBox bbox() const;
        Trace hit(const Ray& ray) const;

 ...

        void build(const GL::Mesh& mesh);

    private:
        std::vector&ltTri_Mesh_Vert&gt verts;
        BVH&ltTriangle&gt triangles;

    };

}

class Rig {
...
private:
    ...
    // Tri_Mesh defined in PT namespace
    PT::Tri_Mesh mesh_bvh;
};
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Namespace

• We can also un-enclose namespaces 
if the name is too long and/or we 
know we will be using objects from 
that namespace a lot in a given file

• This can be done with the using 
keyword

namespace PT {

    class Tri_Mesh {

    public:
        Tri_Mesh() = default;
        Tri_Mesh(const GL::Mesh& mesh);

        BBox bbox() const;
        Trace hit(const Ray& ray) const;

 ...

        void build(const GL::Mesh& mesh);

    private:
        std::vector&ltTri_Mesh_Vert&gt verts;
        BVH&ltTriangle&gt triangles;

    };

}

using namespace PT;
class Rig {
...
private:
    ...
    // access Tri_Mesh without PT
    Tri_Mesh mesh_bvh; 
};
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Virtual

• virtual functions allow the program 
to call a function from a derived class 
using a base-class pointer of a 
derived class object

• Does that not make sense?
• Good. It shouldn't have

• Say I have two classes A and B. B is 
publicly derived from A, alongside 
sharing some similar function names

class A {   
    virtual void undo() {...};
    void redo() {...};
};
class B : public A {    
    void undo() {...};
    void redo() {...};
};

B b;
A *a = &b;
a->undo() // which undo do I call?
a->redo() // which redo do I call?
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Virtual

• We know that a->undo() calls the 
derived instance and a->redo() calls 
the base instance

• Defining virtual functions is a handy tool 
for runtime polymorphism where we 
want to override a base function 
definition in a derived class

• We can also define virtual functions 
in base classes as templates for 
derived classes

class A {   
    // virtual tells us to go to the derived class
    virtual void undo() {...}; 
    // program doesn't know of another existence 
    // runs this instance
    void redo() {...};
};
class B : public A {    
    // program runs this version
    void undo() {...};
    // program doesn't run this version    
    void redo() {...};
};

B b;
A *a = &b;
a->undo() // calls derived instance
a->redo() // calls base instance
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Virtual

• In Scotty3D, we use virtual functions 
in the Action_Base class to give us a 
template for our MeshOp class.

class Action_Base {
    virtual void undo() = 0;
    virtual void redo() = 0;
    friend class Undo;
public:
    virtual ~Action_Base() = default;
};

class MeshOp : public Action_Base {
    void undo() {
        Scene_Object& obj = scene.get_obj(id);
        obj.set_mesh(mesh);
    }
    void redo() {
        Scene_Object& obj = scene.get_obj(id);
        auto sel = obj.set_mesh(mesh, eid);
        op(obj.get_mesh(), sel);
}
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Datatypes

• C++ comes with many handy datatypes used 
for storing and parsing data. Each datatype is 
implemented in a different fashion, and 
choosing the correct datatype depends on the 
task (what kinds of data access patterns you 
will have).

• The vector class is one of the most common 
classes in C++ meant to handle random-
access iterators well. 

• vector elements are always held in 
order, meaning that insertions at the end 
of the list is O(1) but insertions in the 
middle of the list are O(n) since we need 
to shift elements over. The amortized 
insertion cost is O(1)

// continuous memory layout
std::vector<T> v;
// doubly-linked list
std::list<T> v;
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Datatypes

• An application of the vector 
class includes:

// continuous memory layout
std::vector<T> v;
// doubly-linked list
std::list<T> v;

#include <vector>
         
Vector<int> a(50);                  // create int vector of size 50  
Vector<int> b(10, 15462);           // create int vector of size 10 initialized as 15462      
a.size();                           // returns 50
a.push_back(15462);                 // adds 15462 to back of list
a.pop_back();                       // removes last element
Vector<int>::iterator p = a.begin() // get iterator to first element
while(p < a.end()) {                // get iterator to last element
(void)a[p];                         // supports random access patterns well
p += randint(0,5); }
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Memory Management

class Joint {
public:
    Joint(unsigned int id) : _id(id) {}
    Joint(unsigned int id, Joint* parent, Vec3 extent) ...
    ~Joint() { for(Joint* j : children) delete j; }
    ...
private:
    std::unordered_set<Joint> children;
    ...
    friend class Skeleton;
    friend class Scene;
};

• In C++, you’ll need to manage your 
own memory. That means you’ll need 
to allocate memory when needed and 
free memory when done

• As an example, the Joint class stores 
an unordered_set<Joint> of all the 
joint's children. When a Joint is 
deleted, the deconstructor ~Joint() 
iterates through each child joint and 
deletes it (think of it as burning the 
bridge in a linked-list structure)
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Memory Management

class Joint {
public:
    Joint(unsigned int id) : _id(id) {}
    Joint(unsigned int id, Joint* parent, Vec3 extent) ...
    ~Joint() { for(Joint* j : children) delete j; }
    ...
private:
    std::unordered_set<Joint> children;
    ...
    friend class Skeleton;
    friend class Scene;
};

• When we go to add a child joint to our 
skeleton, we call the Joint(unsigned 
int id, Joint* parent, Vec3 
extent) constructor using the new 
keyword.

