
Linear Algebra
& Vector Calculus

15-462/662 | Computer Graphics Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

• Linear Algebra Review

• Vector Calculus Review

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

What Is A Vector?

• Intuitively, a vector is a little arrow
• In computer graphics, we work with many types of data

that may not look like little arrows (polynomials, images,
radiance...). But they still behave like vectors. So, this
little arrow is still often a useful mental model

• Fundamentally, just direction and magnitude
• Example: a vector in 2D can be encoded by a length and

an angle relative to some fixed direction

• Vectors are functions of their coordinate system
• Can’t directly compare coordinates in different systems!

• Example: polar and cartesian

• Why start with a vector when talking about Linear Algebra?
• Most of linear algebra can be explained with vectors

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Basic Vector Operations

• We can add them “end to end”
• Vector addition is “commutative” or “abelian”

• u + v = v + u

• We can multiply any vector u by a number or
“scalar” a to get a new vector au
• Multiplication behaves the way we would

expect, based on the geometric behavior of
scaling “little arrows”
• a(bu) = (ab)u

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Basic Vector Operations

Order of operations for adding and scaling do not matter:
a(u + v) = au + av

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Formal Vector Space Definition

If we keep playing around vectors, eventually we come up
with a complete set of “rules” that vectors seem to obey:

These rules did not “fall out of the sky!” Each one comes
from the geometric behavior of “little arrows.” (Can you
draw a picture for each one?) Any collection of objects
satisfying all of these properties is a vector space.

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Euclidean Vector Space

• Most common example: Euclidean n-dimensional space
• Typically denoted by ℝ!, meaning “n real numbers”
• E.g., (1.23, 4.56, π/2) is a point in ℝ"

• Why such a common example? - Looks a lot like the
space we live in! - That’s what we can easily encode
on a computer (a list of floating-point numbers).

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Functions as Vectors

• Another very important example of
vector spaces in computer graphics
are spaces of functions.
• Why? Because many of the

objects we want to work with in
graphics are functions! (Images,
radiance from a light source,
surfaces, modal vibrations, ...)

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Functions as Vectors

Do functions exhibit the same behavior as “little arrows?”
Well, we can certainly add two functions:

We can also scale a function:

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Functions as Vectors

What about the rest of these functions?

Try it out at home! (E.g., the “zero vector” is the function equal to zero for all x)

Short answer: yes, functions are vectors! (Even if they don’t look like “little arrows”)

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Vectors in Coordinates

• So far, we’ve only drawn our vector operations via pictures.
• How do we actually compute with vectors?
• Return to our coordinate representation:

• Ok, so we came up with some rule for adding pairs of numbers.
• How can we check that it faithfully encodes geometric behavior of “little arrows?”

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

From Geometry to Algebra
Just check that it agrees with our list of rules that we know (from

reasoning geometrically) “little arrows” must obey:

For instance, for any two vectors u := (u1,u2) and v := (v1,v2) we have:

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Never blindly accept a rule given by authority.

Always ask: where does this rule come from?
What does it mean geometrically? (Can you draw a picture?)

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Scaling Vectors in Coordinates

We’d also like to be able to scale vectors using coordinates.

The rest of the rules are left as an exercise to the reader :)

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Computing the Midpoint

As we start to combine vector operations,
we build up operations needed for

computer graphics.

E.g., how would I compute the midpoint m
of a = (3,4) and b=(7,2)?

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Norm of a Vector

• For a given vector v, we want to assign it a number |𝑣| called its
length or magnitude or norm.
• Intuitively, the norm should capture how “big” the vector is.

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Norm Properties

For one thing, it probably shouldn’t be negative!

Also, if we scale a vector by a factor c, its norm (i.e., length) really
should scale by the same amount.

Finally, we know that the shortest path between two points
is always along a straight line.**

**sometimes called the “triangle inequality”
since the diagram looks like a triangle

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Norm Definition

A norm is any function that assigns a number to
each vector and satisfies the following properties

for all vectors u, v, and all scalars a

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Euclidean Norm in Cartesian Coordinates

A standard norm is the so-called Euclidean norm of n-vectors

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

L Norm Of Functions

• Less familiar idea, but same basic intuition:
• L2 norm measures the total magnitude of a function.

• Consider real-valued functions on the unit interval [0,1]
whose square has a well-defined integral. The L2 norm is
defined as:

2

• Not too different from the Euclidean norm.
• We just replaced a sum with an integral.

• Careful! does the formula above exactly satisfy all our
desired properties for a norm?

