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What Is A Vector?

• Intuitively, a vector is a little arrow
• In computer graphics, we work with many types of data 

that may not look like little arrows (polynomials, images, 
radiance...). But they still behave like vectors. So, this 
little arrow is still often a useful mental model

• Fundamentally, just direction and magnitude
• Example: a vector in 2D can be encoded by a length and 

an angle relative to some fixed direction

• Vectors are functions of their coordinate system
• Can’t directly compare coordinates in different systems!

• Example: polar and cartesian

• Why start with a vector when talking about Linear Algebra?
• Most of linear algebra can be explained with vectors
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Basic Vector Operations

• We can add them “end to end”
• Vector addition is “commutative” or “abelian”

• u + v = v + u

• We can multiply any vector u by a number or 
“scalar” a to get a new vector au
• Multiplication behaves the way we would 

expect, based on the geometric behavior of 
scaling “little arrows”
• a(bu) = (ab)u
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Basic Vector Operations

Order of operations for adding and scaling do not matter:
a( u + v ) = au + av
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Formal Vector Space Definition

If we keep playing around vectors, eventually we come up 
with a complete set of “rules” that vectors seem to obey:

These rules did not “fall out of the sky!” Each one comes 
from the geometric behavior of “little arrows.” (Can you 
draw a picture for each one?) Any collection of objects 
satisfying all of these properties is a vector space.
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Euclidean Vector Space

• Most common example: Euclidean n-dimensional space 
• Typically denoted by ℝ!, meaning “n real numbers”
• E.g., (1.23, 4.56, π/2) is a point in ℝ" 

• Why such a common example? - Looks a lot like the 
space we live in! - That’s what we can easily encode 
on a computer (a list of floating-point numbers).
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Functions as Vectors

• Another very important example of 
vector spaces in computer graphics 
are spaces of functions. 
• Why? Because many of the 

objects we want to work with in 
graphics are functions! (Images, 
radiance from a light source, 
surfaces, modal vibrations, ...)
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Functions as Vectors

Do functions exhibit the same behavior as “little arrows?” 
Well, we can certainly add two functions:

We can also scale a function:
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Functions as Vectors

What about the rest of these functions?

Try it out at home! (E.g., the “zero vector” is the function equal to zero for all x)
 

Short answer: yes, functions are vectors! (Even if they don’t look like “little arrows”)
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Vectors in Coordinates

• So far, we’ve only drawn our vector operations via pictures. 
• How do we actually compute with vectors? 
• Return to our coordinate representation:

• Ok, so we came up with some rule for adding pairs of numbers. 
• How can we check that it faithfully encodes geometric behavior of “little arrows?”
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From Geometry to Algebra
Just check that it agrees with our list of rules that we know (from 

reasoning geometrically) “little arrows” must obey:

For instance, for any two vectors u := (u1,u2) and v := (v1,v2) we have:
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Never blindly accept a rule given by authority. 

Always ask: where does this rule come from? 
What does it mean geometrically? (Can you draw a picture?)
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Scaling Vectors in Coordinates

We’d also like to be able to scale vectors using coordinates.

The rest of the rules are left as an exercise to the reader : )
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Computing the Midpoint

As we start to combine vector operations, 
we build up operations needed for 

computer graphics. 

E.g., how would I compute the midpoint m 
of a = (3,4) and b=(7,2)?
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Norm of a Vector

• For a given vector v, we want to assign it a number |𝑣| called its 
length or magnitude or norm. 
• Intuitively, the norm should capture how “big” the vector is.
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Norm Properties

For one thing, it probably shouldn’t be negative!

Also, if we scale a vector by a factor c, its norm (i.e., length) really 
should scale by the same amount.

Finally, we know that the shortest path between two points 
is always along a straight line.**

**sometimes called the “triangle inequality” 
since the diagram looks like a triangle
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Norm Definition

A norm is any function that assigns a number to 
each vector and satisfies the following properties 

for all vectors u, v, and all scalars a

Lecture 02.0 | Math Review



15-462/662 | Computer Graphics

Euclidean Norm in Cartesian Coordinates

A standard norm is the so-called Euclidean norm of n-vectors

Lecture 02.0 | Math Review



15-462/662 | Computer Graphics

L  Norm Of Functions

• Less familiar idea, but same basic intuition:
• L2 norm measures the total magnitude of a function.

• Consider real-valued functions on the unit interval [0,1] 
whose square has a well-defined integral.  The L2 norm is 
defined as:

2

• Not too different from the Euclidean norm.
• We just replaced a sum with an integral.

