Variance Reduction

Computer Graphics CMU 15-462/15-662

Last time: Monte Carlo Ray Tracing

- Recursive description of incident illumination
- Difficult to integrate; tour de force of numerical integration
- Leads to lots of sophisticated integration strategies:
 - sampling strategies
 - variance reduction

- Markov chain methods
- Today: get a glimpse of these ideas Also valuable outside rendering! $L_{\rm o}(\mathbf{x},\,\omega_{\rm o}) = L_e(\mathbf{x},\,\omega_{\rm o}) + \int_{\mathbf{O}} f_r(\mathbf{x},\,\omega_{\rm i},\,\omega_{\rm o}) L_{\rm i}(\mathbf{x},\,\omega_{\rm i}) \left(\omega_{\rm i}\,\cdot\,\mathbf{n}\right) \,\mathrm{d}\,\omega_{\rm i}$

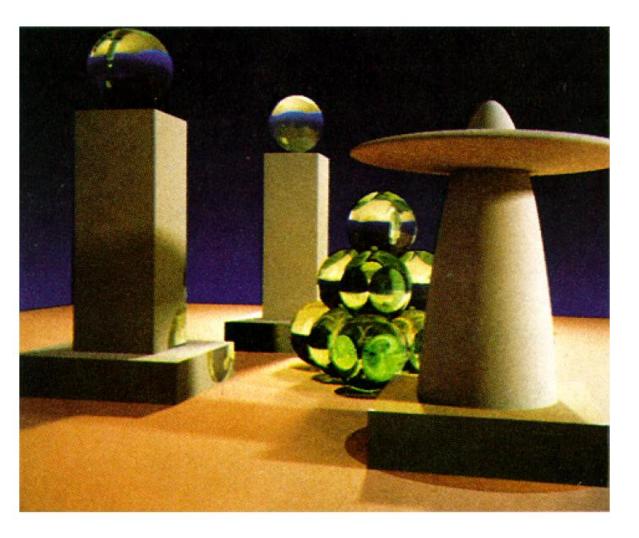
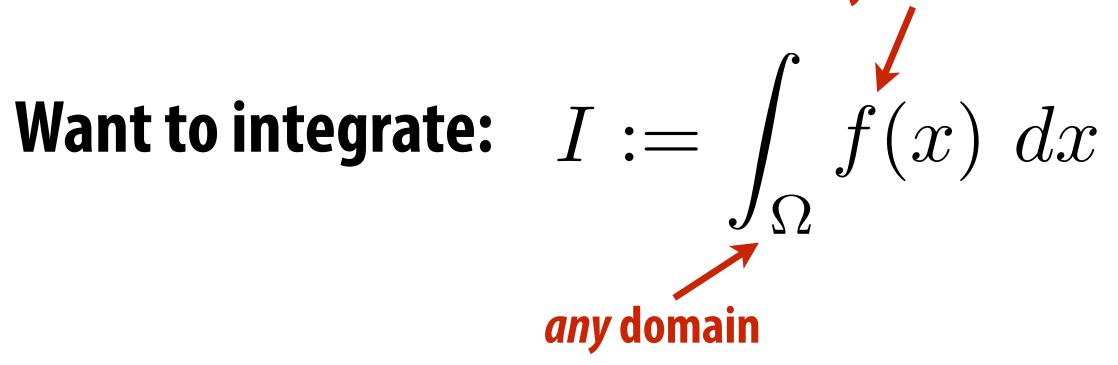


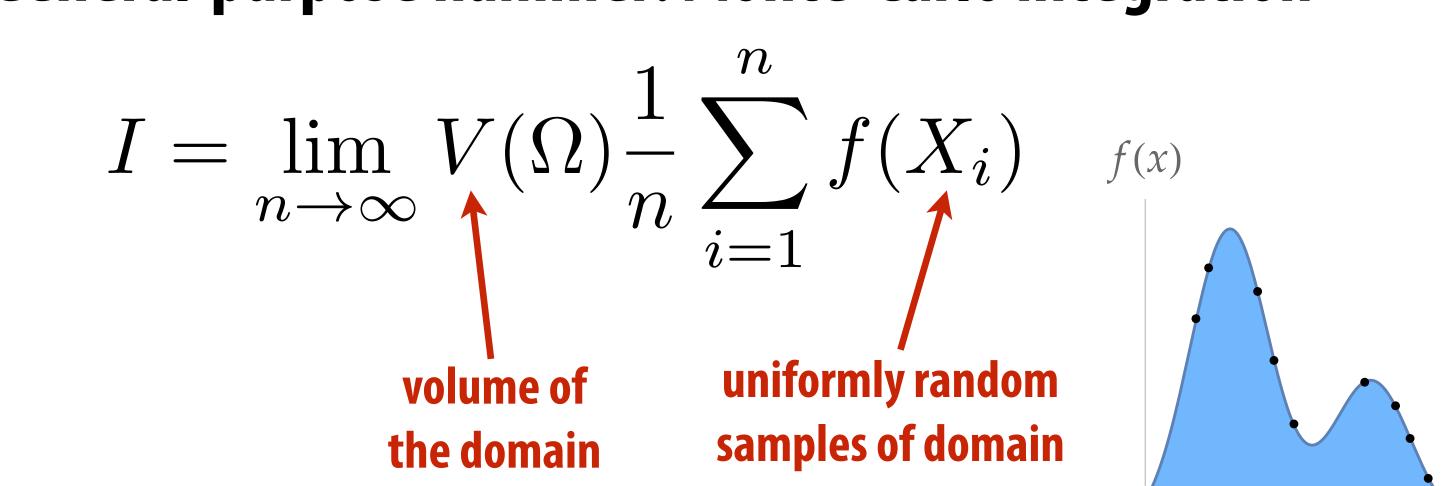
Figure 6. A sample image. All objects are neutral grey. Color on the objects is due to caustics from the green glass balls and color bleeding from the base polygon.

Monte Carlo one of the "Top 10 Algorithms of the 20th Century"!

Review: Monte Carlo Integration

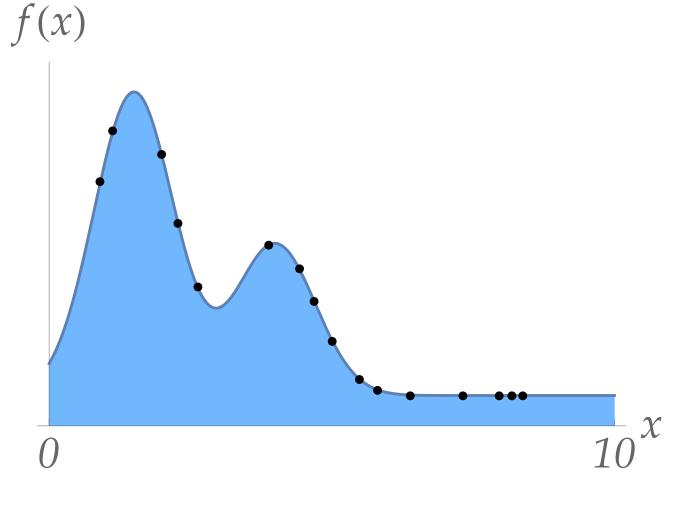


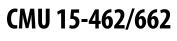
General-purpose hammer: Monte-Carlo integration



*Must of course have a well-defined integral!

any function*





Review: Expected Value (DISCRETE)

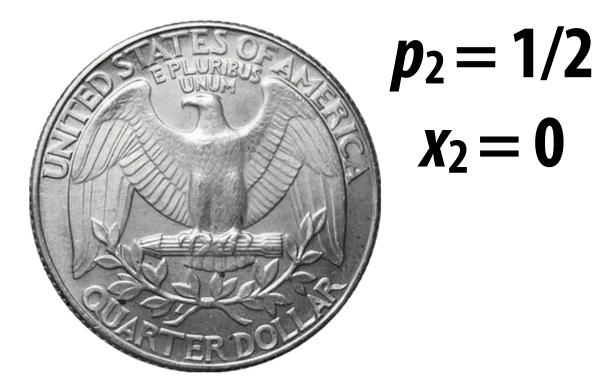
A *discrete* random variable *X* has *n* possible outcomes *x_i*, occuring w/ probabilities $0 \le p_i \le 1$, $p_1 + \ldots + p_n = 1$

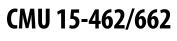


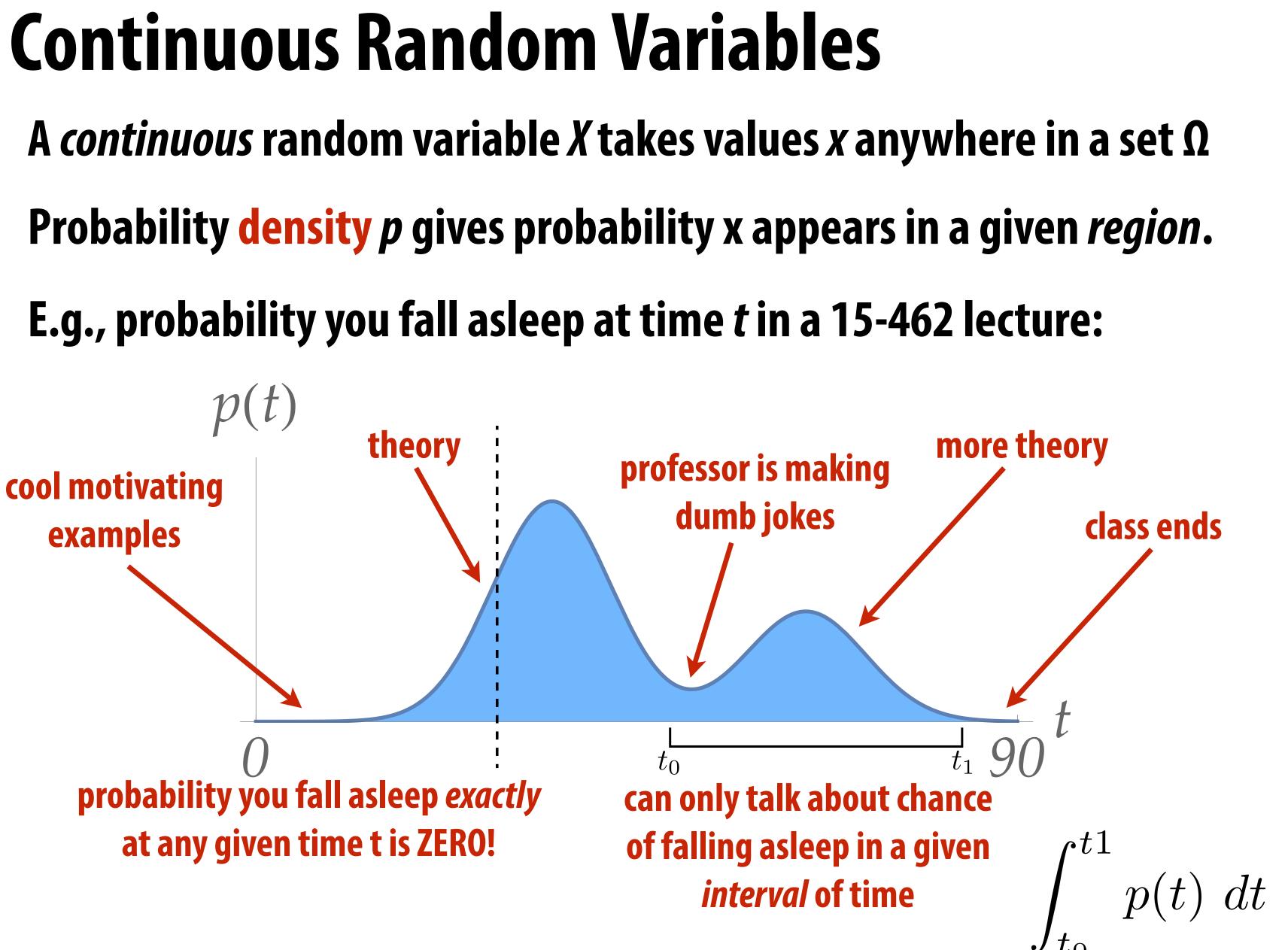
E.g., what's the expected value for a fair coin toss?

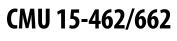
$$p_1 = 1/2$$

$$x_1 = 1$$



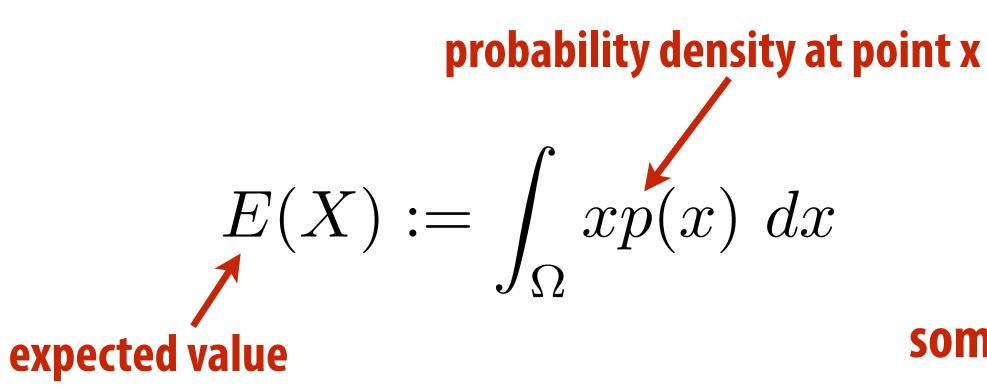




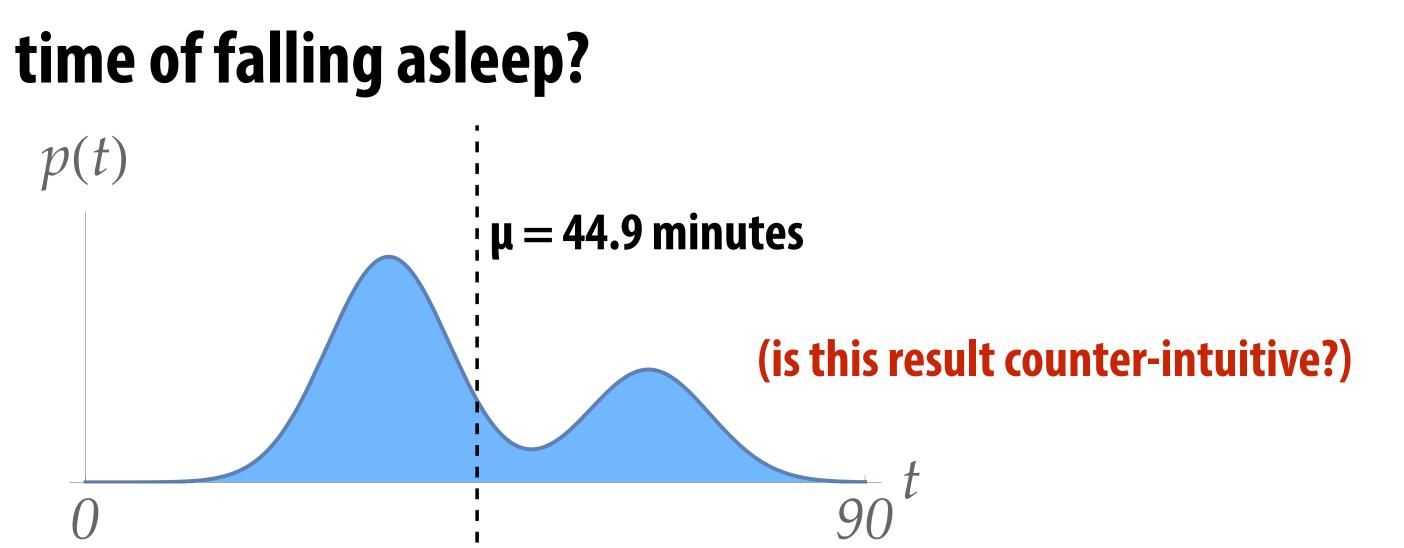


Review: Expected Value (CONTINUOUS)

Expected value of continuous random variable again just the "weighted average" with respect to probability p:

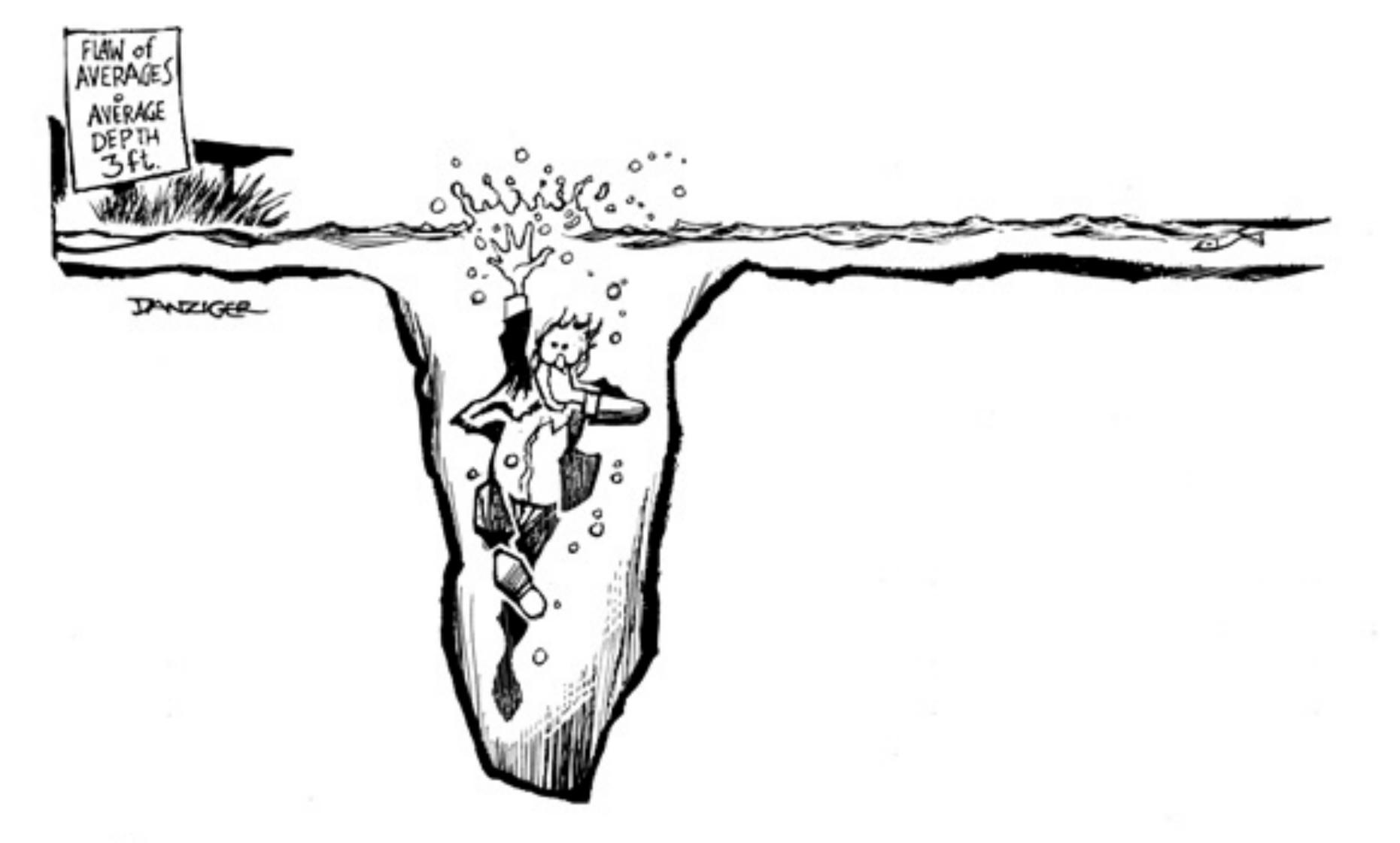


E.g., expected time of falling asleep?



sometimes just use "µ" (for "mean")