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Inner Product

• Just as norm measured length, inner product
measures the “similarity” of vectors or how
well vectors “line up”.

• The dot product of two vectors is
commutative:

[similar]

[different]

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Inner Product

• For unit vectors |u|=|v|=1, an inner product measures the extent, or
percent, of one vector along the direction of the other.
• Values are symmetric (see previous slide!)
• If we scale either vector, the inner product also scales:

• Make sure vectors are normalized when taking similarity scores!

• Any vector will always be aligned with itself such that:

• And the dot product of any unit vector with itself is:

• Thus for a unit vector

[no scale]

[scaling u or v]

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Inner Product Formal Definition

An inner product is any function that assigns to any two
vectors u,v a number <u,v> satisfying the following properties:

[Euclidean inner product]

[Cartesian inner product]

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Inner Product In Cartesian Coordinates

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

L Inner Product Of Functions2

small number

functions don’t
line up much

Example:

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Measuring Images

• Many ways to measure “how big” a signal is (norm) or “how well-
aligned” two signals are (inner product).
• Example: Taking norm of image derivative (capturing edges)

[smaller norm] [larger norm] [smaller norm][larger norm]

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Linear Maps

• Linear algebra is study of vector spaces and linear maps
between them.

• Linear maps have 2 characteristics:
• Converts lines to lines
• Keeps the origin fixed

• Linear map benefits:
• Easy to solve systems of linear equations.
• Basic transformations (rotation, translation, scaling)

can be expressed as linear maps.
• All maps can be approximated as linear maps over a

short distance/short time. (Taylor’s theorem)
• This approximation is used all over geometry,

animation, rendering, image processing

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Linear Maps

A map f is linear if it maps vectors to vectors, and if for all
vectors u,v and scalars a we have:

It doesn’t matter whether we add the vectors and then apply
the map, or apply the map and then add the vectors (and
likewise for scaling):

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Linear Maps

For maps between ℝ! and ℝ# (e.g., a map from 2D to 3D),
a map is linear if it can be expressed as

In other words, if it is a linear combination of a
fixed set of vectors 𝑎$:

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Is 𝑓 𝑥 = 𝑎𝑥 + 𝑏 a linear map?

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Linear vs. Affine Maps

No! but it is easy to be fooled since it looks like a line.
However, it does not keep the origin fixed (𝑓 𝑥 ≠ 0)

Another way to see it’s not linear? It doesn’t preserve sums:

This is called an affine map.

We will see a trick on how to turn affine maps into linear
maps using homogeneous coordinates in a future lecture.

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Is 𝑓 𝑢 = ∫%
&𝑢 𝑥 𝑑𝑥 a linear map?

This will be on your homework?**

** hint: consider 𝑢(𝑥) = 𝑥
Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Span

The span of a set of vectors 𝑆&is the set of all vectors 𝑆'	that
can be written as a linear combination of the vectors in 𝑆&

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Span & Linear Maps

The image of any linear map is the span of the vectors from applying the linear map.

The image of any function is the ________ of the _____ from applying the function.The image of any function is the codomain of the inputs from applying the function.

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Orthonormal Basis

If we have exactly 𝑛	vectors 𝑒&, … , 𝑒!	such that:

Then we say that these vectors are a basis for ℝ!.

Note that there are many different choices of bases for ℝ!!

Which of the following are bases for ℝ'?

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Orthonormal Basis

Most often, it is convenient to have to basis vectors that are:
• (i) unit length
• (ii) mutually orthogonal
In other words, if 𝑒&, … , 𝑒! are our basis vectors, then:

*Common bug: projecting
a vector onto a basis that
is NOT orthonormal while
continuing to use standard
norm / inner product.

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Gram-Schmidt

Given a collection of basis vectors 𝑎&, … , 𝑎!, we can find
an orthonormal basis 𝑒&, … , 𝑒! using the Gram-Schmidt
method.

Gram-Schmidt algorithm:
• Normalize the first vector
• Subtract any component of the 1st vector from the

2nd one
• Normalize the 2nd one
• Repeat, removing components of first k vectors from

vector k+1

• Caution: does not work well for large sets of vectors
or nearly parallel vectors.
• See modified Gram-Schmidt for more advanced

algorithm.

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Gram-Schmidt Example

Common task: have a triangle in 3D, need orthonormal
basis for the plane containing the triangle

Strategy: apply Gram-Schmidt to (any) pair of edge vectors

Does the order matter? (Ex: if we swapped u and v in
the above equation, what happens?)