• Careful! does the formula above exactly satisfy all our 
desired properties for a norm?
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Inner Product

• Just as norm measured length,  inner product 
measures the “similarity” of vectors or how 
well vectors “line up”.

• The dot product of two vectors is 
commutative:

[ similar ]

[ different ]

Lecture 02.0 | Math Review



15-462/662 | Computer Graphics

Inner Product

• For unit vectors |u|=|v|=1, an inner product measures the extent, or 
percent, of one vector along the direction of the other.
• Values are symmetric (see previous slide!)
• If we scale either vector, the inner product also scales:

• Make sure vectors are normalized when taking similarity scores!

• Any vector will always be aligned with itself such that:

• And the dot product of any unit vector with itself is:

• Thus for a unit vector 

[ no scale ]

[ scaling u or v ]
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Inner Product Formal Definition

An inner product is any function that assigns to any two 
vectors u,v a number <u,v> satisfying the following properties:

[ Euclidean inner product ]

[ Cartesian inner product ]
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Inner Product In Cartesian Coordinates
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L  Inner Product Of Functions2

small number

functions don’t 
line up much

Example:
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Measuring Images

• Many ways to measure “how big” a signal is (norm) or “how well-
aligned” two signals are (inner product).
• Example: Taking norm of image derivative (capturing edges)

[ smaller norm ] [ larger norm ] [ smaller norm ][ larger norm ]
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Linear Maps

• Linear algebra is study of vector spaces and linear maps 
between them.

• Linear maps have 2 characteristics:
• Converts lines to lines
• Keeps the origin fixed

• Linear map benefits:
• Easy to solve systems of linear equations.
• Basic transformations (rotation, translation, scaling) 

can be expressed as linear maps. 
• All maps can be approximated as linear maps over a 

short distance/short time.  (Taylor’s theorem) 
• This approximation is used all over geometry, 

animation, rendering, image processing
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Linear Maps

A map f is linear if it maps vectors to vectors, and if for all 
vectors u,v and scalars a we have:

It doesn’t matter whether we add the vectors and then apply 
the map, or apply the map and then add the vectors (and 
likewise for scaling):
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Linear Maps

For maps between ℝ! and ℝ# (e.g., a map from 2D to 3D),  
a map is linear if it can be expressed as

In other words, if it is a linear combination of a 
fixed set of vectors 𝑎$:
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Is 𝑓 𝑥 = 𝑎𝑥 + 𝑏 a linear map?
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Linear vs. Affine Maps

No! but it is easy to be fooled since it looks like a line.
However, it does not keep the origin fixed (𝑓 𝑥 ≠ 0)

Another way to see it’s not linear? It doesn’t preserve sums:

This is called an affine map.

We will see a trick on how to turn affine maps into linear 
maps using homogeneous coordinates in a future lecture.
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Is 𝑓 𝑢 = ∫%
&𝑢 𝑥 𝑑𝑥 a linear map?

This will be on your homework?**

** hint: consider 𝑢(𝑥) = 𝑥
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Span

The span of a set of vectors 𝑆&is the set of all vectors 𝑆'	that 
can be written as a linear combination of the vectors in 𝑆& 
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Span & Linear Maps

The image of any linear map is the span of the vectors from applying the linear map.

The image of any function is the ________ of the _____ from applying the function.The image of any function is the codomain of the inputs from applying the function.
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Orthonormal Basis

If we have exactly 𝑛	vectors 𝑒&, … , 𝑒!	such that:

Then we say that these vectors are a basis for ℝ!.

Note that there are many different choices of bases for ℝ!!

Which of the following are bases for ℝ'?
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Orthonormal Basis

Most often, it is convenient to have to basis vectors that are:
• (i) unit length 
• (ii) mutually orthogonal
In other words, if 𝑒&, … , 𝑒! are our basis vectors, then:

*Common bug: projecting 
a vector onto a basis that 
is NOT orthonormal while 
continuing to use standard 
norm / inner product.
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Gram-Schmidt

Given a collection of basis vectors 𝑎&, … , 𝑎!, we can find 
an orthonormal basis 𝑒&, … , 𝑒! using the Gram-Schmidt 
method.