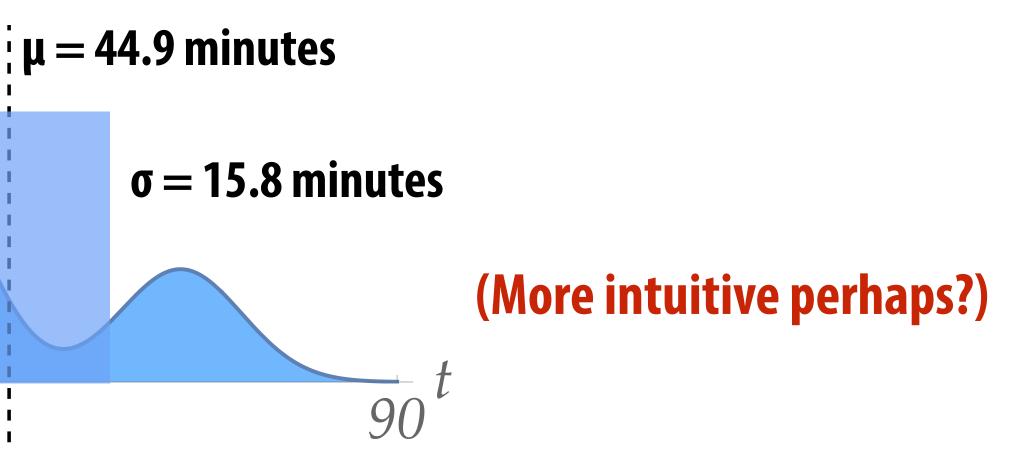
Flaw of Averages



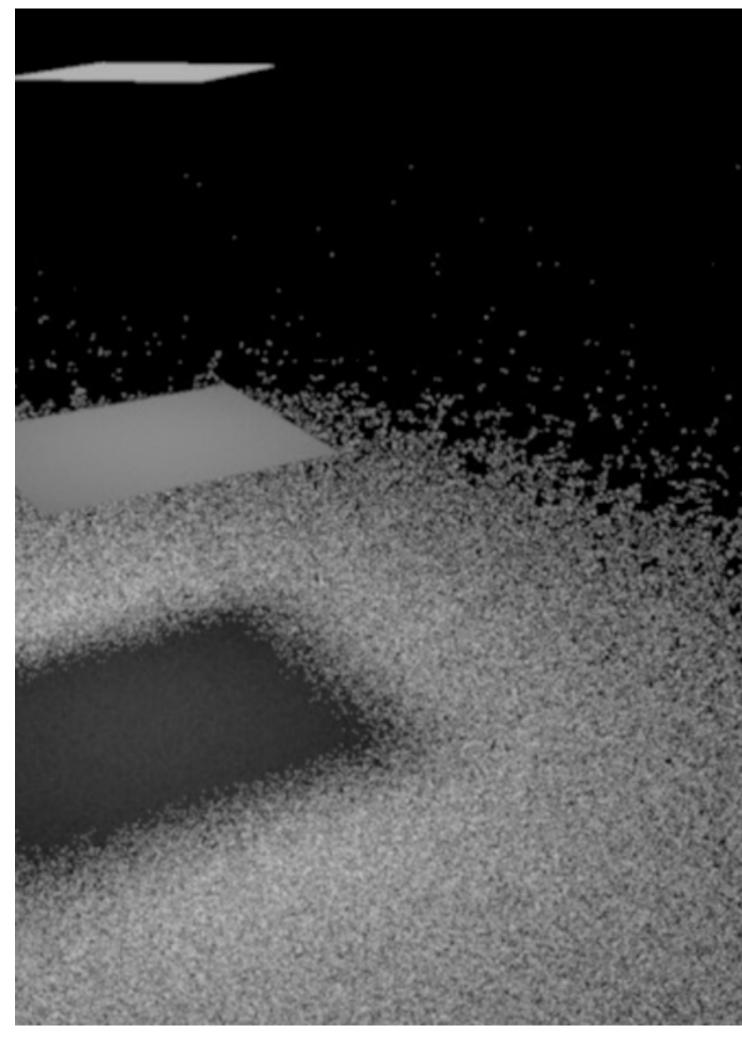
Review: Variance Expected value is the "average value" Variance is how far we are from the average, on average! $\operatorname{Var}(X) :=$ DISCRETE CONTINUOUS n $\sum_{i=1} p_i (x_i - \sum_j p_j x_j)^2$ • Standard deviation σ is just the square root of variance $\mu = 44.9$ minutes p(t) $\sigma = 15.8$ minutes 90

$$E[(X - E[X])^2]$$

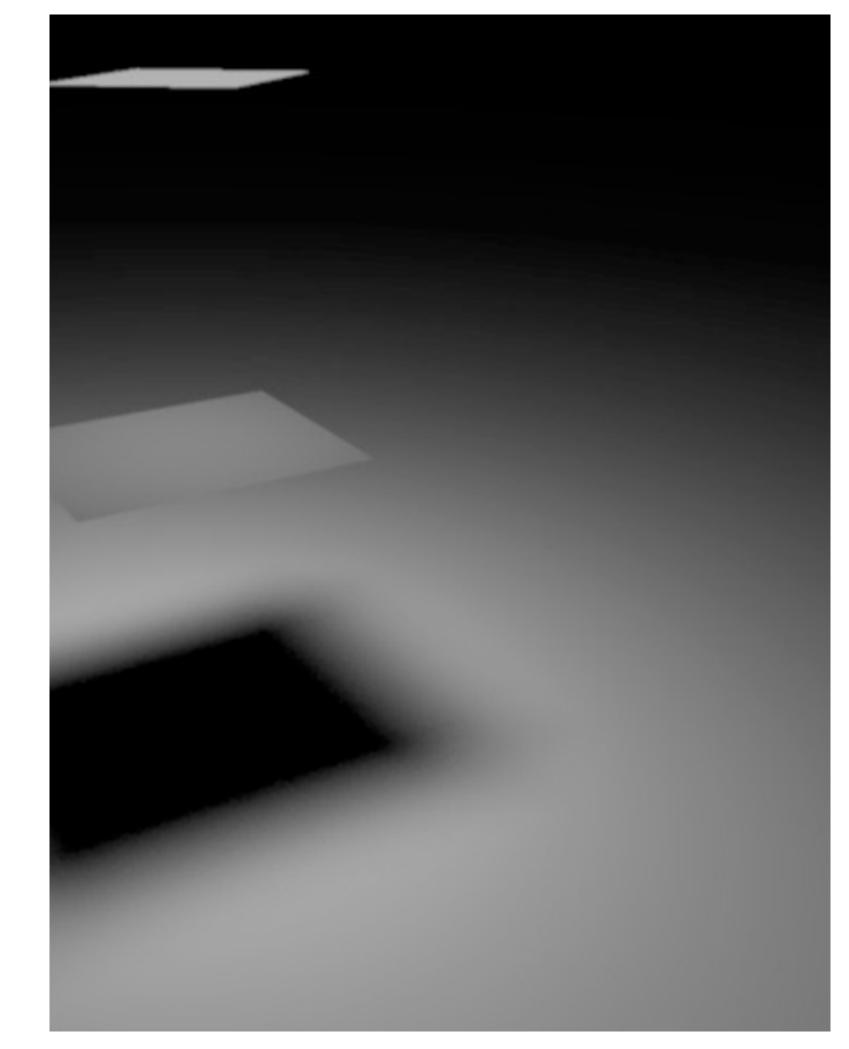
$$\int_{\Omega} p(x)(x - \int_{\Omega} yp(y) \, dy)^2 \, dx$$



Variance Reduction in Rendering



higher variance



lower variance

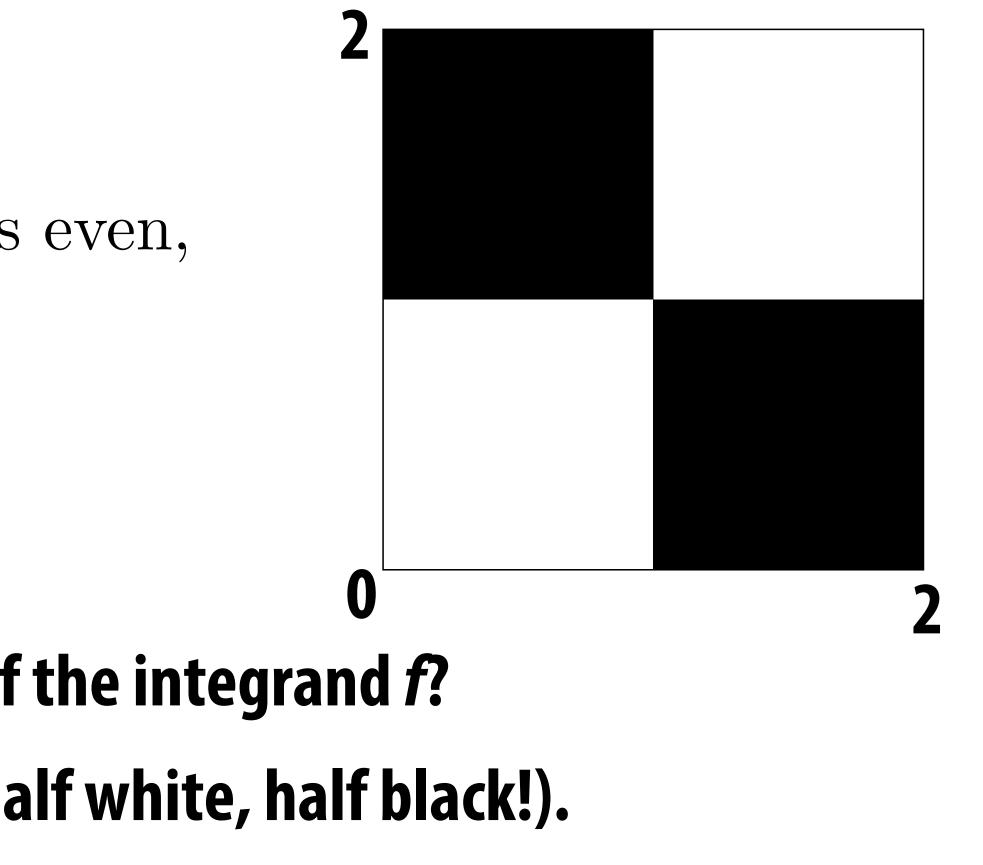
Q: How do we reduce variance?

Variance Reduction Example

 $\Omega := [0, 2] \times [0, 2]$ $f(x,y) := \begin{cases} 1 & \lfloor x \rfloor + \lfloor y \rfloor \text{ is even,} \\ 0 & \text{otherwise} \end{cases}$ $\mathbf{\Gamma}$

$$I := \int_{\Omega} f(x, y) \, dx dy$$

- Q: What's the expected value of the integrand f?
- A: Just by inspection, it's 1/2 (half white, half black!).
- Q: What's its variance?
- A: $(1/2)(0-1/2)^2 + (1/2)(1-1/2)^2 = (1/2)(1/4) + (1/2)(1/4) = 1/4$
- **Q: How do we reduce the variance?**



You can't reduce variance of the integrand! Can only reduce variance of an *estimator*.

That was a trick question.

Variance of an Estimator

- An "estimator" is a formula used to approximate an integral
- Most important example: our Monte Carlo estimate:

$$I = \int_{\Omega} f(x) \, dx$$

true integral

- Get different estimates for different collections of samples
- Want to reduce variance of *estimate* across different samples
- Why? Integral itself only has one value!
- Many, many (many) techniques for reducing variance
- We will review some key examples for rendering

$$\hat{I} := V(\Omega) \frac{1}{n} \sum_{i=1}^{n} f(x_i)$$

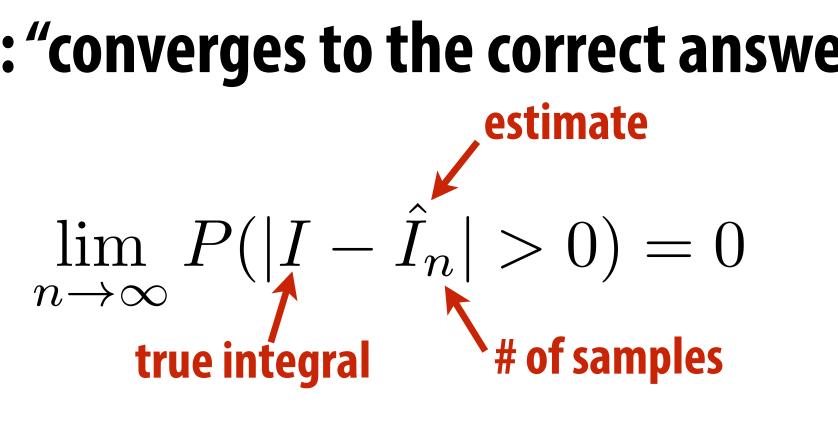
Monte Carlo estimate

Bias & Consistency

Two important things to ask about an estimator

- Is it consistent?
- Is it *biased*?
- Consistency: "converges to the correct answer"

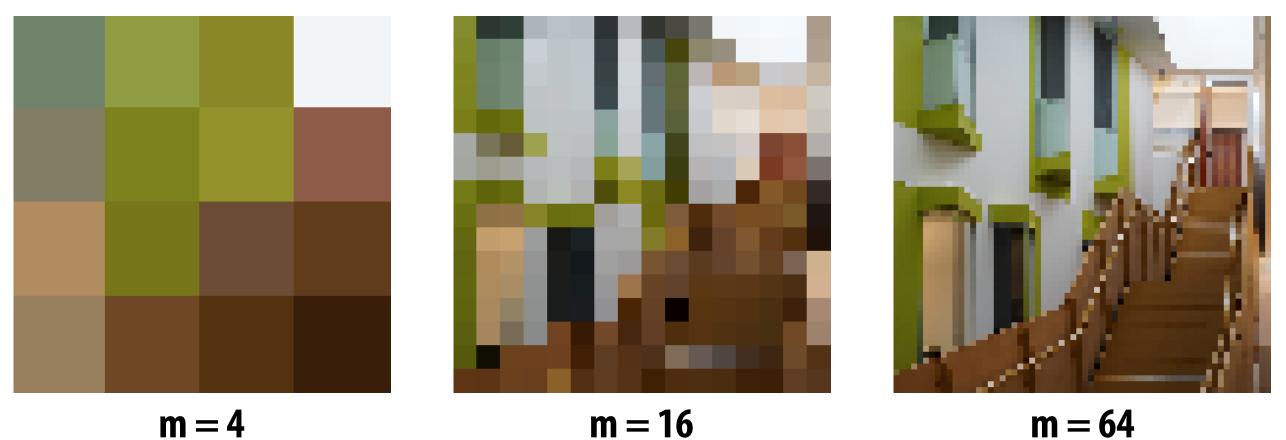
Unbiased: "estimate is correct on average"



 $E[I - \hat{I}_n] = 0$ expected value ...even if n=1! (only one sample)

Example 1: Consistent or Unbiased?

- sum the contributions of each box
- My estimator for the integral over an image: - take n = m x m samples at fixed grid points
 - let m go to ∞



Is this estimator consistent? Unbiased?

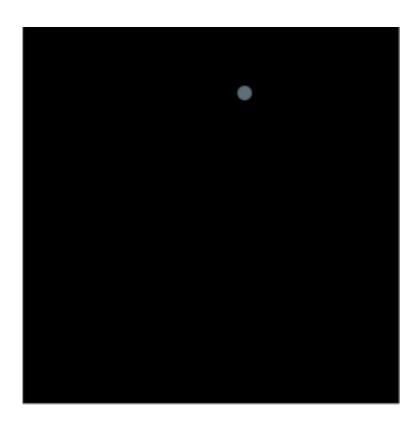
m = 64

m = ∞

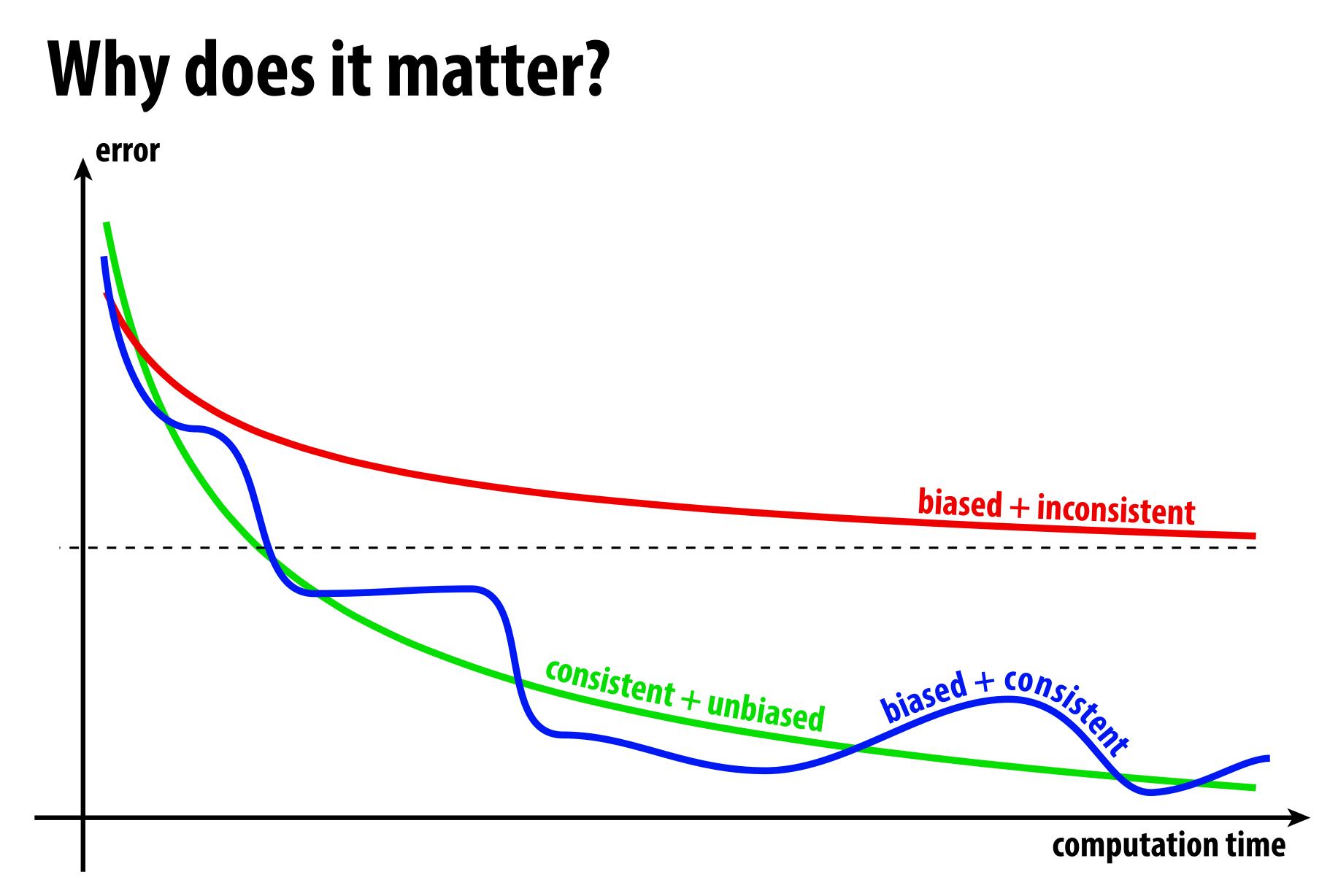
Example 2: Consistent or Unbiased?

My estimator for the integral over an image:

- take only a single random sample of the image (n=1)
- multiply it by the image area
- use this value as my estimate



Is this estimator consistent? Unbiased? (What if I then let n go to ∞ ?)



