
C++: A Programmer’s Perspective
with foreword from max slater

15-462/662 | Computer Graphics Lecture 02.5 | C++

15-462/662 | Computer Graphics Lecture 02.5 | C++

• Introduction To C++

• C++ Concepts

• Closing Message

15-462/662 | Computer Graphics

C++

• C++ was developed by Bell Labs in
1979 as an extension of the C language

• Goal was to add object-oriented
programming into the C language

• Still wanted to maintain low-level
functionality of C

• Called “C with Classes”
• Changed to C++ in 1983

• Every few years a new C++ standard
comes out

• C++11
• C++14
• C++17

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Why C++ For Graphics

• “I want a fast language, not a safe
language” -- max slater, probably

• Computer graphics requires quick
access of large data

• Pixel buffers
• Geometry buffers
• Textures
• Offscreen buffers

• C++ is very efficient at handling
large data

• Many graphics APIs already exist in, or
work closely with C++

• OpenGL
• Vulkan
• Direct3D

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Why C++ For Graphics

• "C makes it easy to shoot yourself in the
foot; C++ makes it harder, but when you
do it blows your whole leg off” -- Bjarne
Stroustrup (1986) creator of C++

• You are responsible for dealing with your
own memory

• Some safety features in C++, but
since we’re working with large
amounts of memory, easy run out of
application memory

• With a lot of memory, easy to end up in
the wrong place/index

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Why C++ For Graphics

• For many, this will be your first time
using C++

• This course is designed to teach
you BOTH graphics and C++

• C++ is ubiquitous in graphics
academics, research, and industry

• Having a working knowledge of C++
is essential if continuing graphics

• Another language you can add to your
resume :) WALL-E (2008) Pixar

Lecture 02.5 | C++

15-462/662 | Computer Graphics

• Introduction To C++

• C++ Concepts

• Closing Message

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Classes

class A {

public:
 int x;
private:
 int y;
protected:
 int z:

};

class B: public A {
 void test1() {
 // works: B has access to public and protected
 return x + z;
 }
 void test2() {
 // fails: B doesn't have access to private
 return y;
 }
}

• Classes in C++ are defined with a
class name and function/variable
definitions

• public: values are accessible
outside the class

• private: values are not accessible
outside classes and can only be
accessed inside class functions

• protected: values are private
except to other classes that are
derived from the class

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Classes

class A {
public:
 int x;
private:
 int y;
 // specify B is a friend class of A
 friend class B
protected:
 int z:
};
class B: public A {
 void test1() {
 // works: B has access to public and protected
 return x + z;
 }
 void test2() {
 // works: B is a friend class and
 // can access private A values
 return y;
 }
}

• test1() can execute
because public and protected value
s of the base class A are visible to
the derived class B

• test2() fails because a derived
class does not have access
to private values of a base class.

• To fix this, we can declare B as
a friend class of A

• Classes trust friends with their
private values!

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Classes
class Vertex {
public:

 HalfedgeRef& halfedge() {return _halfedge;}
 HalfedgeCRef halfedge() const {return _halfedge;}

 bool on_boundary() const;
 unsigned int degree() const;
 Vec3 normal() const;
 Vec3 center() const;
 Vec3 neighborhood_center() const;
 unsigned int id() const {return _id;}

 Vec3 pos;

private:
 Vertex(unsigned int id) : _id(id) {}
 Vec3 new_pos;
 bool is_new = false;
 unsigned int _id = 0;
 HalfedgeRef _halfedge;
 friend class Halfedge_Mesh;
};

• In Scotty3D, our classes obey these
access patterns.

• Here we have the Vertex class.

• The Vertex constructor is
a private field

• In Scotty3D, we do not want just
anyone creating Vertex objects

• We declare the constructor
as private and give only certain
classes access to create Vertex
objects using the friend class
specifier

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Classes
class Vertex {
public:

 HalfedgeRef& halfedge() {return _halfedge;}
 HalfedgeCRef halfedge() const {return _halfedge;}

 bool on_boundary() const;
 unsigned int degree() const;
 Vec3 normal() const;
 Vec3 center() const;
 Vec3 neighborhood_center() const;
 unsigned int id() const {return _id;}

 Vec3 pos;

private:
 Vertex(unsigned int id) : _id(id) {}
 Vec3 new_pos;
 bool is_new = false;
 unsigned int _id = 0;
 HalfedgeRef _halfedge;
 friend class Halfedge_Mesh;
};

Vertex *c = vertexList[i];

// works: public variable
c->pos = Vec3(1.f,0.f,0.f);

// fails: private variable
c->new_pos = Vec3(1.f,0.f,0.f);

• Some features we can edit directly
without using a class function, but
other features are private and
cannot be edited

• So how do we edit new_pos ?