Gram-Schmidt algorithm:
• Normalize the first vector
• Subtract any component of the 1st vector from the 

2nd one
• Normalize the 2nd one
• Repeat, removing components of first k vectors from 

vector k+1

• Caution: does not work well for large sets of vectors 
or nearly parallel vectors.
• See modified Gram-Schmidt for more advanced 

algorithm.
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Gram-Schmidt Example

Common task: have a triangle in 3D, need orthonormal 
basis for the plane containing the triangle

Strategy: apply Gram-Schmidt to (any) pair of edge vectors

Does the order matter? (Ex: if we swapped u and v in 
the above equation, what happens?)
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Fourier Transform

• Functions are also vectors, meaning they have an orthonormal 
basis known as a Fourier transform.
• Example: functions that repeat at intervals of 2π

• Can project onto basis of sinusoids:

• Fundamental building block for many graphics algorithms:
• Example: JPEG Compression

[ lower frequency ]

[ higher frequency ] • More generally, this idea of projecting a 
signal onto different “frequencies” is 
known as Fourier decomposition
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System Of Linear Equations

• A system of linear equations is a bunch of equations where 
left-hand side is a linear function, right hand side is constant.
• Unknown values are called degrees of freedom (DOFs)
• Equations are called constraints

• We can use linear systems to solve for:
• The point where two lines meet
• Given a point b, find the point x that maps to it
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Existence of Solutions

[ no solution ]

[ no solution ]

[ many solution ]

Of course, not all linear systems can be solved!
(And even those that can be solved may not have a unique solution.)
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Matrices

• We’ve gone this far without talking about a matrix, oops!
• But linear algebra is not fundamentally about matrices.
• We can understand almost all the basic concepts 

without ever touching a matrix!

• Still, VERY useful!
• Symbolic manipulation
• Easy to store
• Fast to compute

• (Sometimes) hardware support for matrix ops

• Some of the (many) uses for matrices:
• Transformations
• Coordinate System Conversions
• Compression
• Gram-Schmidt

What does this little block of funny numbers do?
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Linear Maps As Matrices
Example: consider the linear map:

𝒂 vectors become columns in the matrix:

Multiplying the original vector 𝒖 maps it to 𝒇(𝒖): 

How to map 𝒇(𝒖) back to 𝒖? Take the inverse of the matrix! 
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Linear Maps As Matrices
Example: consider the linear map:

𝒂 vectors become columns in the matrix:

Multiplying the original vector 𝒖 maps it to 𝒇(𝒖): 

How to map 𝒇(𝒖) back to 𝒖? Take the inverse of the matrix! 
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Extra Resources

Lecture 02.0 | Math Review

Interactive article on the application of 
functions as vectors:

thenumb.at/Functions-are-Vectors/
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• Linear Algebra Review

• Vector Calculus Review
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Cross Product

• Inner product takes two vectors and produces a scalar
• Cross product takes two vectors and produces a vector

• Geometrically:
• Magnitude equal to parallelogram area
• Direction orthogonal to both vectors
• …but which way?

• Use “right hand rule”
• Only works in 3D

• θ is angle between u and v
• “det” is determinant of three column vectors
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Cross Product In 2D

We can abuse notation in 2D and write it as:
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Cross Product As A Quarter Rotation

• In 3D, cross product with a unit vector N is equivalent to 
a quarter-rotation in the plane with normal N.
• Use the right hand rule : )

• What is 𝑛	×	(𝑛	×	𝑢)?
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Dot And Cross Products

Dot product as a matrix multiplication:

Cross product as a matrix multiplication:
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Dot And Cross Products

Useful to notice 𝒖	×	𝒗 = −𝒗	×	𝒖

This means:

Lecture 02.0 | Math Review



15-462/662 | Computer Graphics

Determinant

The determinant of A is:

Great, but what does that mean?
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Determinant
det(u,v,w) encodes signed volume of 

parallelepiped with edge vectors u, v, w.

What happens if we reverse the order of the 
vectors in the cross product?
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Determinant of a Linear Map

• Recall that a linear map is a transformation 
from one coordinate space to another and is 
defined by a set of vectors 𝒂𝟏, 𝒂𝟐, 𝒂𝟑…

• The 𝒅𝒆𝒕(𝑨) here measures the change in 
volume between spaces.
• The sign tells us whether the orientation 

was reversed.
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Differential Operators

• Many uses for computer graphics:
• Expressing physical/geometric problems in 

terms of related rates of change (ODEs, PDEs)
• Numerical optimization – minimizing the cost 

relative to some objective
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Derivative of a Slope

Measures the amount of change for an infinitesimal step:

What if the slopes do not match if we change directions?

Differentiable** only if 𝑓+ = −𝑓,

**Many functions in graphics are not differentiable!
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Derivative as Best Linear Approximation

Any smooth function can be expressed as a Taylor series:

[ constant ] [ linear ] [ quadratic ]
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Derivative as Best Linear Approximation

Can be applied for multi-variable functions too.
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Directional Derivative

For multi-variable functions, we can take 
a slice of the function in the direction of 

vector 𝒖 and compute the derivative 
from the resulting 2D function.
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Gradient

Given a multivariable function, we 
compute a vector at each location.