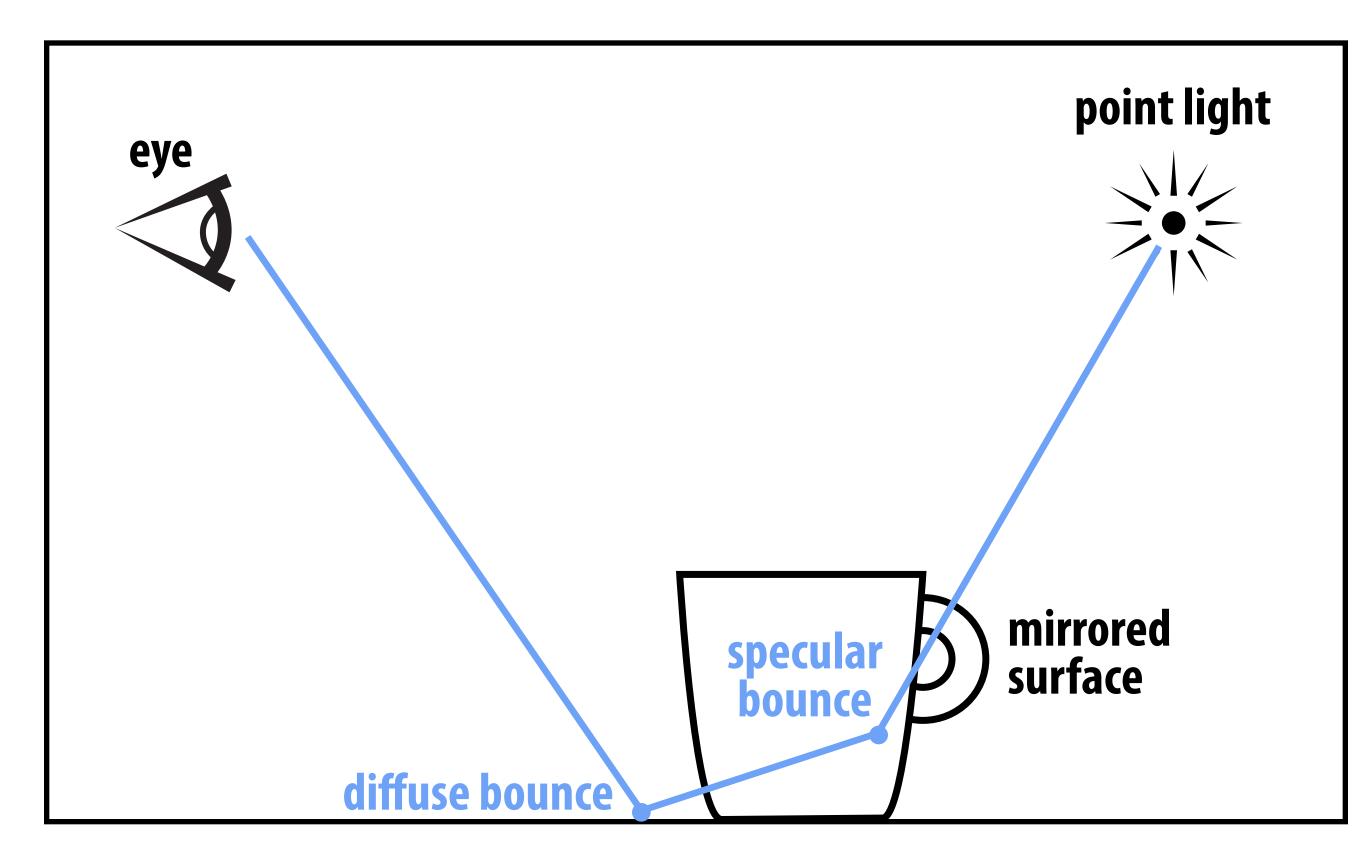
Rule of thumb: unbiased estimators have more predictable behavior / fewer parameters to tweak to get correct result (which says nothing about *performance...*)

Consistency & Bias in Rendering Algorithms

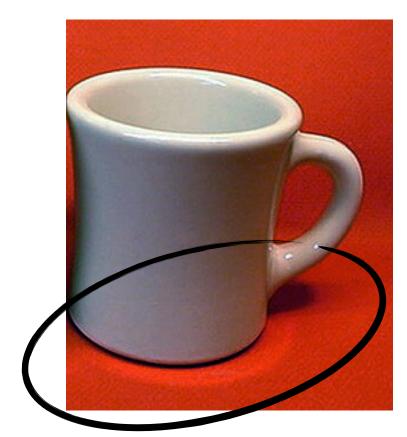
method	consistent?	unbiased?
rasterization*	NO	NO
path tracing	ALMOST	ALMOST
bidirectional path tracing	???	???
Metropolis light transport	???	???
photon mapping	???	???
radiosity	???	???

*But very high performance!

Naïve Path Tracing: Which Paths Can We Trace?



Q: What's the probability we sample the reflected direction? A: ZERO. Q: What's the probability we hit a point light source? A: ZERO.



"caustic" (focused light) from reflection

Naïve path tracing misses important phenomena! (Formally: the result is *biased*.)

...But isn't this example pathological? No such thing as point light source, perfect mirror.

Real lighting can be close to pathological

near-perfect mirror

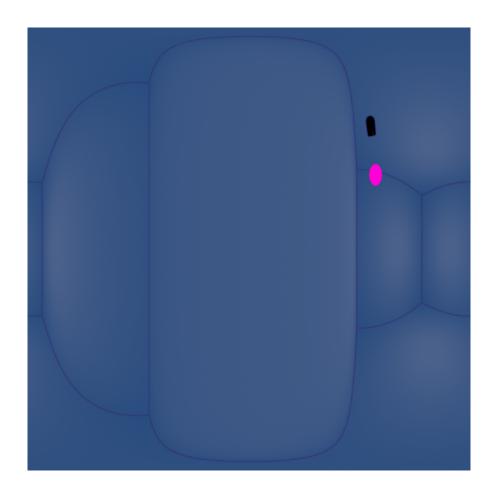
Still want to render this scene!

Light has a very "spiky" distribution

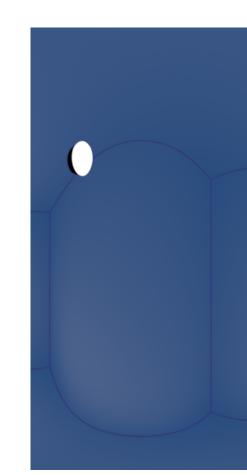
Consider the view from each bounce in our disco scene:



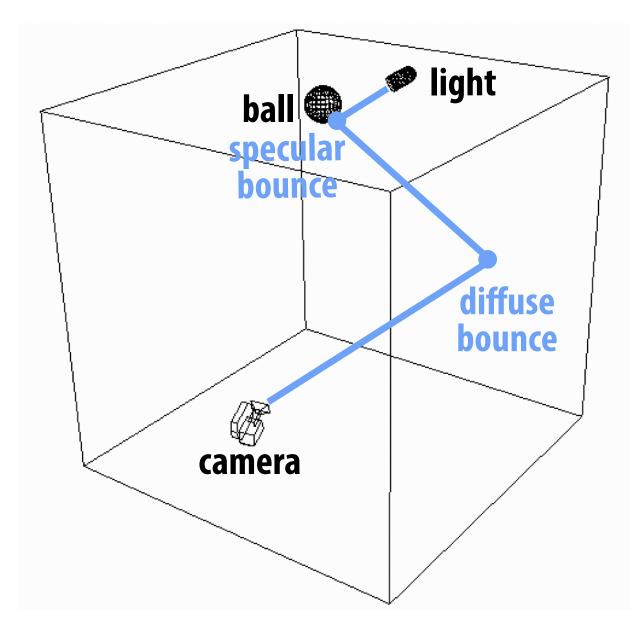
view from camera



view from diffuse bounce mirrored ball (pink) covers small percentage of solid angle



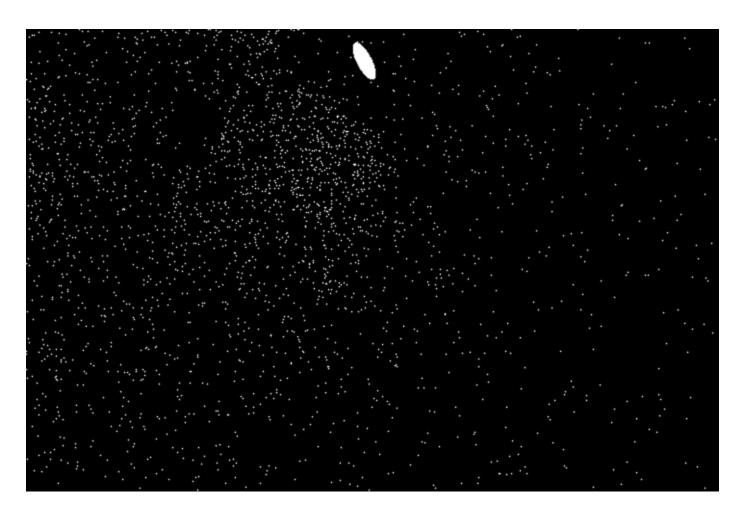
view from specular bounce area light (white) covers small percentage of solid angle



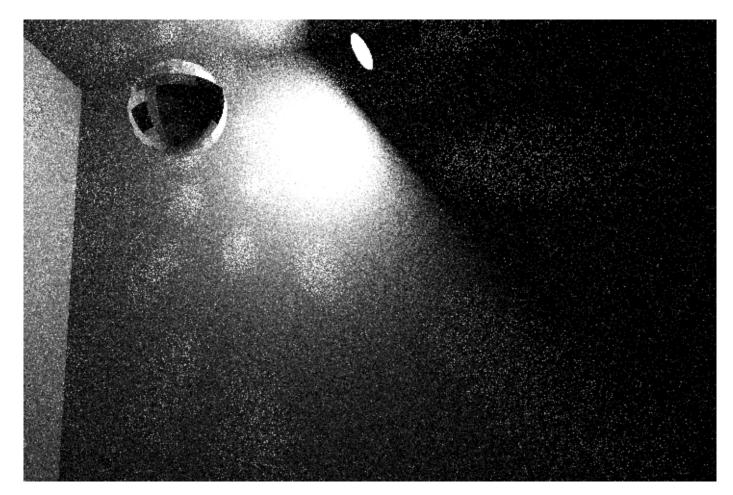
Probability that a uniformly-sampled path carries light is the *product* of the solid angle fractions. (Very small!)

Then consider even more bounces...

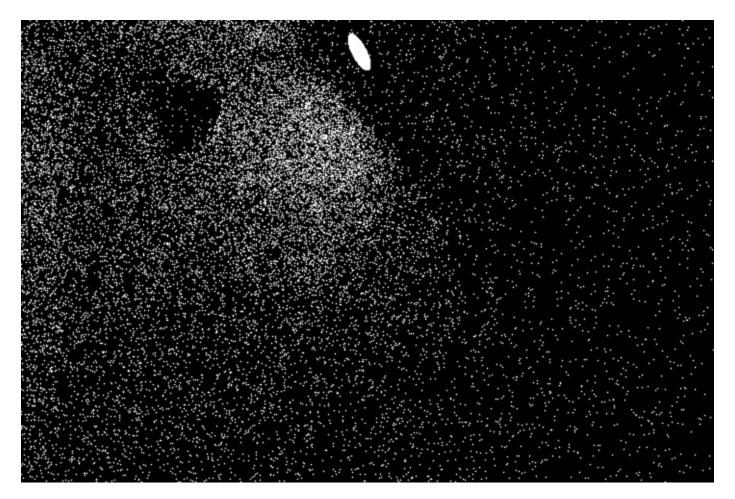
Just use more samples?



path tracing - 16 samples/pixel



path tracing - 8192 samples/pixel



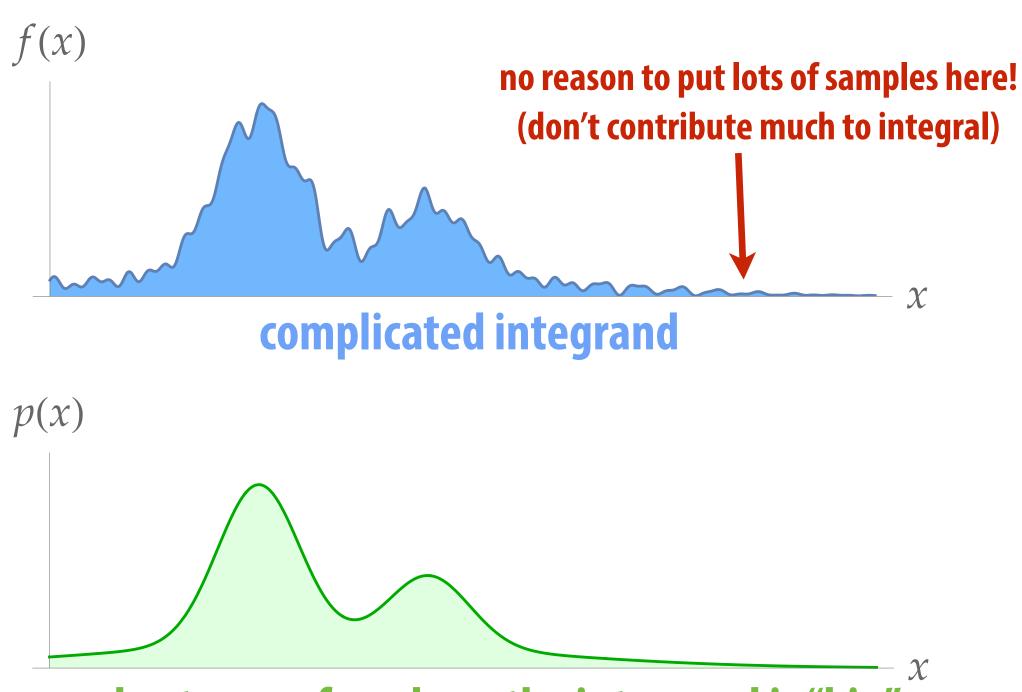
path tracing - 128 samples/pixel

how do we get here? (photo)

We need better sampling strategies!

Review: Importance Sampling

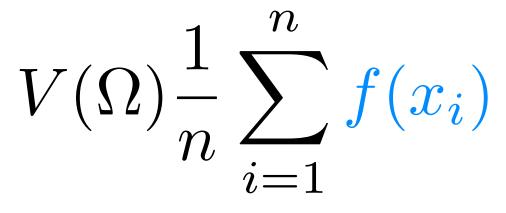
Simple idea: sample the integrand according to how much we expect it to contribute to the integral.



our best guess for where the integrand is "big"

Q: What happens when p is proportional to f(p = cf)?

naïve Monte Carlo:



(x_i are sampled *uniformly*)

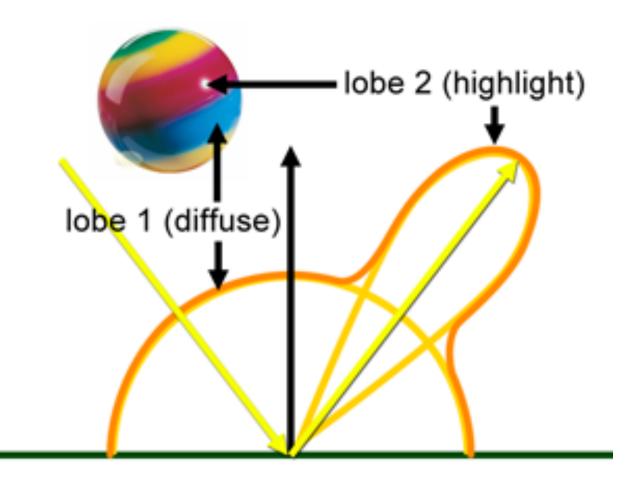
importance sampled Monte Carlo:

(x_i are sampled proportional to *p*)

"If I sample x more frequently, each sample should count for less; if I sample x less frequently, each sample should count for more."

Importance Sampling in Rendering

materials: sample important "lobes"

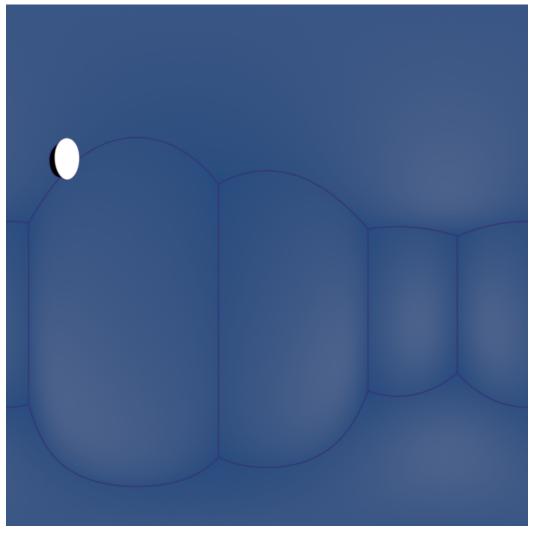


© www.scratchapixel.com

(important special case: perfect mirror!)

Q: How else can we re-weight our choice of samples?

illumination: sample bright lights



(important special case: point light!)

Path Space Formulation of Light Transport

So far have been using recursive rendering equation:

$$L_{\rm o}(\mathbf{x},\,\omega_{\rm o}) = L_e(\mathbf{x},\,\omega_{\rm o}) + \int_{\Omega}$$

lights)

how much "light" is carried by this path?

$$I = \int_{\Omega} f(\bar{x}) d\mu(\bar{x})$$

all possible paths

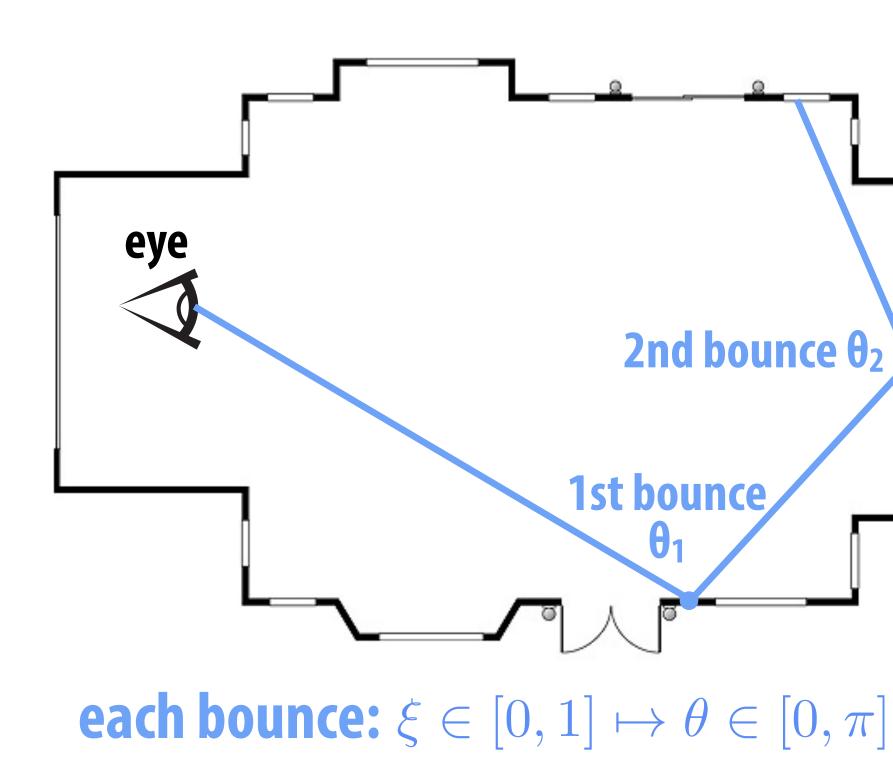
one particular path

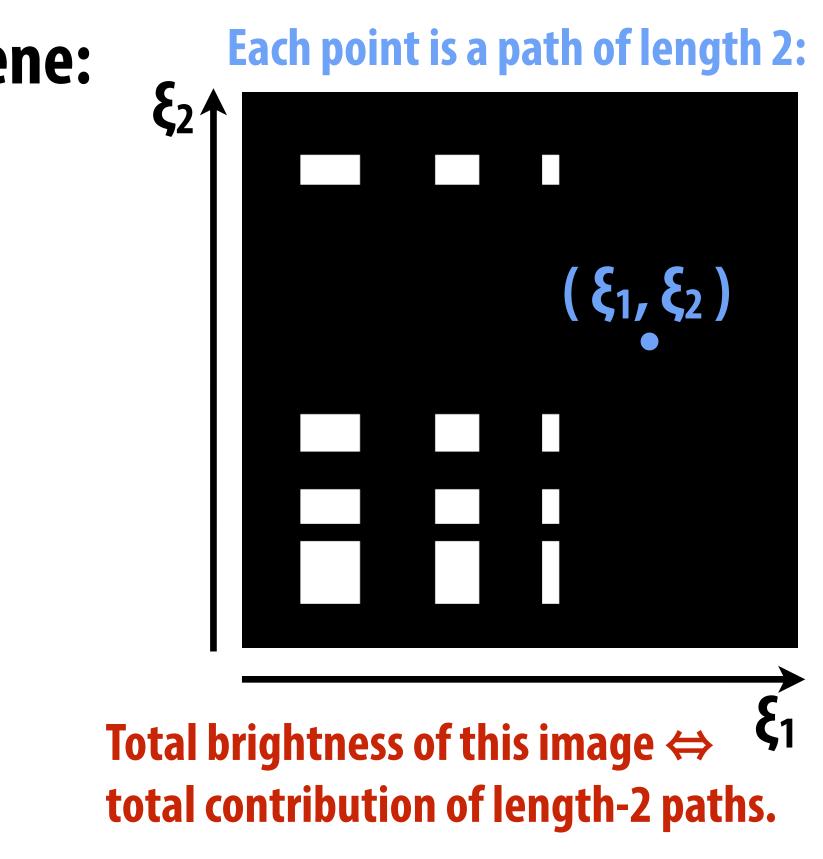
Opens the door to intelligent "global" importance sampling. (But still hard!)