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Classes
class Vertex {

...

private:

 ...
 // we give Halfedge_Mesh access to private values
 friend class Halfedge_Mesh;
};

class Halfedge_Mesh {
public:
 // access to public & private values in Vertex class
 class Vertex;
 class Edge;
 class Face;
 class Halfedge;

 std::optional<FaceRef> bevel_vertex(VertexRef v);
 std::optional<FaceRef> bevel_edge(EdgeRef e);
 std::optional<FaceRef> bevel_face(FaceRef f);
}

• Classes can inherit attributes from
other classes, gaining access
to public and private values in those
classes

• The Halfedge_Mesh class is built
using Vertex, Edge, Face,
and Halfedge components

• We can declare Halfedge_Mesh
as a friend class in the Vertex
class

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Classes
class Vertex {

...

private:

 ...
 // we give Halfedge_Mesh access to private values
 friend class Halfedge_Mesh;
};

class Halfedge_Mesh {
public:
 // access to public & private values in Vertex class
 class Vertex;
 class Edge;
 class Face;
 class Halfedge;

 std::optional<FaceRef> bevel_vertex(VertexRef v);
 std::optional<FaceRef> bevel_edge(EdgeRef e);
 std::optional<FaceRef> bevel_face(FaceRef f);
}

auto halfedge_Mesh::bevel(VertexRef v) {

 // works: public variable
 v->pos = Vec3(1.f,0.f,0.f);
 // works: Halfedge_Mesh is friend
 v->new_pos = Vec3(1.f,0.f,0.f);
}

• Now in our Halfedge_Mesh class, we
can write functions that access these
private values from the Vertex class

• We chose to make variables in
classes private in order to ensure
classes that we don't want modifying
these variables will never have access
to it

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Templates
class Cache {

public:

 Cache(int N) {
 data = calloc(N, sizeof(datatype));
 freq = calloc(N, sizeof(int));
 size = N;
 }
 datatype get(int idx) {
 freq[idx]++;
 return data[idx];
 }

private:

 datatype *data;
 int *freq;
 int size;
}

• Templates help define a generic
datatype that you can use to write
versatile code without explicitly
defining the interface for each type

• Your compiler writes the template
code only if it is called, otherwise
the compiler avoids it

• Templating can be thought of as
getting the compiler to write your
code

• Say we'd like to create a new set of
classes that will track query usage per
element to help for analytics. We can
call this class our cache

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Templates
class CacheInt {

public:

 CacheInt(int N) {
 data = calloc(N, sizeof(int));
 freq = calloc(N, sizeof(int));
 size = N;
 }
 int get(int idx) {
 freq[idx]++;
 return data[idx];
 }

private:

 int *data;
 int *freq;
 int size;
}

• Here is our class for ints

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Templates
class CacheFloat {

public:

 CacheFloat (int N) {
 data = calloc(N, sizeof(float));
 freq = calloc(N, sizeof(float));
 size = N;
 }
 float get(int idx) {
 freq[idx]++;
 return data[idx];
 }

private:

 float *data;
 int *freq;
 int size;
}

• Here is our class for floats

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Templates
class CacheDouble {

public:

 CacheDouble (int N) {
 data = calloc(N, sizeof(double));
 freq = calloc(N, sizeof(double));
 size = N;
 }
 double get(int idx) {
 freq[idx]++;
 return data[idx];
 }

private:

 double *data;
 int *freq;
 int size;
}

• Here is our class for doubles
• This is getting to be a lot of code…

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Templates
Template<typename T>
class Cache {

public:

 Cache(int N) {
 data = calloc(N, sizeof(T));
 freq = calloc(N, sizeof(int));
 size = N;
 }
 T get(int idx) {
 freq[idx]++;
 return data[idx];
 }

private:

 T *data;
 int *freq;
 int size;
}

• We can use Template<typename T>
to create a generic datatype and bind
it on compile time