[ nabla ]

Lecture 02.0 | Math Review



15-462/662 | Computer Graphics

Gradient in Coordinates

Example:
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Gradient as Best Linear Approximation

• Gradient tells us the direction of steepest ascent.
• Steepest descent if negative direction
• No change if orthogonal direction

• We can take multiple 
small steps to arrive 
at the maximum
• How we make 

that step is its 
own field of 
research known 
as ‘optimization’

Lecture 02.0 | Math Review



15-462/662 | Computer Graphics

Gradient & Directional Derivative

The gradient             is a unique vector 

such that taking the inner product of the gradient 
along any direction gives the directional derivative. 

Only works if function is differentiable!
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Gradient of Dot Product

(equals zero unless i = k)

Gradient:

Not so different from
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Gradients of Matrix-Valued Expressions**

**Excellent resource: Petersen & Pedersen, “The Matrix Cookbook”
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• How do we compute the gradient in general? 
• Look for a function ∇𝐹 such that:

• Where the directional derivative is:
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L  Gradient
• Consider a function 𝐹 𝑓  that has an input function 𝑓

• Same idea: the gradient of 𝐹 with respect to 𝑓 measures 
how changing the function 𝑓 best increases 𝐹
• Example:

• I claim the gradient is:

• This means adding more of 𝑔 to 𝑓 increases ∇𝐹
• This is true for inner products!

2
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L  Gradient Example2

Consider:

Apply the directional derivative formula for a given direction 𝑢:

Substitute 𝐹 and expand the numerator 𝐹(𝑓% + 𝜀𝑢):

Subtract the remaining 𝐹 𝑓%  and divide by 𝜀: 

Set equal to the gradient term:

Solution: kinda looks like
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Vector Fields

• In general, a vector field assigns an n-dimensional 
vector to each point in space
• Gradient was our first example of a vector field
• Example:

• How to measure change in a vector field?
• Divergence and Curl

𝑓 𝑥, 𝑦 = 𝑥' + 𝑦'

∇𝑓 𝑥, 𝑦 =	< 2𝑥, 2𝑦 >

div X curl X
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Divergence

• Measures how much the field is shrinking/expanding

• Written as ∇ I 𝑋
• Think of ∇ as a vector of derivatives:

• Think of 𝑋 as a vector of functions:

• Then divergence is:
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Curl

• Measures how much the field is spinning

• Written as ∇×𝑋
• Think of ∇ as a vector of just 3 derivatives:

• Think of 𝑋 as a vector of functions:

• Then curl is:**

**2D curl:
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Divergence vs. Curl in 2D

Divergence is the same as a 90deg rotation of curl in 2D

∇	×	𝑋 =
𝜕𝑋'
𝜕𝑢&

−
𝜕𝑋&
𝜕𝑢'

∇	 I 	𝑋 =
𝜕𝑋&
𝜕𝑢&

−
𝜕𝑋'
𝜕𝑢'

90deg rotation swaps
	 𝑋& and 𝑋'
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Laplacian
• Measures the curvature of a function

• Several ways to calculate:
• Divergence of gradient:

• Sum of 2nd partial derivative:

• Gradient of Dirichlet energy:

• Graph Laplacian:
• Variation of Surface Area:

concave
convex
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Laplacian Example
Consider:

Using the following equation:

Compute the first partial:

When does this happen?

And the second:

Add together:
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Hessian

• A matrix representing a gradient to the gradient
• Matrix is always symmetric

• Order of partial derivatives does not 
matter given 𝑓 is continuous 

• A gradient was a vector that gives us partial 
derivatives of the function
• A hessian is an operator that gives us partial 

derivatives of the gradient:
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Taylor Series For Multivariate Functions

[ constant ] [ linear ] [ quadratic ]

In matrix form:

Using the Hessian, we can now write 2nd-order approximation of 
any smooth, multivariable function 𝑓(𝑥) around some point 𝑥%:
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Recap

• That was a lot of math
• But now you should have the proper mathematical background to 

complete this course

• We will use Linear Algebra…
• As an effective bridge between geometry, physics, computation, etc.
• As a way to formulate a problem. Write the problem as Ax=b and ask 

the computer to solve

• We will use Vector Calculus…
• As a basic language for talking about spatial relationships, 

transformations, etc.
• For much of modern graphics (physically-based animation, geometry 

processing, etc.) formulated in terms of partial differential equations 
(PDEs) that use div, curl, Laplacian, and so on

• A0.0 will reinforce the content taught in this lecture
• Be sure to refer back to the slides for help

Charlie Brown (1984) Charles Schulz
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