- $f_r(\mathbf{x}, \,\omega_{\mathrm{i}}, \,\omega_{\mathrm{o}}) \, L_{\mathrm{i}}(\mathbf{x}, \,\omega_{\mathrm{i}}) \, (\omega_{\mathrm{i}} \,\cdot\, \mathbf{n}) \, \mathrm{d}\,\omega_{\mathrm{i}}$
- Make intelligent "local" choices at each step (material/
- Alternatively, we can use a "path integral" formulation:
 - how much of path space does this path "cover"

Unit Hypercube View of Path Space

- **Paths determined by a sequence of random values \xi in [0,1]**
- Hence, path of length k is a point in hypercube [0,1]^k
- "Just" integrate over cubes of each dimension k
- E.g., two bounces in a 2D scene:



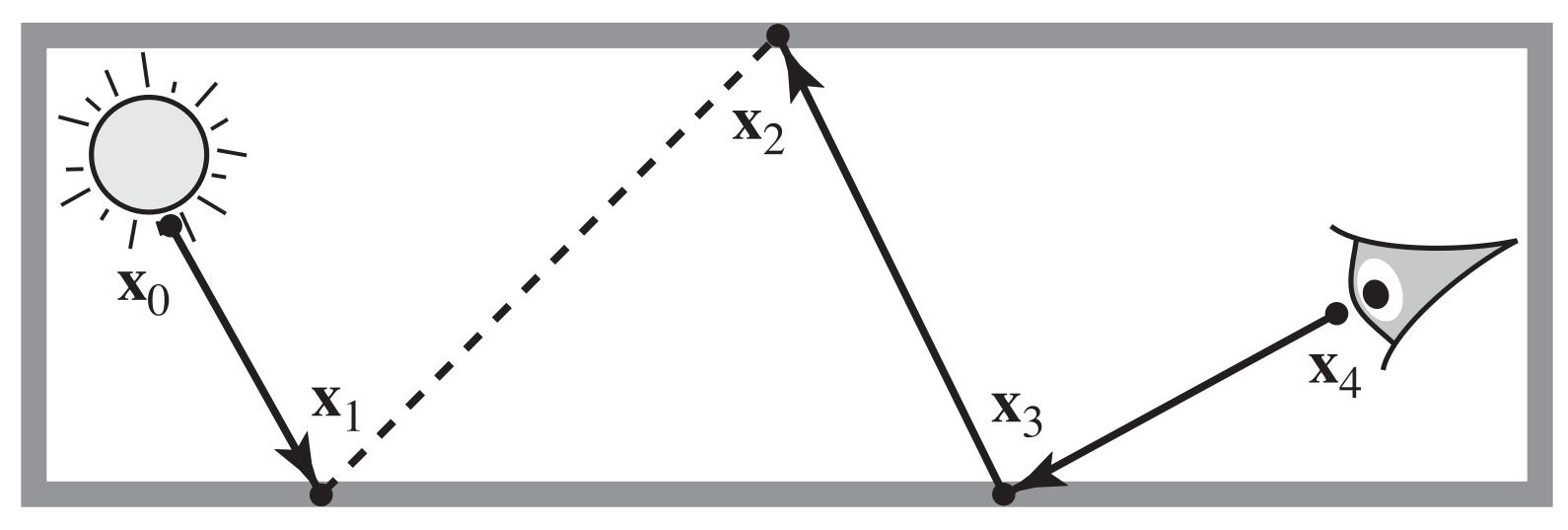


How do we choose paths—and path *lengths*?

Bidirectional Path Tracing

Forward path tracing: no control over path length (hits light after n bounces, or gets terminated by Russian **Roulette**)

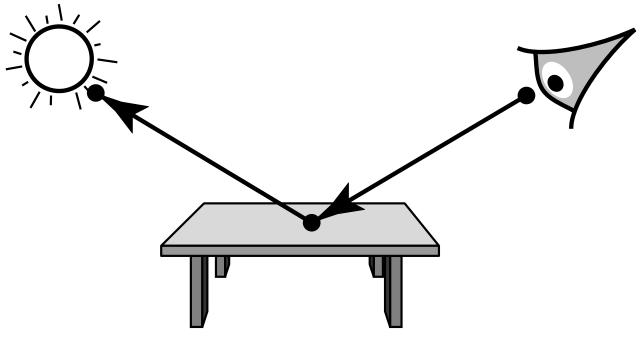
Idea: connect paths from light, eye ("bidirectional")



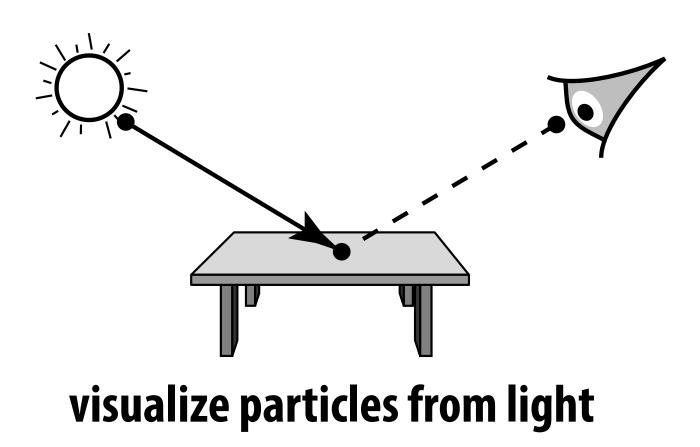
Importance sampling? Need to *carefully* weight contributions of path according to sampling strategy.

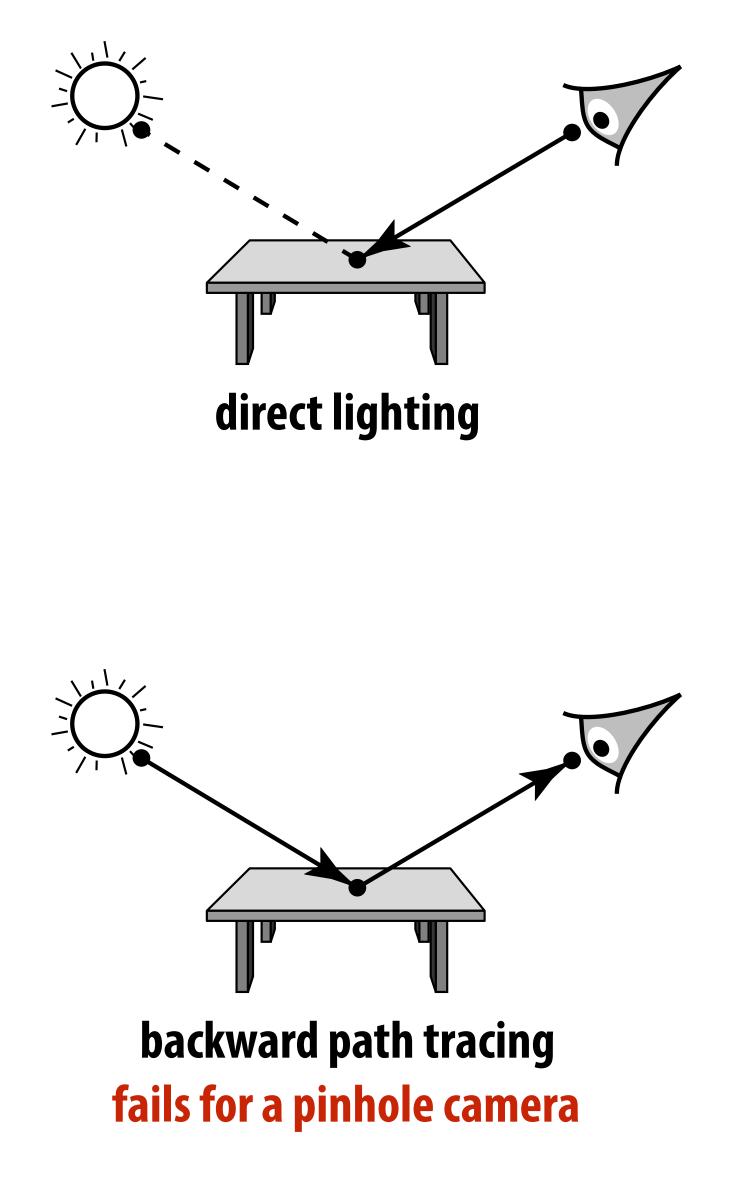
(Details in Veach & Guibas, "Bidirectional Estimators for Light Transport")

Bidirectional Path Tracing (Path Length=2)

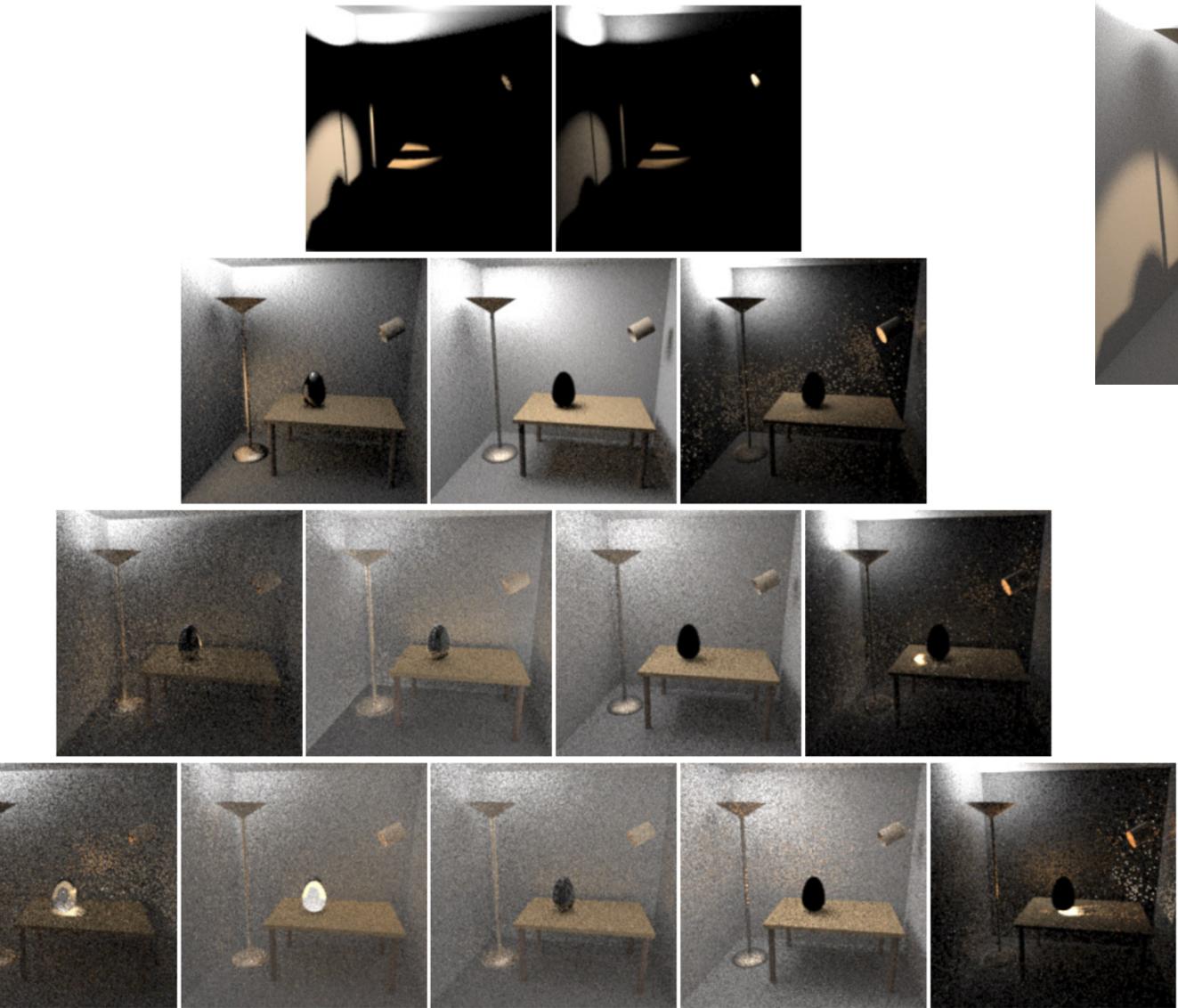


standard (forward) path tracing fails for point light sources



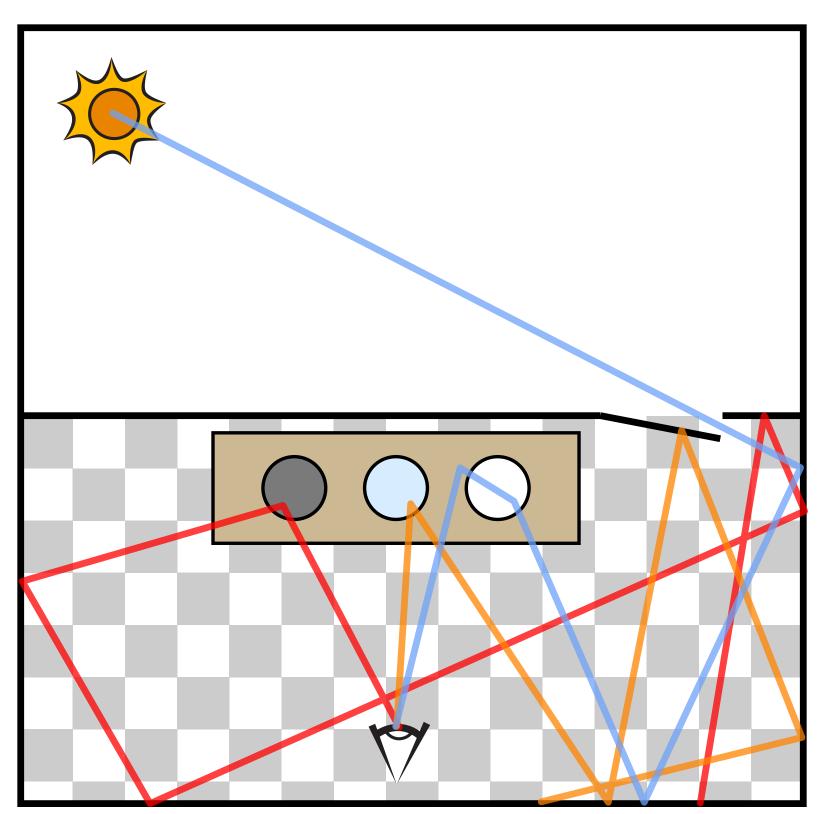


Contributions of Different Path Lengths



final image

Good paths can be hard to find!



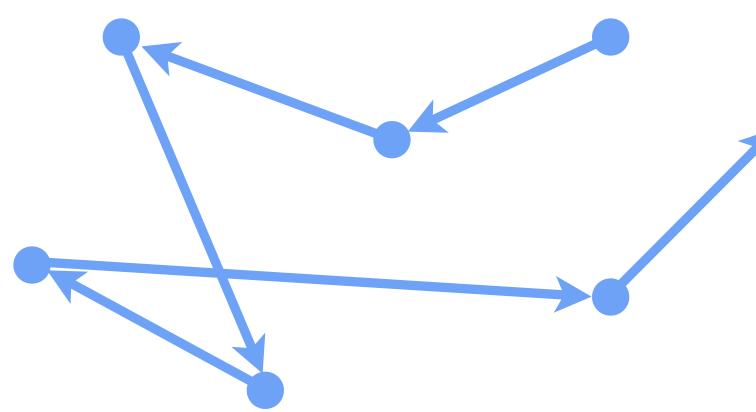
Idea: Once we find a good path, perturb it to find nearby "good" paths.

bidirectional path tracing

Metropolis light transport (MLT)

Metropolis-Hastings Algorithm (MH)

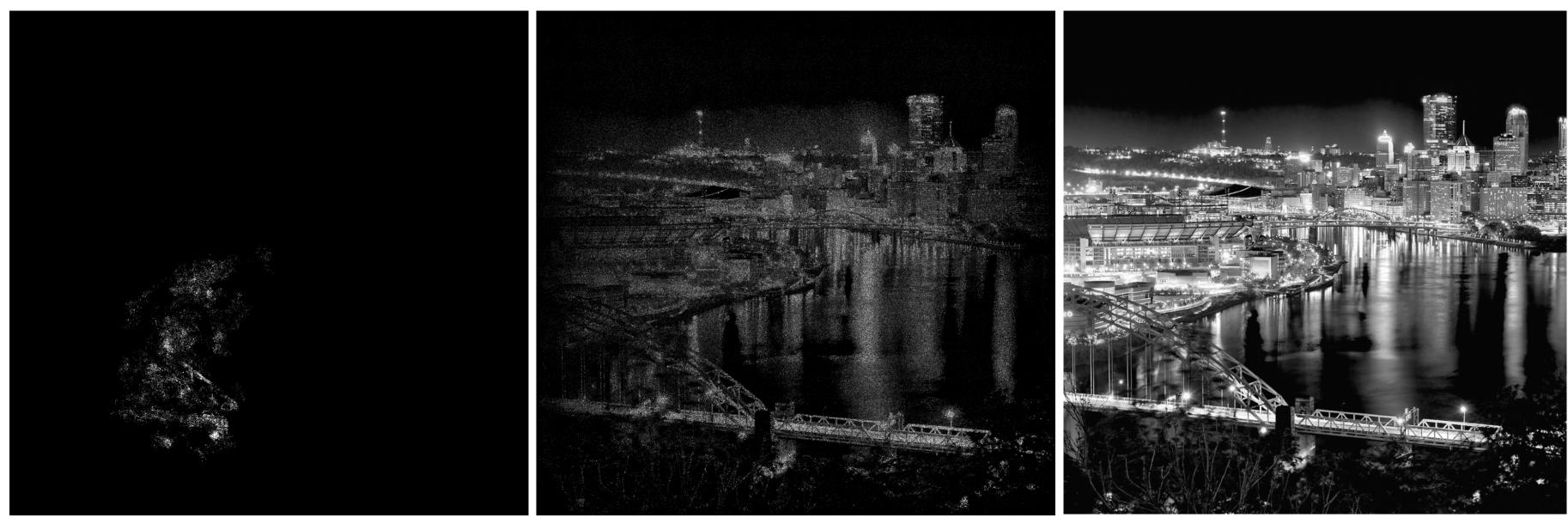
- **Standard Monte Carlo: sum up independent samples** MH: take random walk of dependent samples ("mutations") Basic idea: prefer to take steps that increase sample value $\alpha := f(x') / f(xi)$ "transition probability" Xi **if random # in [0,1] < α**: $X_{i+1} = X'$ else: $X_{i+1} = X_i$



- If careful, sample distribution will be proportional to integrand make sure mutations are "ergodic" (reach whole space)
- need to take a long walk, so initial point doesn't matter ("mixing")

Metropolis-Hastings: Sampling an Image

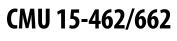
- Want to take samples proportional to image density f
- Start at random point; take steps in (normal) random direction
- **Occasionally jump to random point (ergodicity)**
- Transition probability is "relative darkness" f(x')/f(x_i)



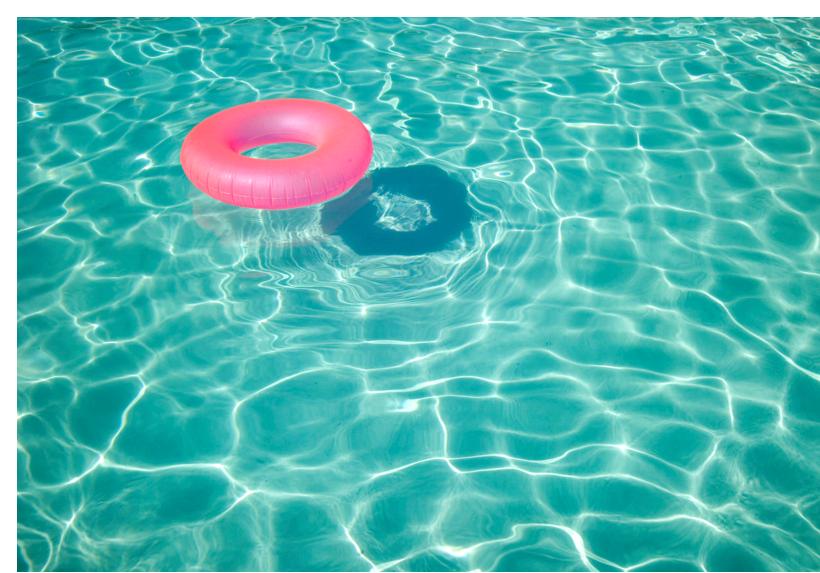
short walk

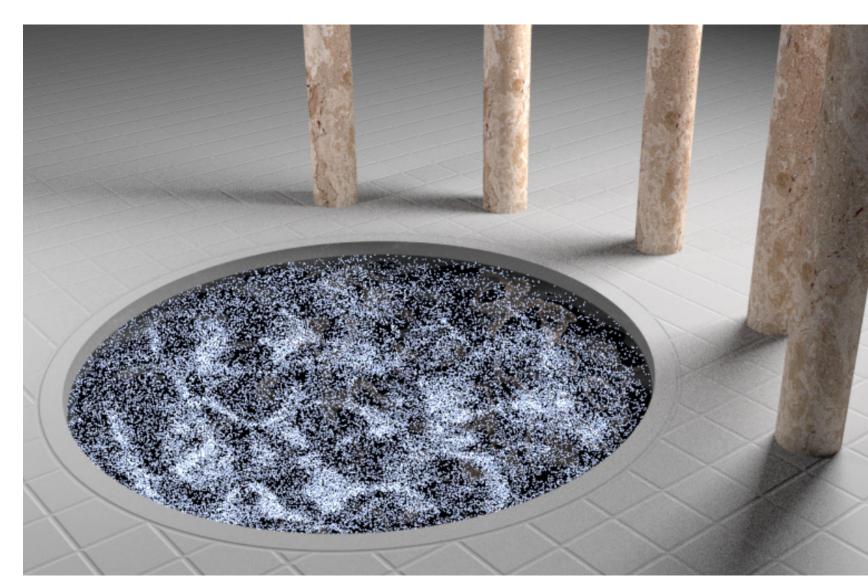
long walk

(original image)