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Fourier Transform

• Functions are also vectors, meaning they have an orthonormal
basis known as a Fourier transform.
• Example: functions that repeat at intervals of 2π

• Can project onto basis of sinusoids:

• Fundamental building block for many graphics algorithms:
• Example: JPEG Compression

[lower frequency]

[higher frequency] • More generally, this idea of projecting a
signal onto different “frequencies” is
known as Fourier decomposition

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

System Of Linear Equations

• A system of linear equations is a bunch of equations where
left-hand side is a linear function, right hand side is constant.
• Unknown values are called degrees of freedom (DOFs)
• Equations are called constraints

• We can use linear systems to solve for:
• The point where two lines meet
• Given a point b, find the point x that maps to it

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Existence of Solutions

[no solution]

[no solution]

[many solution]

Of course, not all linear systems can be solved!
(And even those that can be solved may not have a unique solution.)

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Matrices

• We’ve gone this far without talking about a matrix, oops!
• But linear algebra is not fundamentally about matrices.
• We can understand almost all the basic concepts

without ever touching a matrix!

• Still, VERY useful!
• Symbolic manipulation
• Easy to store
• Fast to compute

• (Sometimes) hardware support for matrix ops

• Some of the (many) uses for matrices:
• Transformations
• Coordinate System Conversions
• Compression
• Gram-Schmidt

What does this little block of funny numbers do?

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Linear Maps As Matrices
Example: consider the linear map:

𝒂 vectors become columns in the matrix:

Multiplying the original vector 𝒖 maps it to 𝒇(𝒖):

How to map 𝒇(𝒖) back to 𝒖? Take the inverse of the matrix!

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Linear Maps As Matrices
Example: consider the linear map:

𝒂 vectors become columns in the matrix:

Multiplying the original vector 𝒖 maps it to 𝒇(𝒖):

How to map 𝒇(𝒖) back to 𝒖? Take the inverse of the matrix!

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Extra Resources

Lecture 02.0 | Math Review

Interactive article on the application of
functions as vectors:

thenumb.at/Functions-are-Vectors/

15-462/662 | Computer Graphics

• Linear Algebra Review

• Vector Calculus Review

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Cross Product

• Inner product takes two vectors and produces a scalar
• Cross product takes two vectors and produces a vector

• Geometrically:
• Magnitude equal to parallelogram area
• Direction orthogonal to both vectors
• …but which way?

• Use “right hand rule”
• Only works in 3D

• θ is angle between u and v
• “det” is determinant of three column vectors

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Cross Product In 2D

We can abuse notation in 2D and write it as:

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Cross Product As A Quarter Rotation

• In 3D, cross product with a unit vector N is equivalent to
a quarter-rotation in the plane with normal N.
• Use the right hand rule :)

• What is 𝑛	×	(𝑛	×	𝑢)?

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Dot And Cross Products

Dot product as a matrix multiplication:

Cross product as a matrix multiplication:

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Dot And Cross Products

Useful to notice 𝒖	×	𝒗 = −𝒗	×	𝒖

This means:

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Determinant

The determinant of A is:

Great, but what does that mean?

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Determinant
det(u,v,w) encodes signed volume of

parallelepiped with edge vectors u, v, w.

What happens if we reverse the order of the
vectors in the cross product?

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Determinant of a Linear Map

• Recall that a linear map is a transformation
from one coordinate space to another and is
defined by a set of vectors 𝒂𝟏, 𝒂𝟐, 𝒂𝟑…

• The 𝒅𝒆𝒕(𝑨) here measures the change in
volume between spaces.
• The sign tells us whether the orientation

was reversed.

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Differential Operators

• Many uses for computer graphics:
• Expressing physical/geometric problems in

terms of related rates of change (ODEs, PDEs)
• Numerical optimization – minimizing the cost

relative to some objective

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Derivative of a Slope

Measures the amount of change for an infinitesimal step:

What if the slopes do not match if we change directions?

Differentiable** only if 𝑓+ = −𝑓,

**Many functions in graphics are not differentiable!

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Derivative as Best Linear Approximation

Any smooth function can be expressed as a Taylor series:

[constant] [linear] [quadratic]

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Derivative as Best Linear Approximation

Can be applied for multi-variable functions too.

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Directional Derivative

For multi-variable functions, we can take
a slice of the function in the direction of

vector 𝒖 and compute the derivative
from the resulting 2D function.

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Gradient

Given a multivariable function, we
compute a vector at each location.