• Then we can create instances of int,
float and double caches easily

// creates int class
Cache<int> a = Cache<int>(10);
// creates float class
Cache<float> b = Cache<float>(10);
// creates double class
Cache<double> c = Cache<double>(10);

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Templates
Template<typename T>
class Cache {

public:

 Cache(int N) {
 data = calloc(N, sizeof(T));
 freq = calloc(N, sizeof(int));
 size = N;
 }
 T get(int idx) {
 freq[idx]++;
 return data[idx];
 }

private:

 T *data;
 int *freq;
 int size;
}

• The best way to think about this is that every
time we create a new template datatype for
the Cache class, it makes a copy of the
string defining the class and swaps out
every instance of the typename T before
inserting it into the file and compiling it

• If we never make a call to Cache with
type T, then the template is ignored
and we never compile it (yet another
optimization on the compiler's part!)

// creates int class
Cache<int> a = Cache<int>(10);
// creates float class
Cache<float> b = Cache<float>(10);
// double class never created!

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Templates

Template<typename T>
class Spline {
public:

 T at(float time) const;

 void set(float time, T value) { control_points[time] = value; }
 void erase(float time) { control_points.erase(time); }
 bool has(float t) const { return control_points.count(t); }
 bool any() const { return !control_points.empty(); }
 void clear() { control_points.clear(); }

private:
 // records keyframe values at specific times
 std::map<float, T> control_points;
};

• We use templates a lot in Scotty3D, and you'll even work to implement some template classes
in the Animation unit. For example:

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Templates
Spline<int> S;
S.add(0.f, 0);
S.add(1.f, 61848);
// prints 15462
printf("%d\n", S.at(0.25))

• The program will then the below string of code,
replacing typename T with Spline, making a
strong-typed class interface for the type

Template<typename T>
class Spline {
public:

 T at(float time) const;

 void set(float time, T value) { control_points[time] = value; }
 void erase(float time) { control_points.erase(time); }
 bool has(float t) const { return control_points.count(t); }
 bool any() const { return !control_points.empty(); }
 void clear() { control_points.clear(); }

private:
 // records keyframe values at specific times
 std::map<float, T> control_points;
};

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Templates

• Many other library classes and data structures
also use templates to exploit generic types.
C++ classes like the ones below use templates
to avoid redundant coding:

std::map<T1, T2> A; // list of key-value pairs
std::unordered_map<T1, T2> B; // unordered list of key-value pairs
std::set<T> C; // list without duplicates
std::unordered_set<T> D; // unordered list without duplicates
std::list<T> E; // dumb list
std::vector<T> F; // fancy list
std::deque<T> G; // list with multi-side insertion/deletion
std::pair<T1, T2> H; // two-element list

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Iterators

class HalfedgeMesh {

public:

 list<Vertex> vertices;
 ...
 typedef list<Vertex>::iterator VertexIter;
 ...
 VertexIter verticesBegin() { return vertices.begin(); }
 VertexIter verticesEnd() { return vertices.end(); }
 ...

};

• Iterators allow you it iterate
through ordered and unordered
structs (like sets and unordered
maps) using the ::iterator
attribute

• We can see that mesh.vertices
holds a list of Vertex objects.
vertices.begin() returns the first
iterator in our list, and we
increment that until we reach the
last iterator vertices.end() (non-
inclusive)

• We typedef
list<Vertex>::iterator as
VertexIter for easy notation

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Iterators

class HalfedgeMesh {

public:

 list<Vertex> vertices;
 ...
 typedef list<Vertex>::iterator VertexIter;
 ...
 VertexIter verticesBegin() { return vertices.begin(); }
 VertexIter verticesEnd() { return vertices.end(); }
 ...