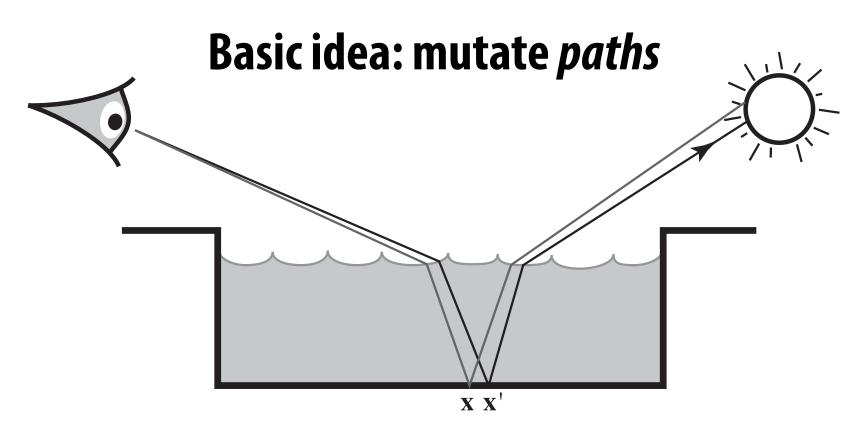


Metropolis Light Transport

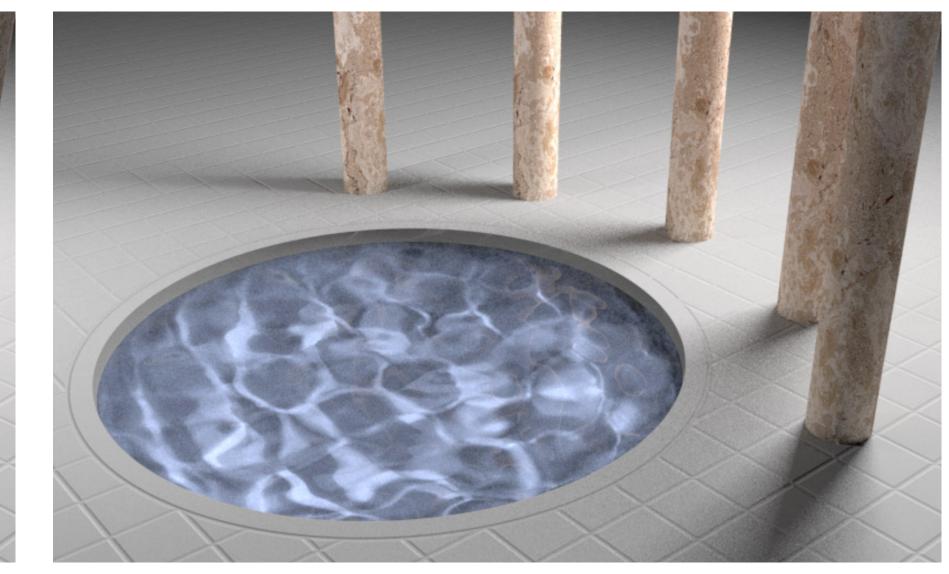




path tracing



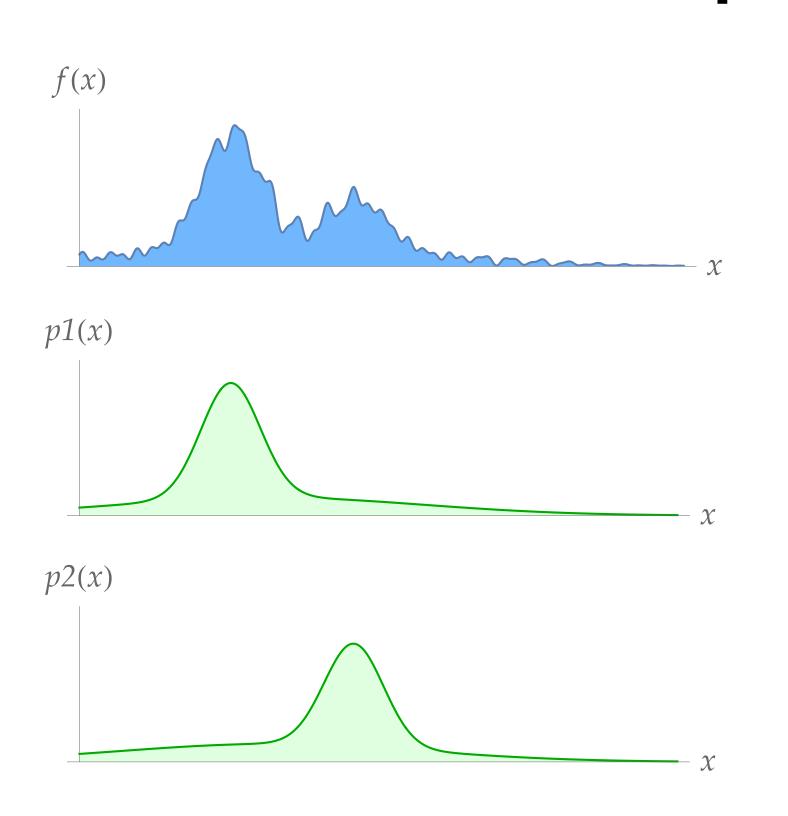
(For details see Veach, "Robust Monte Carlo Methods for Light Transport Simulation")

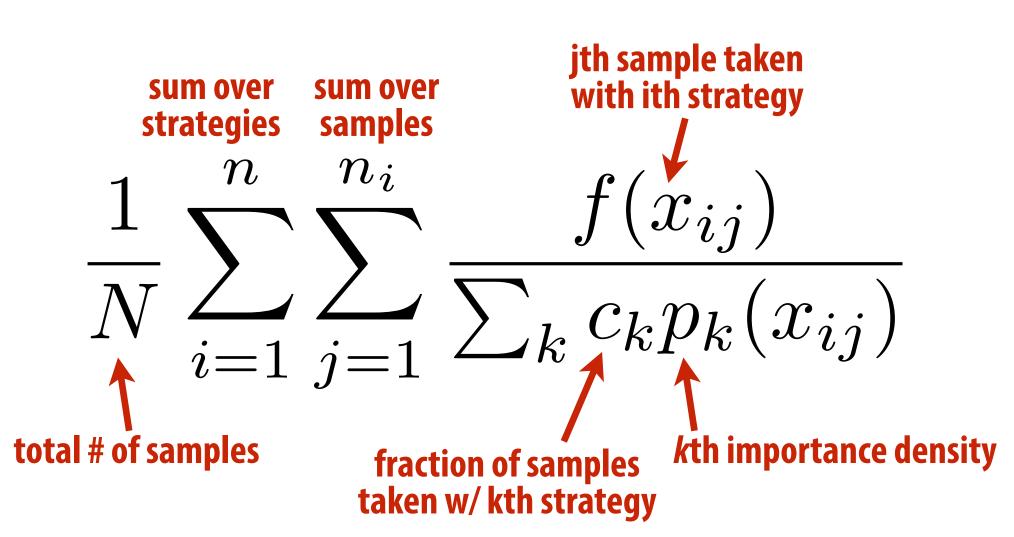


Metropolis light transport (same time)

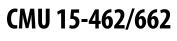
Multiple Importance Sampling (MIS)

Many possible importance sampling strategies Which one should we use for a given integrand? MIS: *combine* strategies to preserve strengths of all of them Balance heuristic is (provably!) about as good as anything:

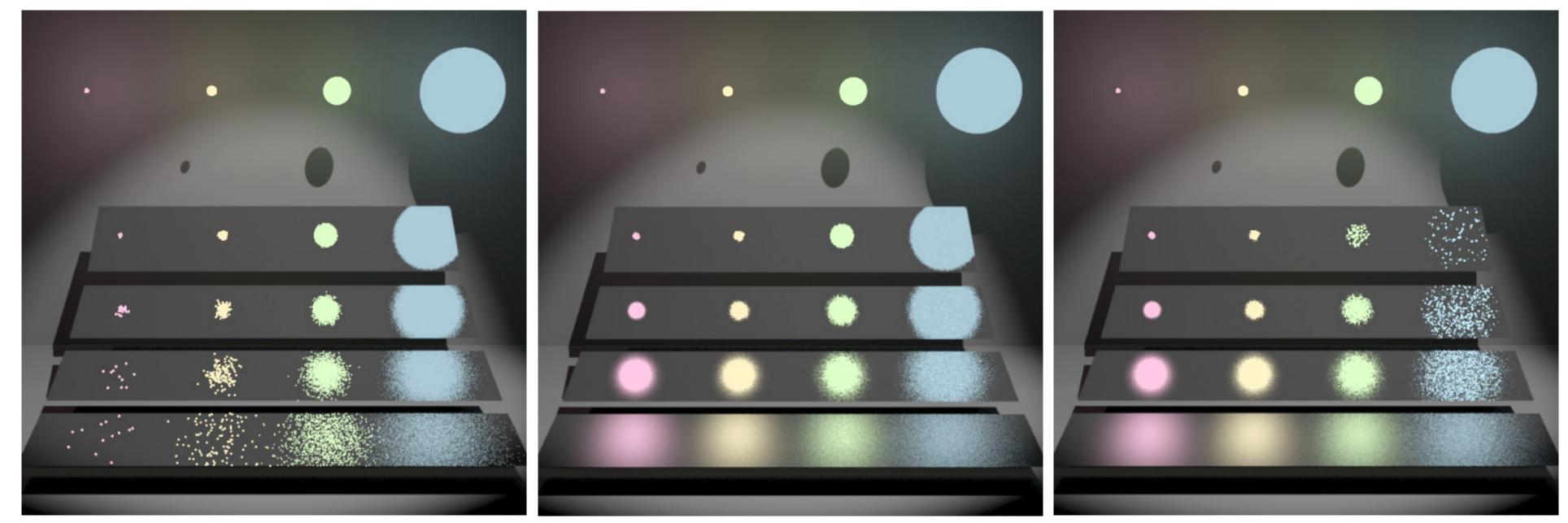




Still, several improvements possible (cutoff, power, max)—see Veach & Guibas.



Multiple Importance Sampling: Example



sample materials

multiple importance sampling (power heuristic)

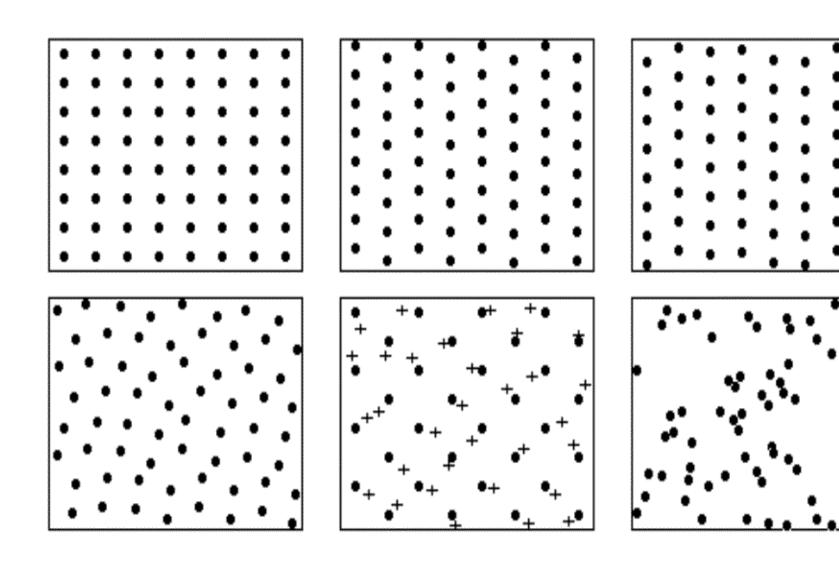
sample lights

Ok, so importance is important.

But how do we sample our function in the first place?

Sampling Patterns & Variance Reduction

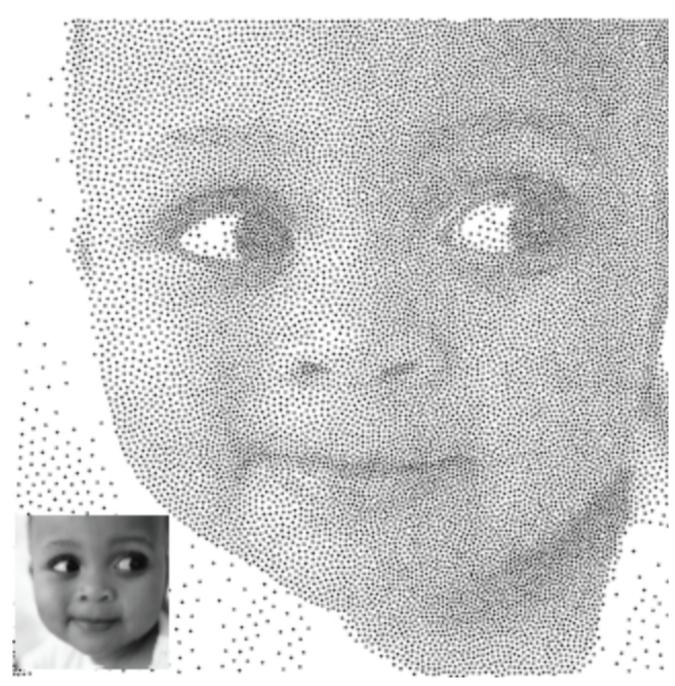
- Want to pick samples according to a given density
- patterns



uniform sampling density

But even for uniform density, lots of possible sampling

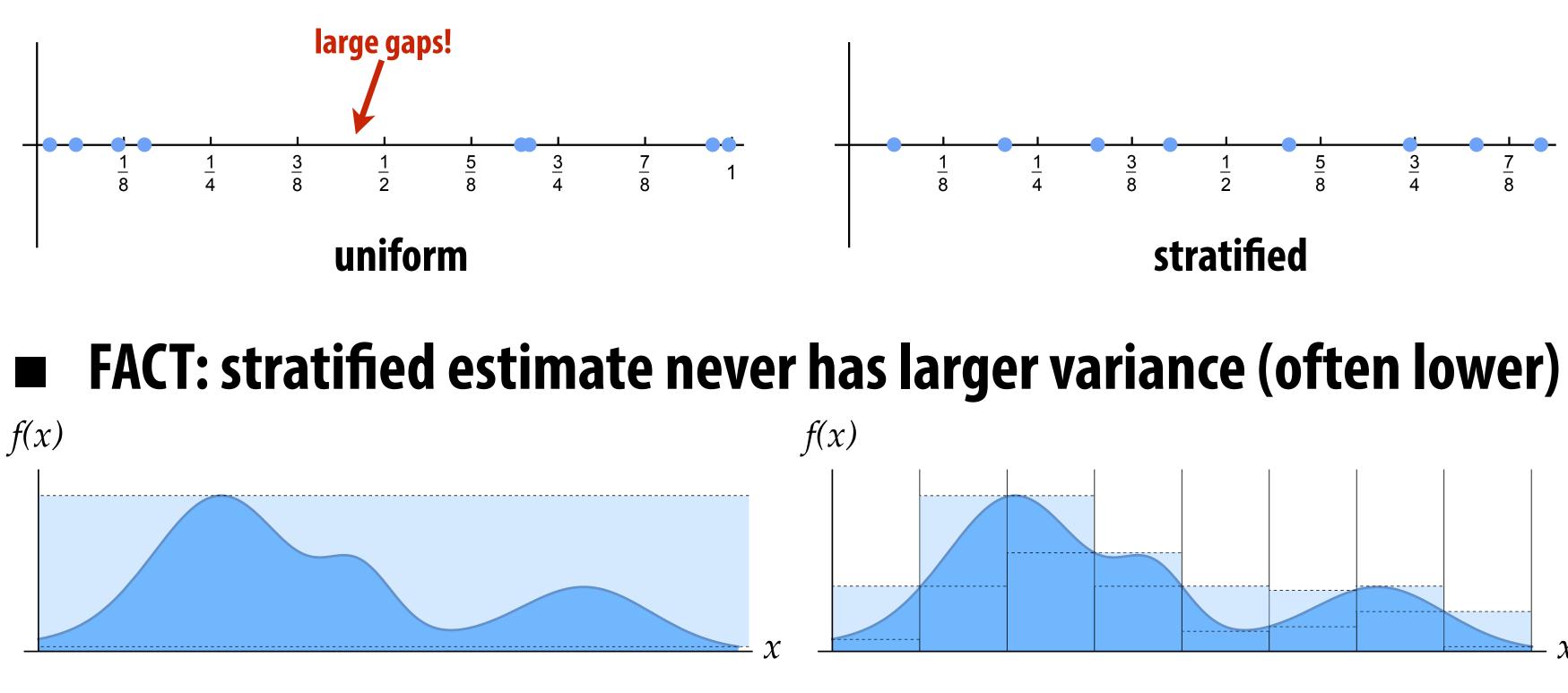
Sampling pattern will affect variance (of estimator!)



nonuniform sampling density

Stratified Sampling

How do we pick n values from [0,1]? Could just pick n samples uniformly at random



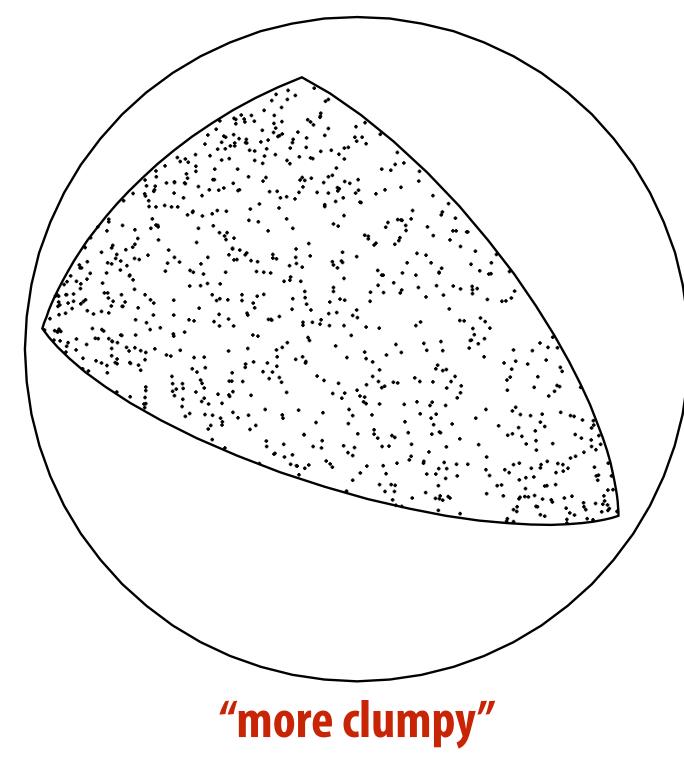
- Alternatively: split into n bins, pick uniformly in each bin

Intuition: each stratum has smaller variance. (Proof by linearity of expectation!)