Joint* Skeleton::add_child(Joint* j, Vec3 e) {
    Joint* c = new Joint(next_id++, j, e);    // use the new keyword when allocating
    for(float f : keys()) {
        c->anim.set(f, Quat{});
    }
    j->children.insert(c);
    return c;
}
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Memory Management

class Joint {
public:
    Joint(unsigned int id) : _id(id) {}
    Joint(unsigned int id, Joint* parent, Vec3 extent) ...
    ~Joint() { for(Joint* j : children) delete j; }
    ...
private:
    std::unordered_set<Joint> children;
    ...
    friend class Skeleton;
    friend class Scene;
};

• When we want to delete our joint in 
our implementation, we can add the 
joint to an erased list

void Skeleton::erase(Joint* j) {
    if(j->parent) {
        j->parent->children.erase(j);
    } else {
        roots.erase(j);
    }
    erased.insert(j);
}
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Memory Management

class Joint {
public:
    Joint(unsigned int id) : _id(id) {}
    Joint(unsigned int id, Joint* parent, Vec3 extent) ...
    ~Joint() { for(Joint* j : children) delete j; }
    ...
private:
    std::unordered_set<Joint> children;
    ...
    friend class Skeleton;
    friend class Scene;
};

• Then when we call delete on our 
Skeleton object, we iterate over the 
joints from both the roots and erased 
lists and delete the joints

• Our deconstructor deletes both the 
reference to the Skeleton object and 
any other objects that it held

void Skeleton::erase(Joint* j) {
    if(j->parent) {
        j->parent->children.erase(j);
    } else {
        roots.erase(j);
    }
    erased.insert(j);
}

Skeleton::~Skeleton() {
 
    for(Joint* j : roots) 
 delete j; 

    for(Joint* j : erased) 
 delete j;
}
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References

bool hit(Line line, Vec3& pt) const {
    Vec3 n = p.xyz();
    float d = dot(line.dir, n);
    float t = (p.w - dot(line.point, n)) / d
    // can assign to pt
    // value persists after function returns
    pt = line.at(t);
    return t >= 0.0f;
}

• Pass-by-value creates a copy of the 
variable so that any modifications to the 
variable are binded to a local-scope of that 
function alone 

• Pass-by-reference gets the address of the 
variable in memory, allowing the function to 
modify the variable such that the 
modification will be present even after the 
function returns

• In hit() we pass in line as a value and pt as a reference 
• line is a copy, and so any modifications made to it will be local in scope to the 

function
• pt is passed as reference, and any modifications made to it will be saved 
• This is useful when we not only want to return true if our line hits the plane, but 

we would also want to store the resulting hit location in pt 
• Using this layout, we can get multiple pieces of information using references
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References

class Vertex {
public:
    HalfedgeRef& halfedge() {return _halfedge;}
    ...
private:
    ...
    HalfedgeRef _halfedge;
};

• We can declare functions that automatically 
cast variables to ref on input and return

• This does not mean that the variable 
accepting the return must also be a 
reference. Consider how h is being 
assigned a reference even though it is not a 
reference type itself

• So then why bother returning a ref?
• Sometimes we just want reassurance 

that we're always returning a reference 
to the same vertex halfedge in our call 
to vert->halfedge(), and that no 
duplicates are being created

float totalArea = 0.0f;
// HalfedgeRef type accepts HalfedgeRef&
HalfEdgeRef h = vert->halfedge(); do {
  if(!h->face()->is_boundary()) {
    totalArea += h->face()->area();
  }
  // because it isn't a ref, we can keep updating it
  h = h->twin()->next(); 
}
while(h != vert->halfedge());
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• Introduction To C++

• C++ Concepts

• Closing Message
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Good Luck!

• Did anyone ever tell you what OpenGL stands for?

• Open Graphics Library?
• Open GPU Lists?
• Open Generative Language?

• None of the above! OpenGL stands for Open Good 
Luck! That's because despite how hard graphics can 
be, and how frustrated you might get, you're never 
alone. We're all here to support you in the graphics 
community. So take a chance, have fun, and get your 
hands dirty with some graphics code

• We can't wait to see the things you'll go on to create :)  
-- 15462 Staff
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