};

• Our normal approach in C would
be to determine the number of
vertices in the list and use a for
loop with indexing to query for
each vertex and update its
properties

• We can instead use iterators
in our for-loop to simplify the
code and speed up the
process

HalfedgeMesh& mesh;

// iterate over list<Vertex> elements
for(VertexIter v = mesh.verticesBegin(); v != mesh.verticesEnd(); v++) {
 v->position = v->newPosition;
}

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Iterators

• An easy way to think about iterators are as pointers. We can
iterate through our vector of ints and dereference the iterator
we are on to get the value it points to. By incrementing our
iterator, we are jumping sizeof(datatype) bytes in memory
to get a pointer to the next value

vector<int> a = { 1, 5, 4, 6, 2 };
printf("I love ");

for(vector<int>::iterator ptr = a.begin(); ptr != a.end(); ptr++) {
 printf("%d", *ptr);
}

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Auto

• Sometimes (especially in graphics) datatypes in C++ can be
very long. A good programmer will recognize when a dataype
should be obvious and instead will alias the original datatype
using the auto keyword. Consider the following example:

const std::vector<Mesh::Index>& Mesh::indices() const {
 return _idxs;
}

// long, annoying, hard to type
Mesh& mesh;
const std::vector<Mesh::Index>& idx = mesh.indices();

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Auto

• Sometimes (especially in graphics) datatypes in C++ can be
very long. A good programmer will recognize when a dataype
should be obvious and instead will alias the original datatype
using the auto keyword. Consider the following example:

const std::vector<Mesh::Index>& Mesh::indices() const {
 return _idxs;
}

// long, annoying, hard to type
Mesh& mesh;
const std::vector<Mesh::Index>& idx = mesh.indices();

// easy, breezy, beautiful
Mesh& mesh;
const auto& idx = mesh.indices();

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Const
unsigned int Halfedge_Mesh::Face::degree() const {

 unsigned int d = 0;
 HalfedgeCRef h = _halfedge;

 do {
 d++;
 h = h->next();
 } while (h != _halfedge);

 return d;

}

• const prevents us from modifying the
state of an object or variable. We can
define a variable as const such that we
cannot update it, or we can define a
function in a class as const such that we
cannot modify any of the properties of that
class

• This helps optimize our code (telling
the compiler that we don't need write
access to the variable) and also helps
create safer code by ensuring class
variables won't be overwritten

• The following function starts by reading the
_halfedge of the Face class and iterates
through each halfedge to get the degree of
the face. During the process we only read
from but do not write to any class values

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Const
unsigned int Halfedge_Mesh::Face::degree() const {

 unsigned int d = 0;
 HalfedgeCRef h = _halfedge;

 do {
 d++;
 h = h->next();
 } while (h != _halfedge);

 return d;

}

• But wait! what’s HalfedgeCRef??

• It's a const_iterator! But wait! how are
we able to update h if it's a
const_iterator?

• Let's look at a quick example

using HalfedgeCRef = list<Halfedge>::const_iterator;

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Const

int valA = 15462;
int valB = 15418;

int *a = &valA; // normal int pointer
a = &valB; // success! we can modify what a points too
*a = 15213; // success! we can modify the value at the address a points to

const int *b = &valA; // pointer to const int
b = &valB; // success! we can modify what b points too
*b = 15213; // fails: can't change value of const int

int const *c = &valA; // const pointer to int
c = &valB; // fails: can't change pointer
*c = 15213; // success! we can modify the value at the address c points to

const int const *d = &valA; // const pointer to a const int
d = &valB; // fails: can't change pointer
*d = 15213; // fails: can't change value of const int

• We normally define an int pointer as int* and can put the const symbol before the int datatype
(const int *ptr) or after it (int const *ptr). Yet these lead to different behaviors as seen above

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Const
unsigned int Halfedge_Mesh::Face::degree() const {

 unsigned int d = 0;
 HalfedgeCRef h = _halfedge;

 do {
 d++;
 h = h->next();
 } while (h != _halfedge);

 return d;

}

• Where we place the const keyword
matters as to whether we can change the
address of the pointer or the value at the
location of the pointer.

• With HalfedgeCRef, since it is a
const_iterator, that means that it is an
iterator to a const value in the list. Thus,
we can change the address that h points
to, and we never end up changing the
actual values in the halfedge list

• This prevents us from accidentally
changing values in the halfedge lists,
giving us read-only access to the data
in order to compute the degree of the
face via halfedge traversal

using HalfedgeCRef = list<Halfedge>::const_iterator;

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Static

struct Mat4 {

 static const Mat4 I;
 static const Mat4 Zero;

 static Mat4 transpose(const Mat4& m);
 static Mat4 inverse(const Mat4& m);
 static Mat4 translate(Vec3 t);
 static Mat4 rotate(float t, Vec3 axis);
 static Mat4 euler(Vec3 angles);
 static Mat4 rotate_to(Vec3 dir);
 static Mat4 rotate_z_to(Vec3 dir);
 static Mat4 scale(Vec3 s);
 static Mat4 axes(Vec3 x, Vec3 y, Vec3 z);
 ...
}

• The static keyword can be used in
different contexts to mean different things.
In general, we use static to help define
that a resource is shared/accessible in a
larger scope than it actually is

• Inside of a class, we can define both
functions and variables as static

• For static functions, we can call them
without creating an instance of the class by
reference the Mat4:: class-name before
calling the class function.