[nabla]

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Gradient in Coordinates

Example:

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Gradient as Best Linear Approximation

• Gradient tells us the direction of steepest ascent.
• Steepest descent if negative direction
• No change if orthogonal direction

• We can take multiple
small steps to arrive
at the maximum
• How we make

that step is its
own field of
research known
as ‘optimization’

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Gradient & Directional Derivative

The gradient is a unique vector

such that taking the inner product of the gradient
along any direction gives the directional derivative.

Only works if function is differentiable!

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Gradient of Dot Product

(equals zero unless i = k)

Gradient:

Not so different from

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Gradients of Matrix-Valued Expressions**

**Excellent resource: Petersen & Pedersen, “The Matrix Cookbook”

Lecture 02.0 | Math Review

• How do we compute the gradient in general?
• Look for a function ∇𝐹 such that:

• Where the directional derivative is:

15-462/662 | Computer Graphics

L Gradient
• Consider a function 𝐹 𝑓 that has an input function 𝑓

• Same idea: the gradient of 𝐹 with respect to 𝑓 measures
how changing the function 𝑓 best increases 𝐹
• Example:

• I claim the gradient is:

• This means adding more of 𝑔 to 𝑓 increases ∇𝐹
• This is true for inner products!

2

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

L Gradient Example2

Consider:

Apply the directional derivative formula for a given direction 𝑢:

Substitute 𝐹 and expand the numerator 𝐹(𝑓% + 𝜀𝑢):

Subtract the remaining 𝐹 𝑓% and divide by 𝜀:

Set equal to the gradient term:

Solution: kinda looks like

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Vector Fields

• In general, a vector field assigns an n-dimensional
vector to each point in space
• Gradient was our first example of a vector field
• Example:

• How to measure change in a vector field?
• Divergence and Curl

𝑓 𝑥, 𝑦 = 𝑥' + 𝑦'

∇𝑓 𝑥, 𝑦 =	< 2𝑥, 2𝑦 >

div X curl X
Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Divergence

• Measures how much the field is shrinking/expanding

• Written as ∇ I 𝑋
• Think of ∇ as a vector of derivatives:

• Think of 𝑋 as a vector of functions:

• Then divergence is:

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Curl

• Measures how much the field is spinning

• Written as ∇×𝑋
• Think of ∇ as a vector of just 3 derivatives:

• Think of 𝑋 as a vector of functions:

• Then curl is:**

**2D curl:

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Divergence vs. Curl in 2D

Divergence is the same as a 90deg rotation of curl in 2D

∇	×	𝑋 =
𝜕𝑋'
𝜕𝑢&

−
𝜕𝑋&
𝜕𝑢'

∇	 I 	𝑋 =
𝜕𝑋&
𝜕𝑢&

−
𝜕𝑋'
𝜕𝑢'

90deg rotation swaps
	 𝑋& and 𝑋'

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Laplacian
• Measures the curvature of a function

• Several ways to calculate:
• Divergence of gradient:

• Sum of 2nd partial derivative:

• Gradient of Dirichlet energy:

• Graph Laplacian:
• Variation of Surface Area:

concave
convex

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Laplacian Example
Consider:

Using the following equation:

Compute the first partial:

When does this happen?

And the second:

Add together:

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Hessian

• A matrix representing a gradient to the gradient
• Matrix is always symmetric

• Order of partial derivatives does not
matter given 𝑓 is continuous

• A gradient was a vector that gives us partial
derivatives of the function
• A hessian is an operator that gives us partial

derivatives of the gradient:

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Taylor Series For Multivariate Functions

[constant] [linear] [quadratic]

In matrix form:

Using the Hessian, we can now write 2nd-order approximation of
any smooth, multivariable function 𝑓(𝑥) around some point 𝑥%:

Lecture 02.0 | Math Review

15-462/662 | Computer Graphics

Recap

• That was a lot of math
• But now you should have the proper mathematical background to

complete this course

• We will use Linear Algebra…
• As an effective bridge between geometry, physics, computation, etc.
• As a way to formulate a problem. Write the problem as Ax=b and ask

the computer to solve

• We will use Vector Calculus…
• As a basic language for talking about spatial relationships,

transformations, etc.
• For much of modern graphics (physically-based animation, geometry

processing, etc.) formulated in terms of partial differential equations
(PDEs) that use div, curl, Laplacian, and so on

• A0.0 will reinforce the content taught in this lecture
• Be sure to refer back to the slides for help

Charlie Brown (1984) Charles Schulz

Lecture 02.0 | Math Review