Stratified Sampling in Rendering/Graphics

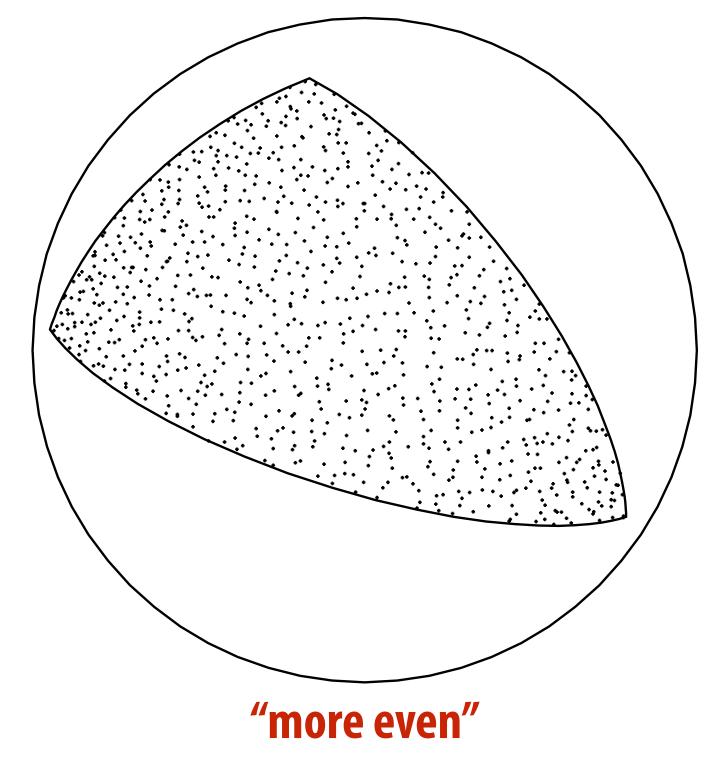
Simply replacing uniform samples with stratified ones already improves quality of sampling for rendering (...and other graphics/visualization tasks!)

uniform



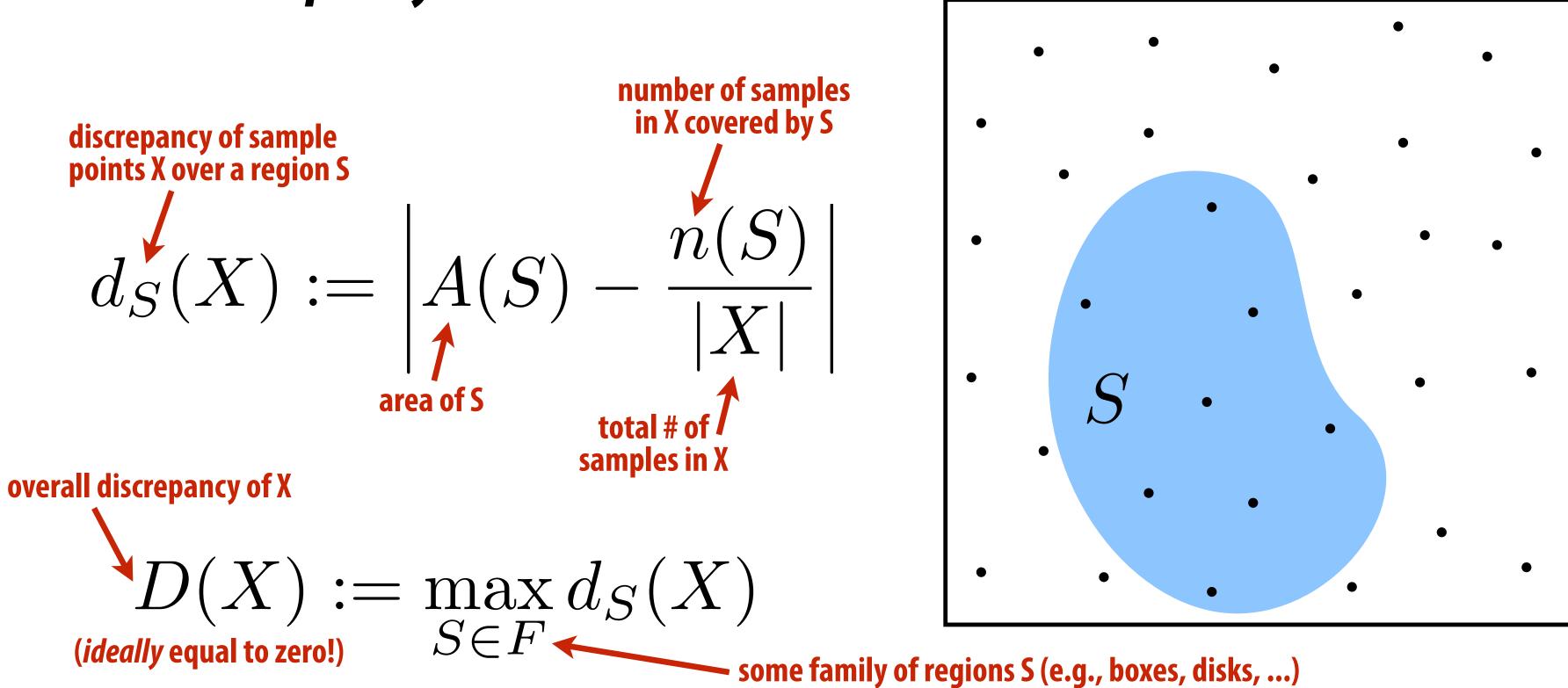
See especially: Jim Arvo, "Stratified Sampling of Spherical Triangles" (SIGGRAPH 1995)

stratified



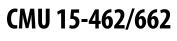
Low-Discrepancy Sampling

- sample:
- Number of samples should be proportional to area
- **Discrepancy** measures deviation from this ideal



See especially: Dobkin et al, "Computing Discrepancy w/ Applications to Supersampling" (1996)

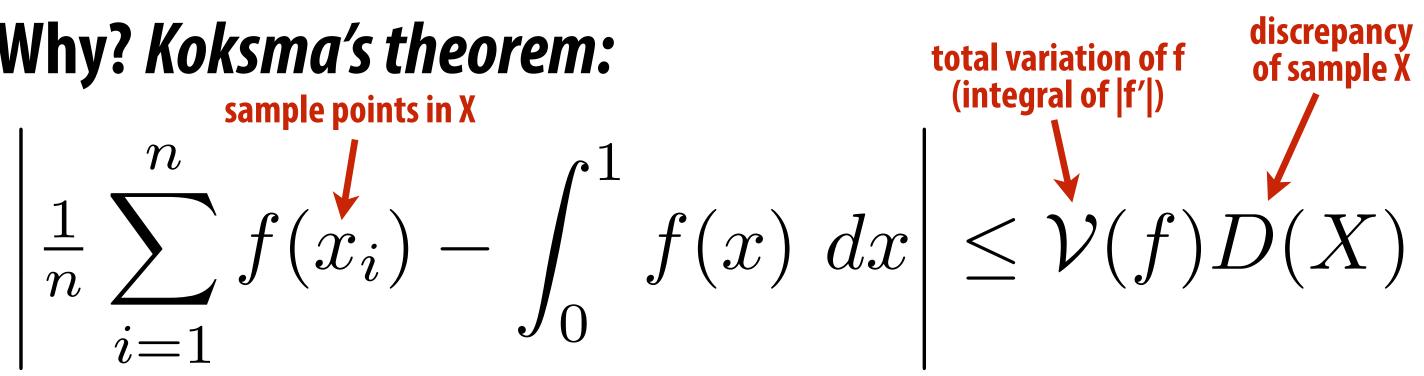
"No clumps" hints at one possible criterion for a good



Quasi-Monte Carlo methods (QMC)

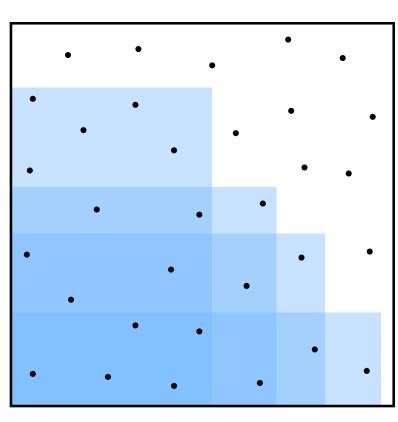
Replace truly random samples with low-discrepancy samples

Why? Koksma's theorem:

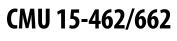


- I.e., for low-discrepancy X, estimate approaches integral Similar bounds can be shown in higher dimensions **WARNING:** total variation not always bounded! **WARNING:** only for family F of *axis-aligned* boxes S! E.g., edges can have arbitrary orientation (coverage)

- **Discrepancy still a very reasonable criterion in practice**



F

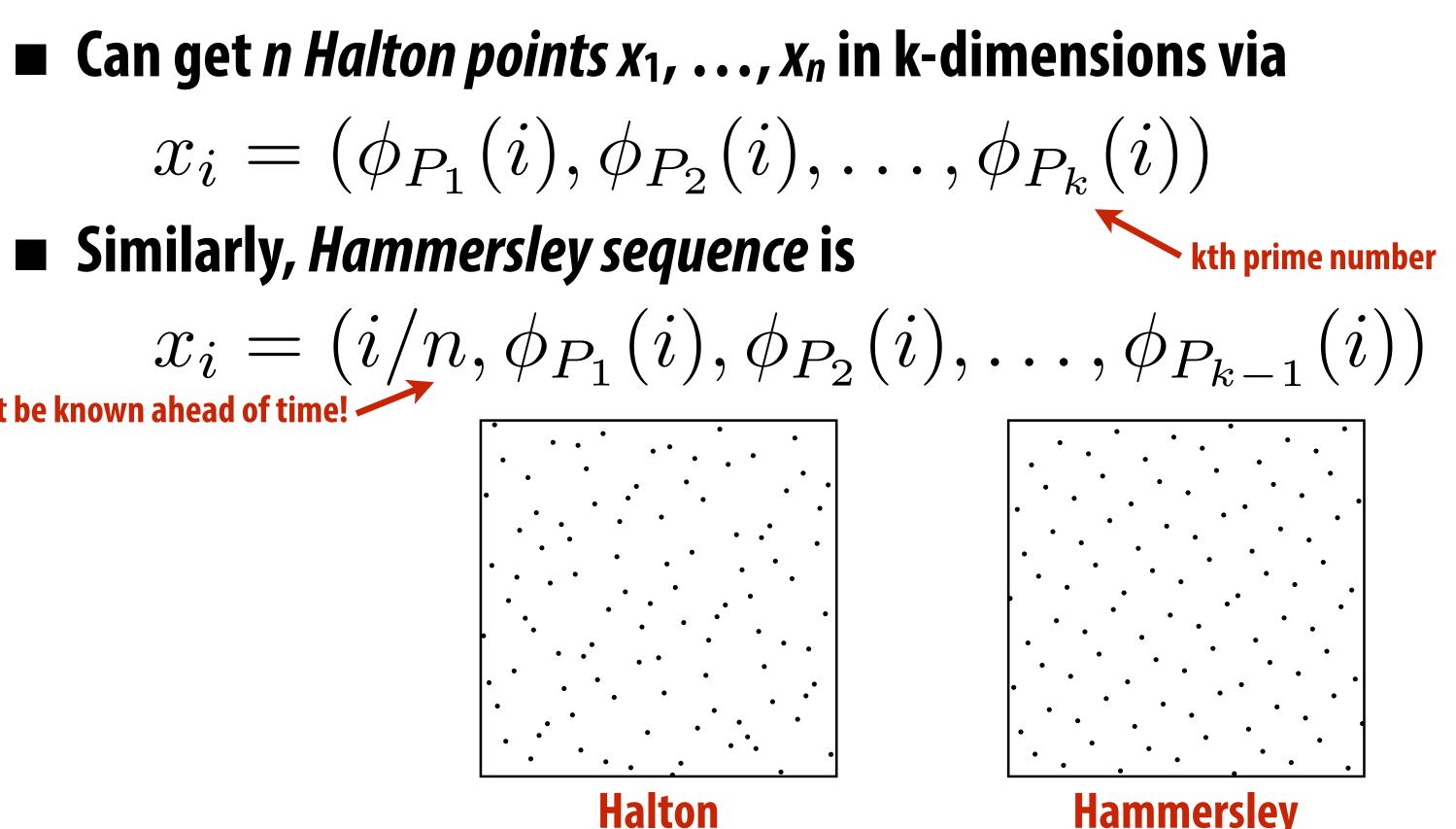


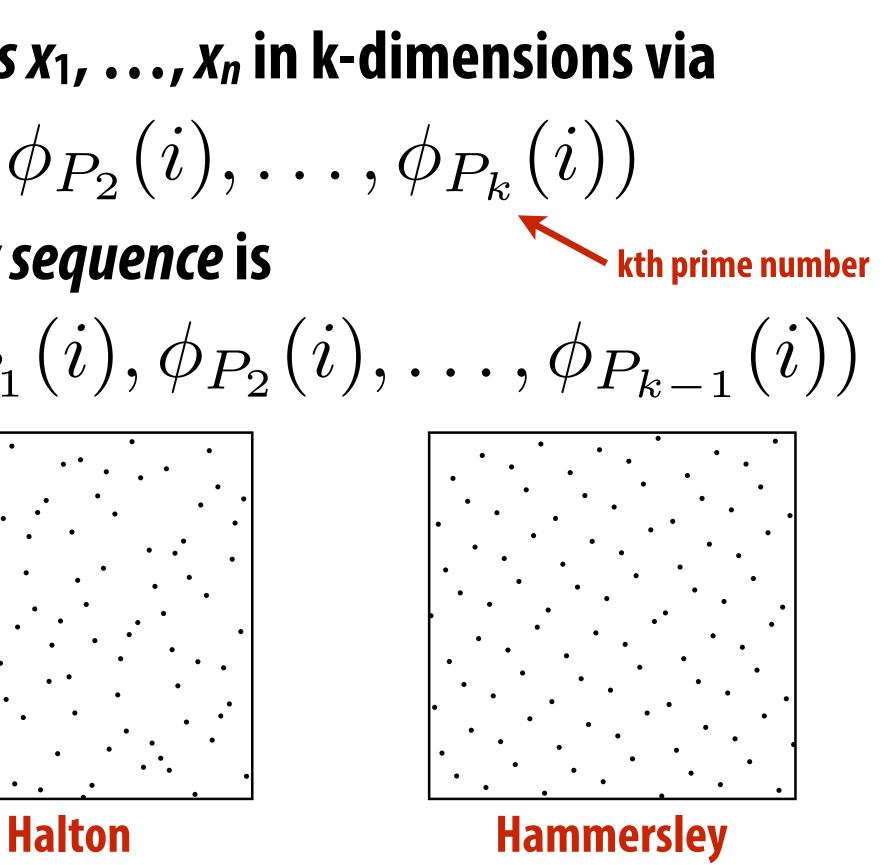
Hammersley & Halton Points

- Can easy generate samples with *near-optimal* discrepancy **First define** *radical inverse* $\varphi_r(i)$
- Express integer i in base r, then reflect digits around decimal
- E.g., $\varphi_{10}(1234) = 0.4321$
- Similarly, *Hammersley sequence* is

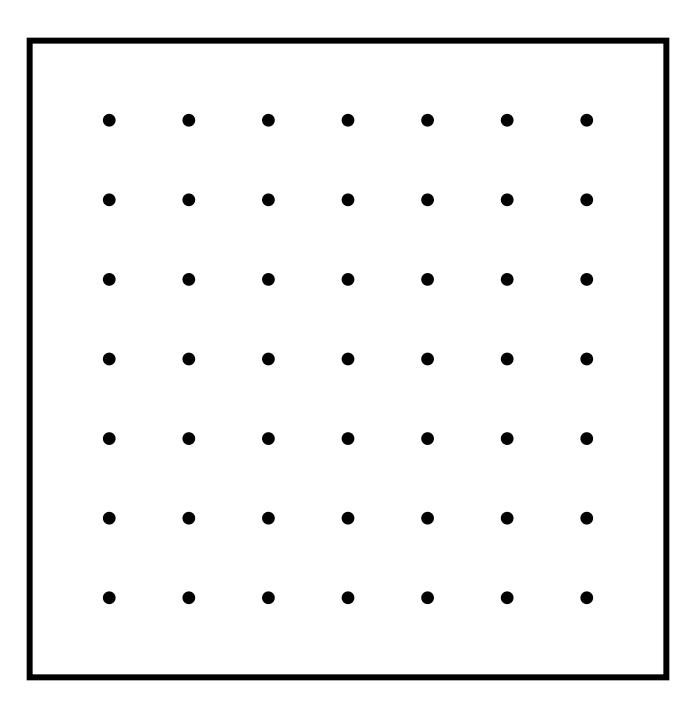
$$x_i = (i/n, \phi_{P_1}(i))$$

n must be known ahead of time



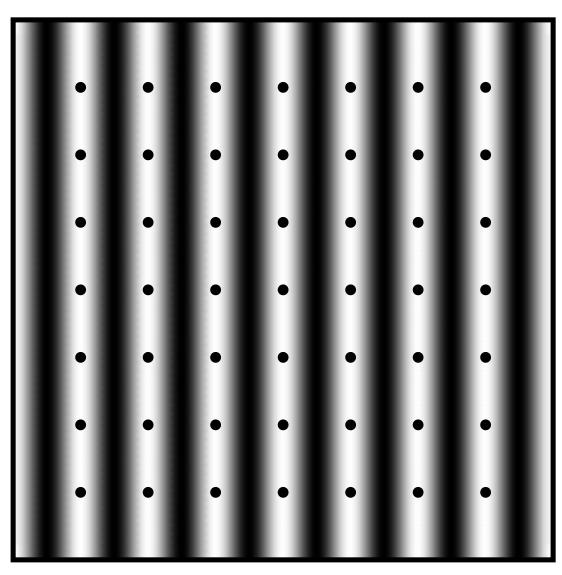


Wait, but doesn't a regular grid have really low discrepancy...?



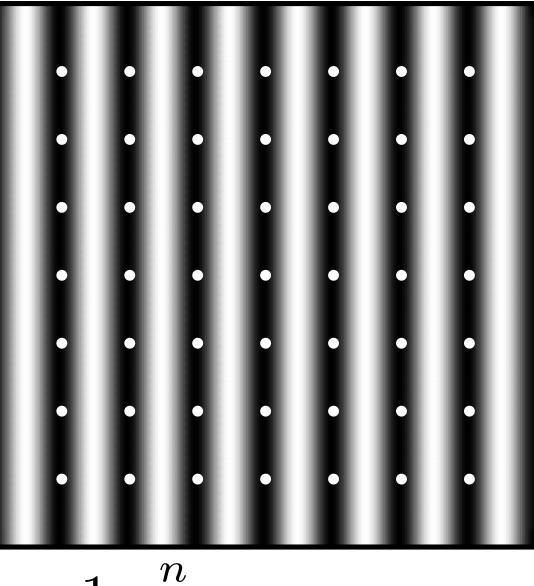
There's more to life than discrepancy

Even low-discrepancy patterns can exhibit poor behavior:



$$\frac{1}{n}\sum_{i=1}^{n}f(x_i) = 1$$

Want pattern to be *anisotropic* (no preferred direction) Also want to avoid any preferred *frequency* (see above!)



$$\frac{1}{n}\sum_{i=1}^{n}f(x_i) = 0$$

Blue Noise - Motivation Can observe that monkey retina exhibits blue noise pattern [Yellott 1983]

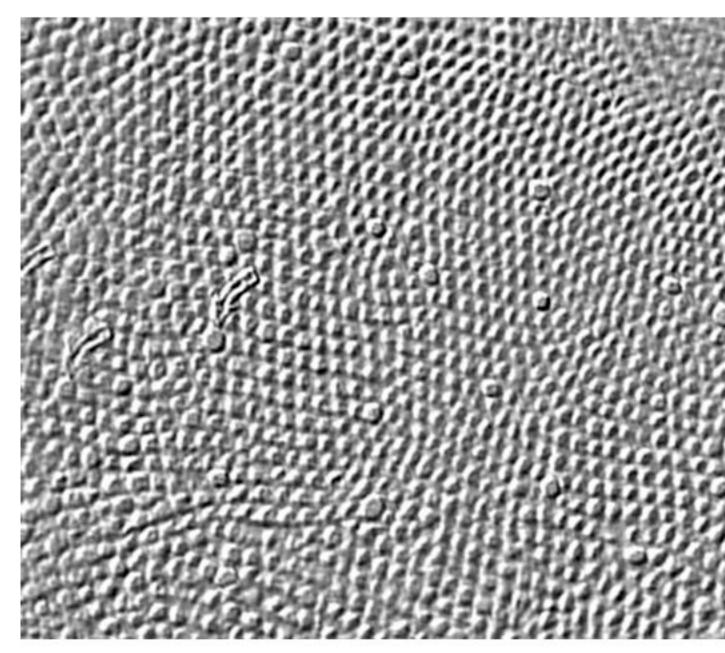
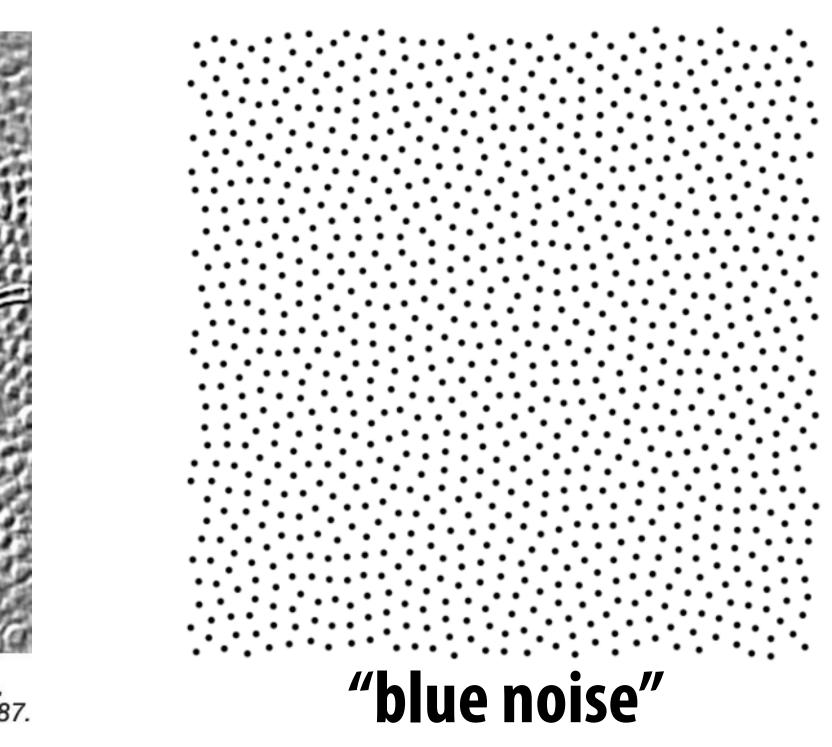