Vec3 t = Vec3(1.f,2.f,3.f);

// calling a Mat4 static function
// without using an instance to call it
Mat4 m = Mat4::axes(t,t,t);

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Static

const inline Mat4 Mat4::I = Mat4{Vec4{1.0f, 0.0f, 0.0f, 0.0f},
 Vec4{0.0f, 1.0f, 0.0f, 0.0f},
 Vec4{0.0f, 0.0f, 1.0f, 0.0f},
 Vec4{0.0f, 0.0f, 0.0f, 1.0f}};

const inline Mat4 Mat4::Zero = Mat4{Vec4{0.0f, 0.0f, 0.0f, 0.0f},
 Vec4{0.0f, 0.0f, 0.0f, 0.0f},
 Vec4{0.0f, 0.0f, 0.0f, 0.0f},
 Vec4{0.0f, 0.0f, 0.0f, 0.0f}};

• static variables are shared among all copies of object instances. In
this case, regardless of how many Mat4 objects we create, they will
always share the same I (identity) and Zero (zero matrix) values

• A program can also define the static variables and call functions without
ever needing to create an instance. It does so by defining I and Zero
as globally accessible parameters under the Mat4 struct namespace

• Once we define a static value, we cannot redefine it, thus making it
constant

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Static

------------ main.cpp ------------

#include "library.h"
int numCores = 8;

------------ library.h ------------

int numCores = 1;

• Another instance of static variables (although not as commonly
used) is declaring static global variables. The effect of this is to
limit the scope of the variable to the current file only

• Your compiler will give you a warning when linking library.h that
numCores has been redefined. To resolve this issue, we can use
the static keyword to bind the variables to a file-only scope

------------ main.cpp ------------

#include "library.h"
int numCores = 8;

------------ library.h ------------

static int numCores = 1;

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Namespace

• Namespace help us encapsulate data
and types into a group for easier
referencing. It can also help us avoid
conflicts if we have variables and
functions of the same name.

• In Scotty3D we use namespace to
group together different pieces of the
graphics pipeline. For example, one
namespace you will be seeing a lot in
A3 is PT (PathTracer).

namespace PT {

 class Tri_Mesh {

 public:
 Tri_Mesh() = default;
 Tri_Mesh(const GL::Mesh& mesh);

 BBox bbox() const;
 Trace hit(const Ray& ray) const;

 ...

 void build(const GL::Mesh& mesh);

 private:
 std::vector<Tri_Mesh_Vert> verts;
 BVH<Triangle> triangles;

 };

}

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Namespace

• Here, we've enclosed the Tri_Mesh
class in the namespace PT

• If we'd like to reference an instance of
this class, we can do so using the
PT:: format

namespace PT {

 class Tri_Mesh {

 public:
 Tri_Mesh() = default;
 Tri_Mesh(const GL::Mesh& mesh);

 BBox bbox() const;
 Trace hit(const Ray& ray) const;

 ...

 void build(const GL::Mesh& mesh);

 private:
 std::vector<Tri_Mesh_Vert> verts;
 BVH<Triangle> triangles;

 };

}

class Rig {
...
private:
 ...
 // Tri_Mesh defined in PT namespace
 PT::Tri_Mesh mesh_bvh;
};

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Namespace

• We can also un-enclose namespaces
if the name is too long and/or we
know we will be using objects from
that namespace a lot in a given file

• This can be done with the using
keyword

namespace PT {

 class Tri_Mesh {

 public:
 Tri_Mesh() = default;
 Tri_Mesh(const GL::Mesh& mesh);

 BBox bbox() const;
 Trace hit(const Ray& ray) const;

 ...

 void build(const GL::Mesh& mesh);

 private:
 std::vector<Tri_Mesh_Vert> verts;
 BVH<Triangle> triangles;

 };

}

using namespace PT;
class Rig {
...
private:
 ...
 // access Tri_Mesh without PT
 Tri_Mesh mesh_bvh;
};

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Virtual

• virtual functions allow the program
to call a function from a derived class
using a base-class pointer of a
derived class object

• Does that not make sense?
• Good. It shouldn't have

• Say I have two classes A and B. B is
publicly derived from A, alongside
sharing some similar function names

class A {
 virtual void undo() {...};
 void redo() {...};
};
class B : public A {
 void undo() {...};
 void redo() {...};
};

B b;
A *a = &b;
a->undo() // which undo do I call?
a->redo() // which redo do I call?

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Virtual

• We know that a->undo() calls the
derived instance and a->redo() calls
the base instance

• Defining virtual functions is a handy tool
for runtime polymorphism where we
want to override a base function
definition in a derived class

• We can also define virtual functions
in base classes as templates for
derived classes

class A {
 // virtual tells us to go to the derived class
 virtual void undo() {...};
 // program doesn't know of another existence
 // runs this instance
 void redo() {...};
};
class B : public A {
 // program runs this version
 void undo() {...};
 // program doesn't run this version
 void redo() {...};
};

B b;
A *a = &b;
a->undo() // calls derived instance
a->redo() // calls base instance

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Virtual

• In Scotty3D, we use virtual functions
in the Action_Base class to give us a
template for our MeshOp class.

class Action_Base {
 virtual void undo() = 0;
 virtual void redo() = 0;
 friend class Undo;
public:
 virtual ~Action_Base() = default;
};

class MeshOp : public Action_Base {
 void undo() {
 Scene_Object& obj = scene.get_obj(id);
 obj.set_mesh(mesh);
 }
 void redo() {
 Scene_Object& obj = scene.get_obj(id);
 auto sel = obj.set_mesh(mesh, eid);
 op(obj.get_mesh(), sel);
}

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Datatypes

• C++ comes with many handy datatypes used
for storing and parsing data. Each datatype is
implemented in a different fashion, and
choosing the correct datatype depends on the
task (what kinds of data access patterns you
will have).

• The vector class is one of the most common
classes in C++ meant to handle random-
access iterators well.

• vector elements are always held in
order, meaning that insertions at the end
of the list is O(1) but insertions in the
middle of the list are O(n) since we need
to shift elements over. The amortized
insertion cost is O(1)

// continuous memory layout
std::vector<T> v;
// doubly-linked list
std::list<T> v;

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Datatypes

• An application of the vector
class includes:

// continuous memory layout
std::vector<T> v;
// doubly-linked list
std::list<T> v;

#include <vector>

Vector<int> a(50); // create int vector of size 50
Vector<int> b(10, 15462); // create int vector of size 10 initialized as 15462
a.size(); // returns 50
a.push_back(15462); // adds 15462 to back of list
a.pop_back(); // removes last element
Vector<int>::iterator p = a.begin() // get iterator to first element
while(p < a.end()) { // get iterator to last element
(void)a[p]; // supports random access patterns well
p += randint(0,5); }

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Memory Management

class Joint {
public:
 Joint(unsigned int id) : _id(id) {}
 Joint(unsigned int id, Joint* parent, Vec3 extent) ...
 ~Joint() { for(Joint* j : children) delete j; }
 ...
private:
 std::unordered_set<Joint> children;
 ...
 friend class Skeleton;
 friend class Scene;
};

• In C++, you’ll need to manage your
own memory. That means you’ll need
to allocate memory when needed and
free memory when done

• As an example, the Joint class stores
an unordered_set<Joint> of all the
joint's children. When a Joint is
deleted, the deconstructor ~Joint()
iterates through each child joint and
deletes it (think of it as burning the
bridge in a linked-list structure)

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Memory Management

class Joint {
public:
 Joint(unsigned int id) : _id(id) {}
 Joint(unsigned int id, Joint* parent, Vec3 extent) ...
 ~Joint() { for(Joint* j : children) delete j; }
 ...
private:
 std::unordered_set<Joint> children;
 ...
 friend class Skeleton;
 friend class Scene;
};

• When we go to add a child joint to our
skeleton, we call the Joint(unsigned
int id, Joint* parent, Vec3
extent) constructor using the new
keyword.