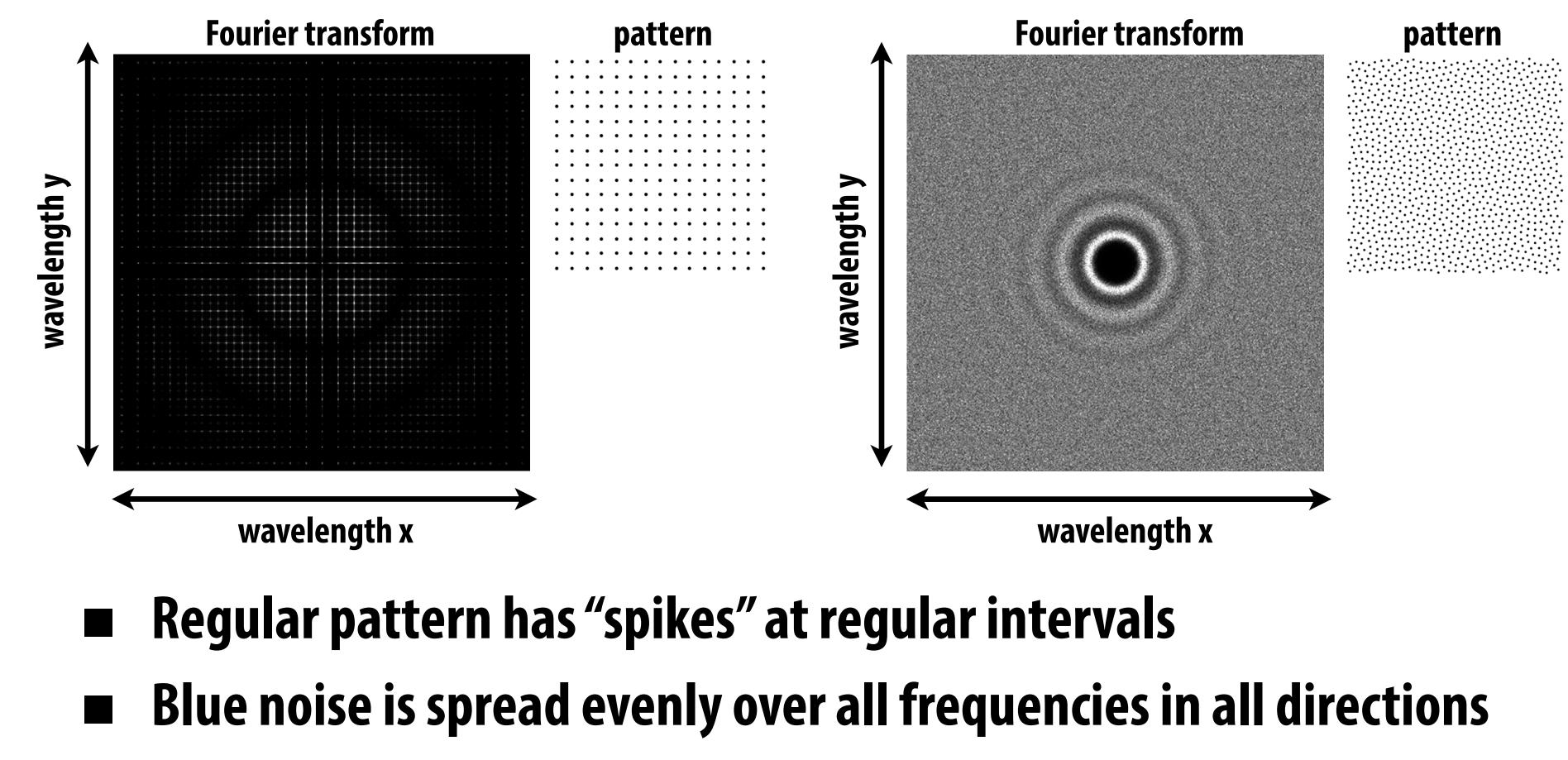
Fig. 13. Tangential section through the human fovea. Larger cones (arrows) are blue cones. From Ahnelt et al. 1987.

No obvious preferred directions (anisotropic) What about frequencies?



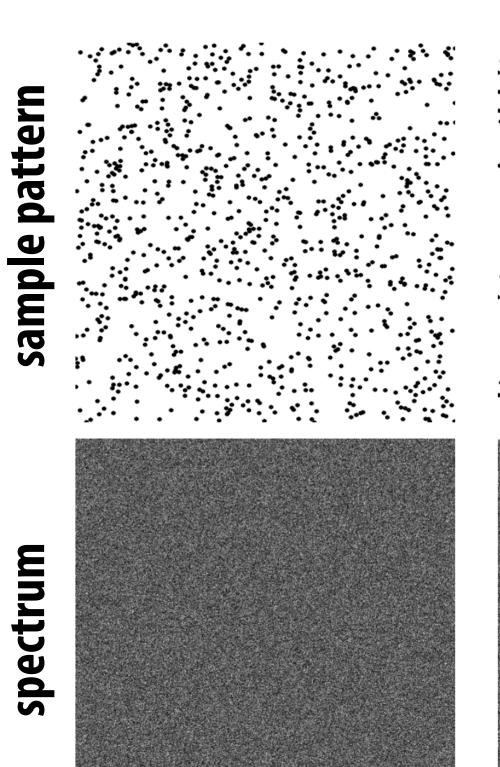
Blue Noise - Fourier Transform

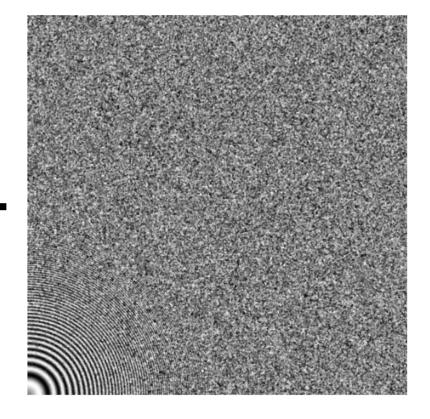
Can analyze quality of a sample pattern in Fourier domain



bright center "ring" corresponds to sample spacing

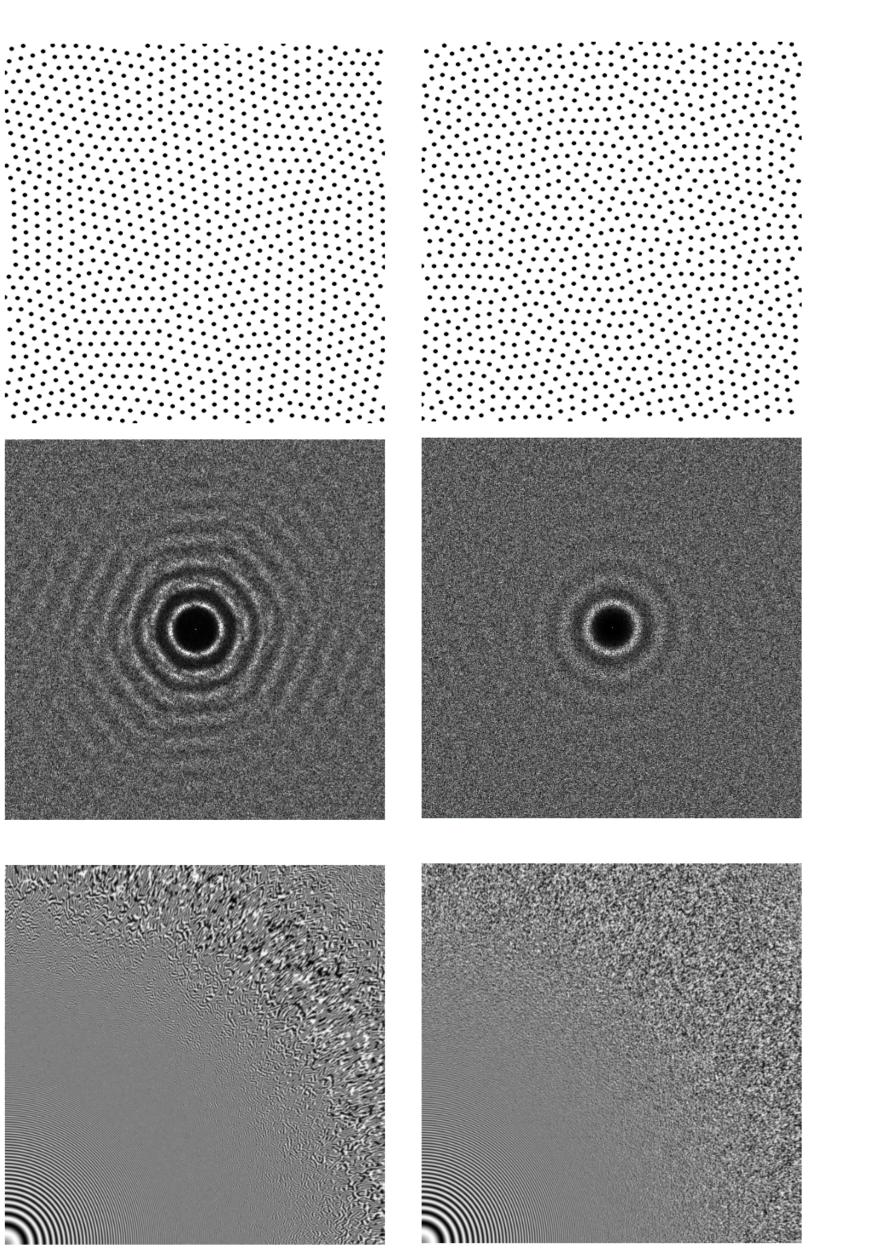
Spectrum affects reconstruction quality

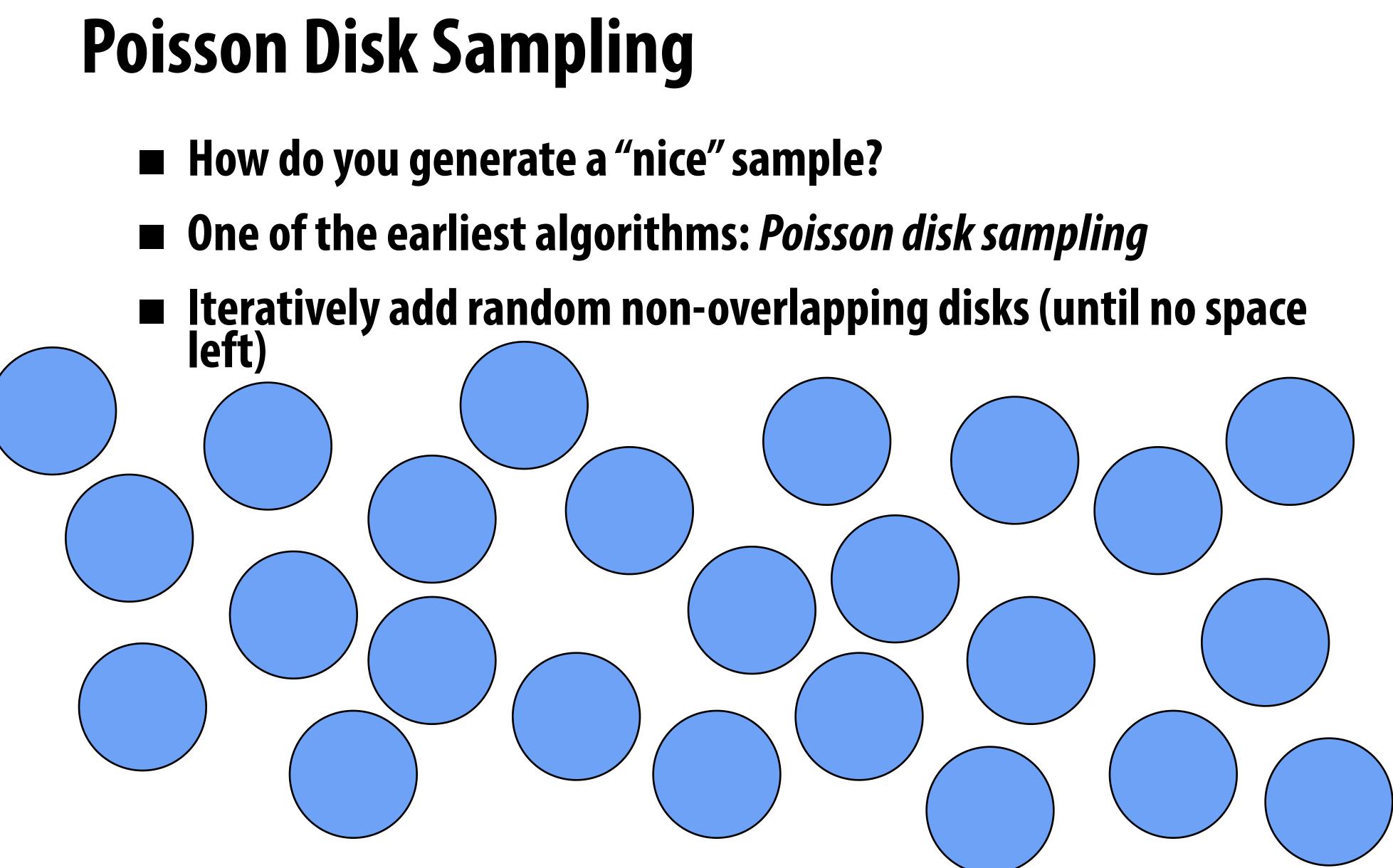




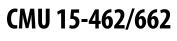
late \mathbf{O} zone

(from Balzer et al 2009)



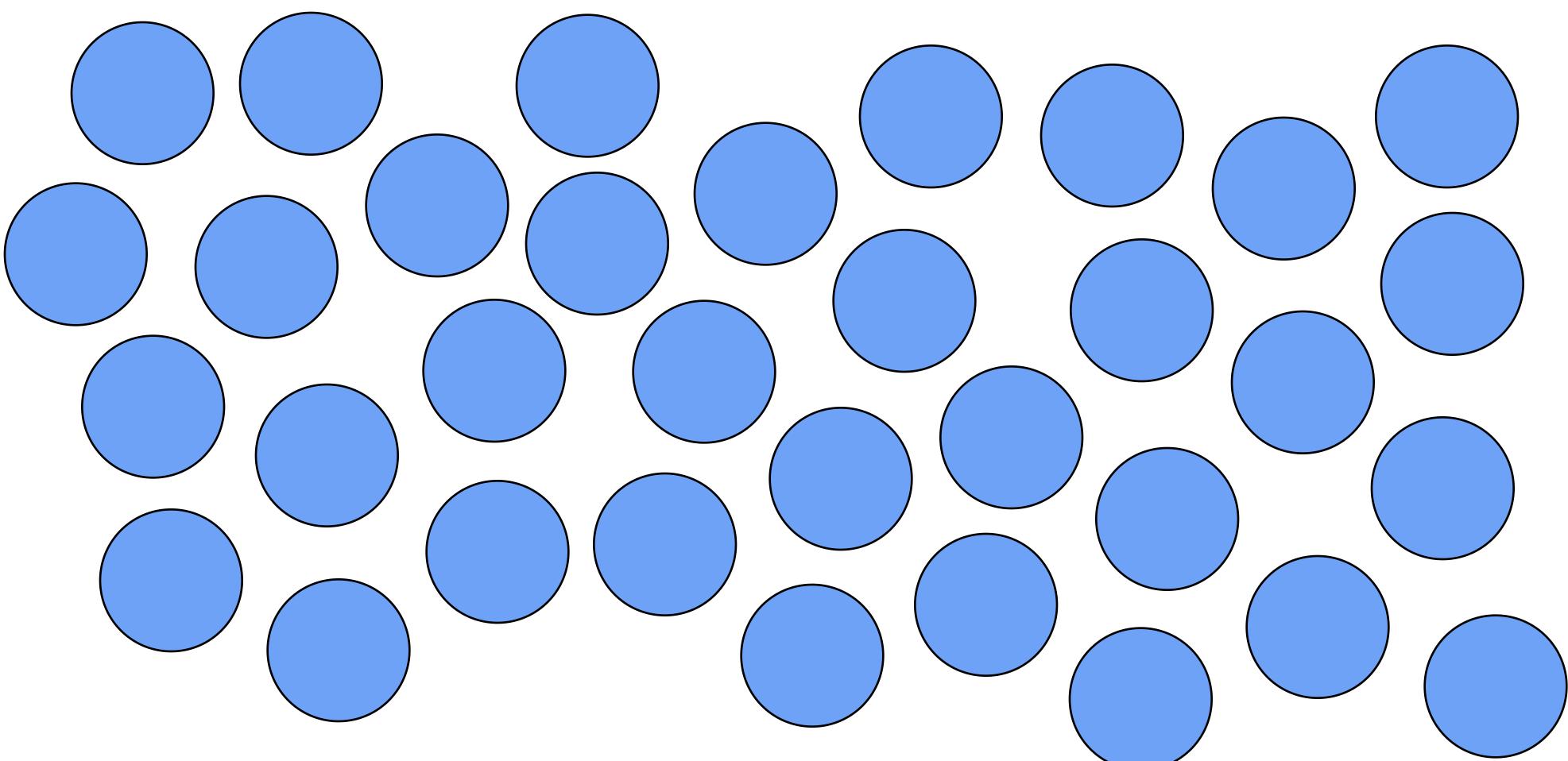


Decent spectral quality, but we can do better.



Lloyd Relaxation

Iteratively move each disk to the center of its neighbors

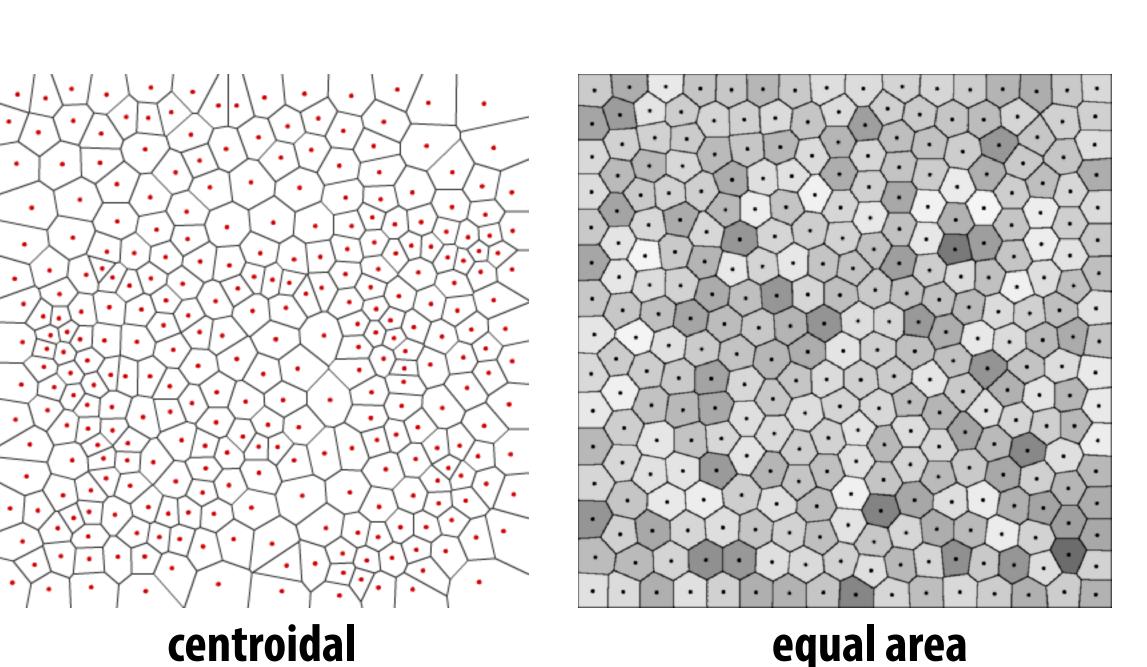


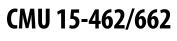
Better spectral quality, slow to converge. Can do better yet...