Joint* Skeleton::add_child(Joint* j, Vec3 e) {
 Joint* c = new Joint(next_id++, j, e); // use the new keyword when allocating
 for(float f : keys()) {
 c->anim.set(f, Quat{});
 }
 j->children.insert(c);
 return c;
}

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Memory Management

class Joint {
public:
 Joint(unsigned int id) : _id(id) {}
 Joint(unsigned int id, Joint* parent, Vec3 extent) ...
 ~Joint() { for(Joint* j : children) delete j; }
 ...
private:
 std::unordered_set<Joint> children;
 ...
 friend class Skeleton;
 friend class Scene;
};

• When we want to delete our joint in
our implementation, we can add the
joint to an erased list

void Skeleton::erase(Joint* j) {
 if(j->parent) {
 j->parent->children.erase(j);
 } else {
 roots.erase(j);
 }
 erased.insert(j);
}

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Memory Management

class Joint {
public:
 Joint(unsigned int id) : _id(id) {}
 Joint(unsigned int id, Joint* parent, Vec3 extent) ...
 ~Joint() { for(Joint* j : children) delete j; }
 ...
private:
 std::unordered_set<Joint> children;
 ...
 friend class Skeleton;
 friend class Scene;
};

• Then when we call delete on our
Skeleton object, we iterate over the
joints from both the roots and erased
lists and delete the joints

• Our deconstructor deletes both the
reference to the Skeleton object and
any other objects that it held

void Skeleton::erase(Joint* j) {
 if(j->parent) {
 j->parent->children.erase(j);
 } else {
 roots.erase(j);
 }
 erased.insert(j);
}

Skeleton::~Skeleton() {

 for(Joint* j : roots)
 delete j;

 for(Joint* j : erased)
 delete j;
}

Lecture 02.5 | C++

15-462/662 | Computer Graphics

References

bool hit(Line line, Vec3& pt) const {
 Vec3 n = p.xyz();
 float d = dot(line.dir, n);
 float t = (p.w - dot(line.point, n)) / d
 // can assign to pt
 // value persists after function returns
 pt = line.at(t);
 return t >= 0.0f;
}

• Pass-by-value creates a copy of the
variable so that any modifications to the
variable are binded to a local-scope of that
function alone

• Pass-by-reference gets the address of the
variable in memory, allowing the function to
modify the variable such that the
modification will be present even after the
function returns

• In hit() we pass in line as a value and pt as a reference
• line is a copy, and so any modifications made to it will be local in scope to the

function
• pt is passed as reference, and any modifications made to it will be saved
• This is useful when we not only want to return true if our line hits the plane, but

we would also want to store the resulting hit location in pt
• Using this layout, we can get multiple pieces of information using references

Lecture 02.5 | C++

15-462/662 | Computer Graphics

References

class Vertex {
public:
 HalfedgeRef& halfedge() {return _halfedge;}
 ...
private:
 ...
 HalfedgeRef _halfedge;
};

• We can declare functions that automatically
cast variables to ref on input and return

• This does not mean that the variable
accepting the return must also be a
reference. Consider how h is being
assigned a reference even though it is not a
reference type itself

• So then why bother returning a ref?
• Sometimes we just want reassurance

that we're always returning a reference
to the same vertex halfedge in our call
to vert->halfedge(), and that no
duplicates are being created

float totalArea = 0.0f;
// HalfedgeRef type accepts HalfedgeRef&
HalfEdgeRef h = vert->halfedge(); do {
 if(!h->face()->is_boundary()) {
 totalArea += h->face()->area();
 }
 // because it isn't a ref, we can keep updating it
 h = h->twin()->next();
}
while(h != vert->halfedge());

Lecture 02.5 | C++

15-462/662 | Computer Graphics

• Introduction To C++

• C++ Concepts

• Closing Message

Lecture 02.5 | C++

15-462/662 | Computer Graphics

Good Luck!

• Did anyone ever tell you what OpenGL stands for?

• Open Graphics Library?
• Open GPU Lists?
• Open Generative Language?

• None of the above! OpenGL stands for Open Good
Luck! That's because despite how hard graphics can
be, and how frustrated you might get, you're never
alone. We're all here to support you in the graphics
community. So take a chance, have fun, and get your
hands dirty with some graphics code

• We can't wait to see the things you'll go on to create :)
-- 15462 Staff

Lecture 02.5 | C++