Voronoi-Based Methods

- Natural evolution of Lloyd
- Optimize qualities of this Voronoi diagram
- E.g., sample is at cell's *center of mass*, cells have same area, etc.

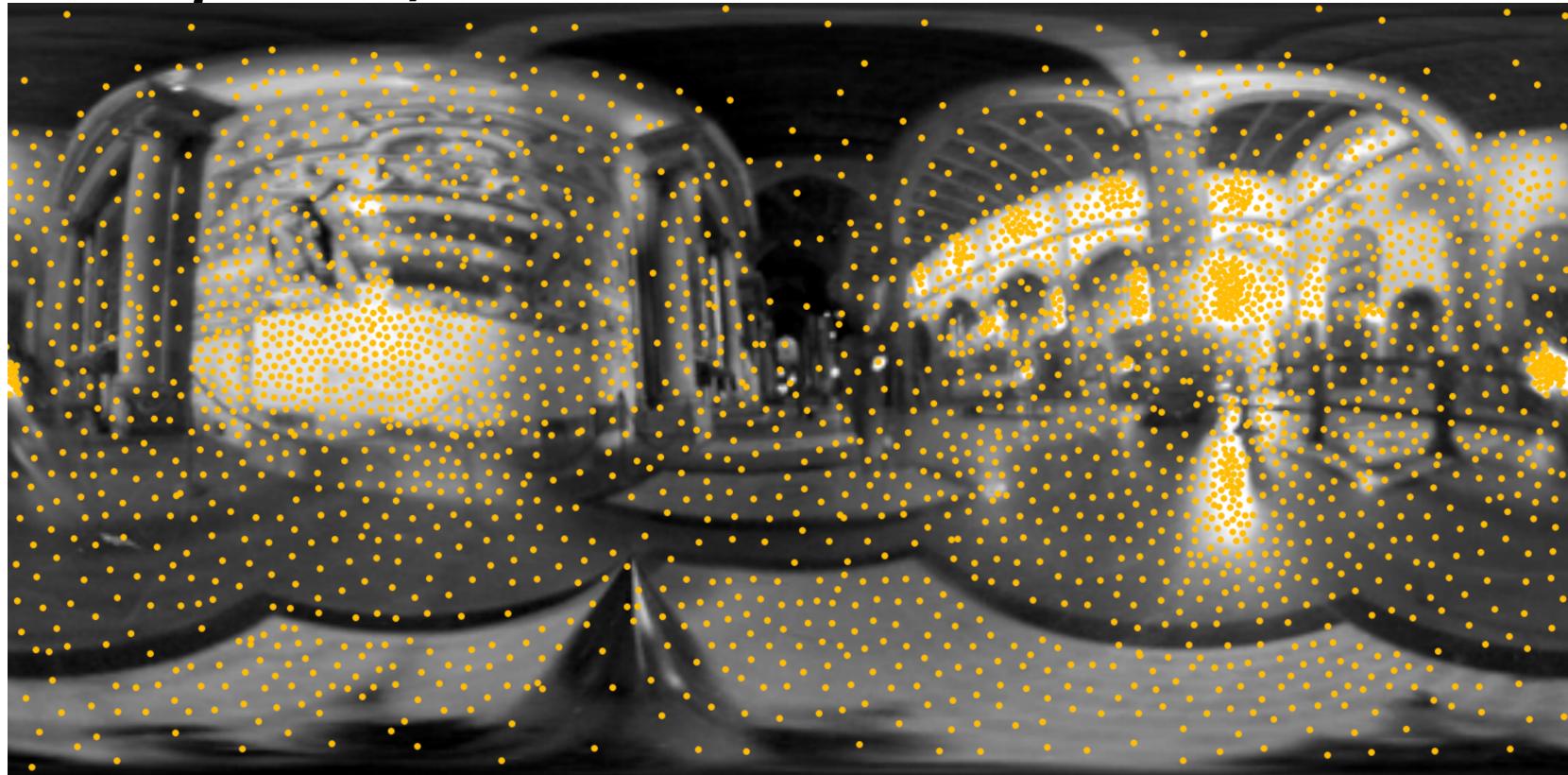
Associate each sample with set of closest points (Voronoi cell)





Adaptive Blue Noise

Can adjust cell size to sample a given density (e.g., importance)



*But these days, not *that* expensive...

Computational tradeoff: expensive* precomputation / efficient sampling.

How do we efficiently sample from a large distribution?

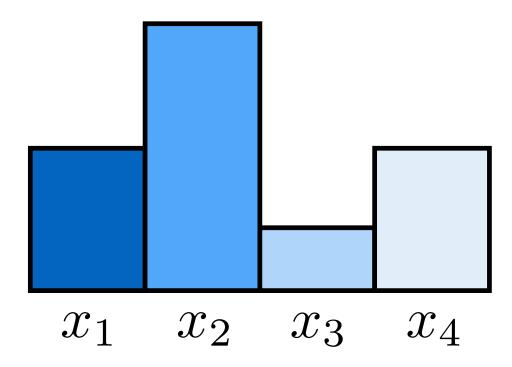
Sampling from the CDF

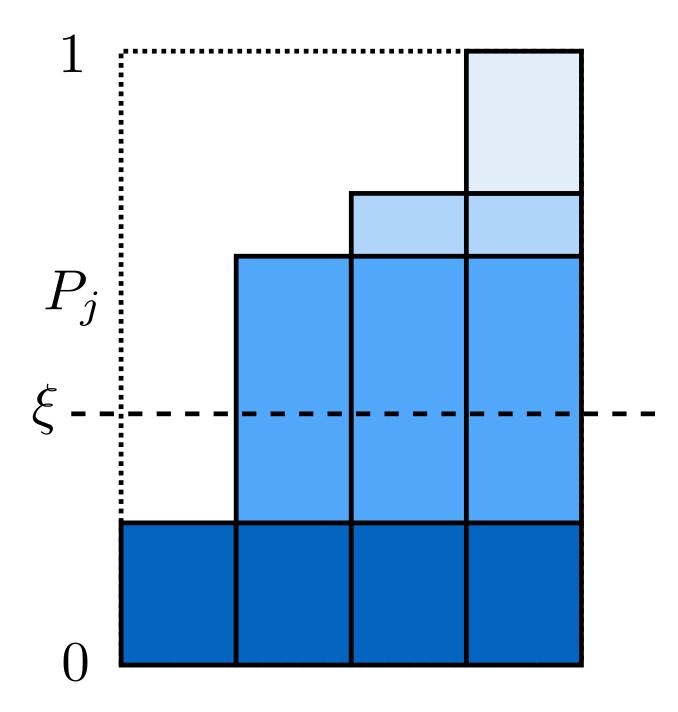
To randomly select an event, select x_i if

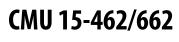
Uniform random variable $\in [0, 1]$

e.g., # of pixels in an environment map (big!) Cost? O(n log n)

 $P_{i-1} < \xi < P_i$

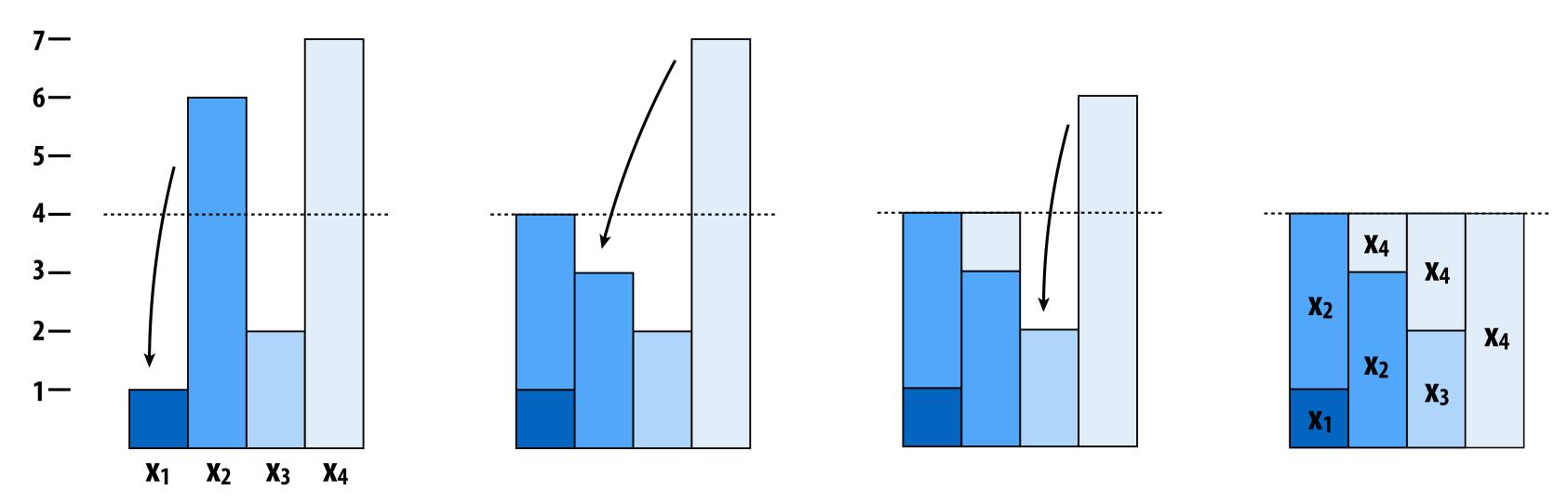






Alias Table

Get amortized 0(1) sampling by building "alias table" Basic idea: rob from the rich, give to the poor (O(n)):



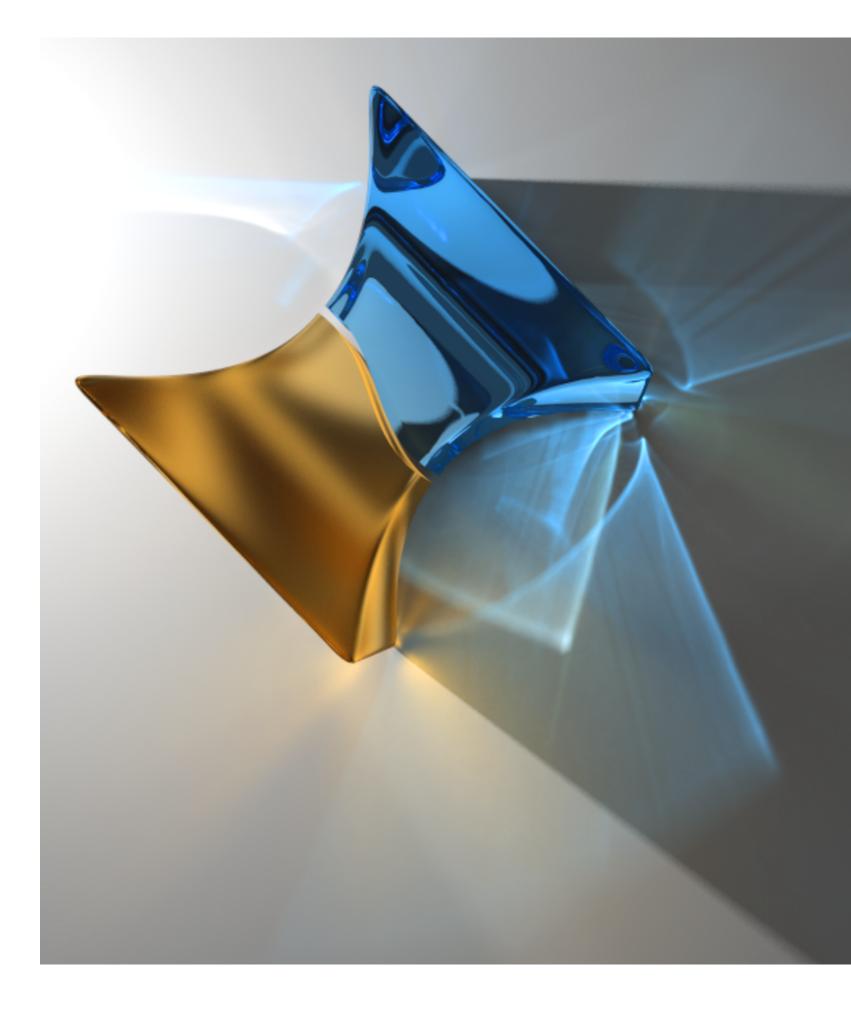
- To sample:
 - pick uniform # between 1 and *n*

Table just stores two identities & ratio of heights per column

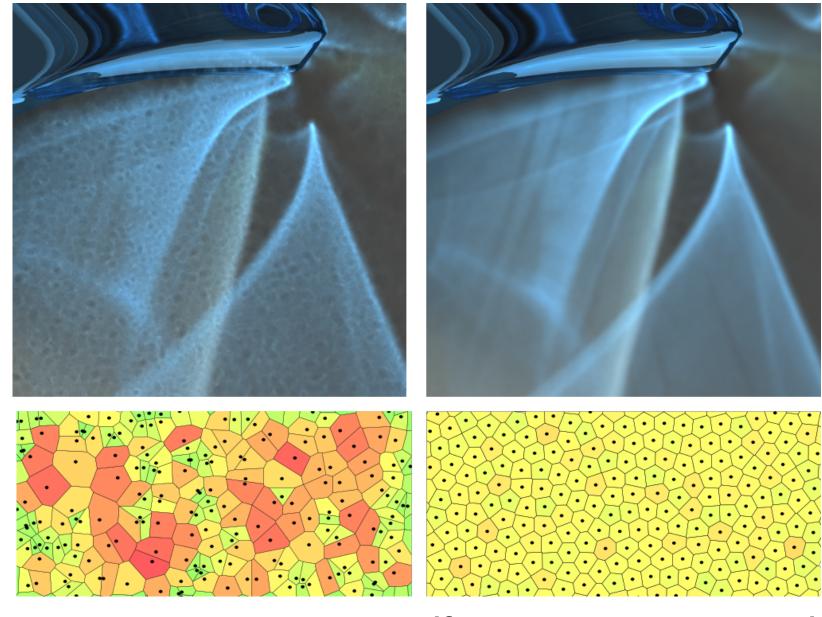
biased coin flip to pick one of the two identities in *n*th column

Ok, great! Now that we've mastered Monte Carlo rendering, what other techniques are there?

Photon Mapping Trace particles from light, deposit "photons" in kd-tree Especially useful for, e.g., caustics, participating media (fog)



Voronoi diagrams can be used to improve photon distribution

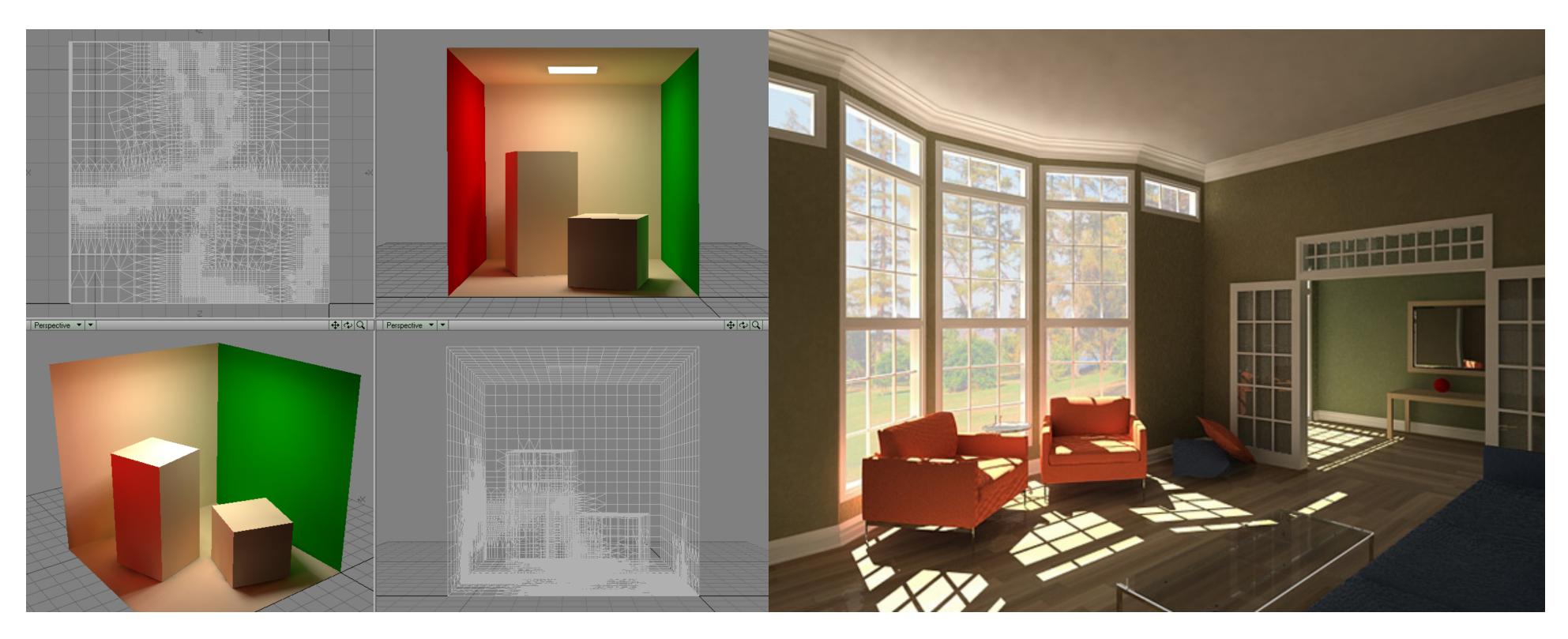


(from Spencer & Jones 2013)

Finite Element Radiosity

Very different approach: transport between patches in scene

- Solve large linear system for equilibrium distribution
- Good for diffuse lighting; hard to capture other light paths

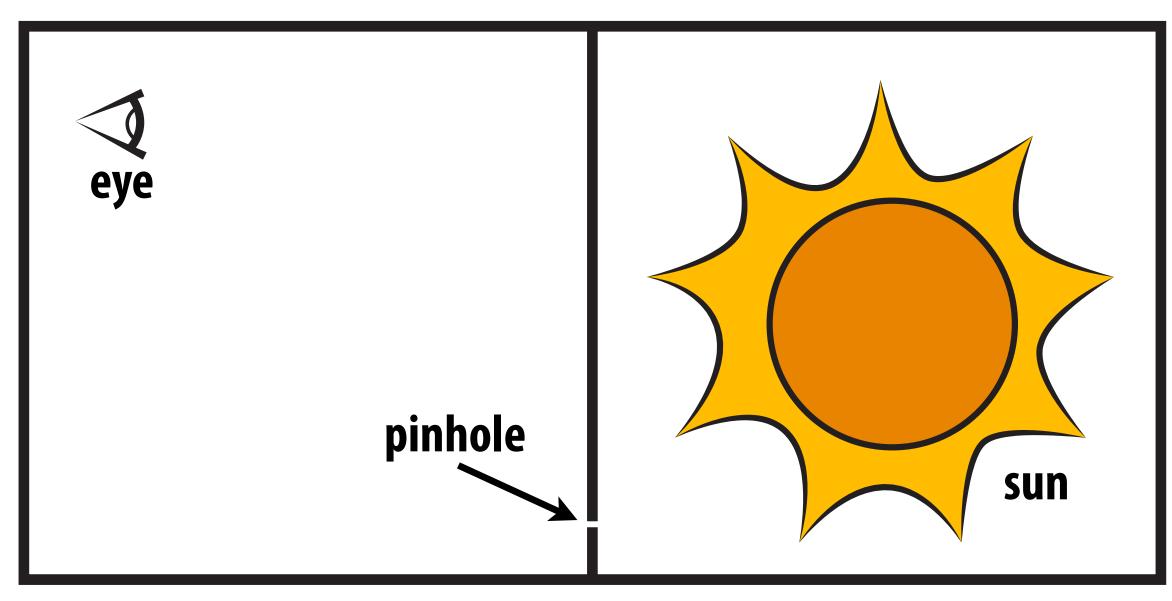


Consistency & Bias in Rendering Algorithms

method	consistent?	unbiased?
rasterization	NO	NO
path tracing	ALMOST	ALMOST
bidirectional path tracing	YES	YES
Metropolis light transport	YES	YES
photon mapping	YES	NO
radiosity	NO	NO

Can you certify a renderer?

- Harder than you might think!



Grand challenge: write a renderer that comes with a certificate (i.e., provable, formally-verified guarantee) that the image produced represents the illumination in a scene.

Inherent limitation of sampling: you can never be 100% certain that you didn't miss something important.

Can always make sun brighter, hole smaller...!

