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TODAY: Monte Carlo Rendering
▪ How do we render a photorealistic image?

▪ Put together many of the ideas we’ve studied:


- color

- materials

- radiometry

- numerical integration

- geometric queries

- spatial data structures

- rendering equation


▪ Combine into final Monte Carlo ray tracing algorithm

▪ Alternative to rasterization, lets us generate much more 

realistic images (usually at much greater cost…)
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Photorealistic Rendering—Basic Goal
What are the INPUTS and OUTPUTS?

camera lightsgeometry materials

image

Ray Tracer
(“scene”)



 CMU 15-462/662

Ray Tracing vs. Rasterization—Order
▪ Both rasterization & ray tracing will generate an image

▪ What’s the difference?

▪ One basic difference: order in which we process samples

RASTERIZATION RAY TRACING

for each primitive:
   for each sample:
      determine coverage
      evaluate color

for each sample:
   for each primitive:
      determine coverage
      evaluate color

(Use Z-buffer to determine 
which primitive is visible)

(Use spatial data structure like BVH to 
determine which primitive is visible)
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Ray Tracing vs. Rasterization—Illumination
▪ More major difference: sophistication of illumination model


- [LOCAL] rasterizer processes one primitive at a time; hard* to 
determine things like “A is in the shadow of B”


- [GLOBAL] ray tracer processes on ray at a time; ray knows about 
everything it intersects, easy to talk about shadows & other “global” 
illumination effects

RASTERIZATION RAY TRACING

*But not impossible to do some things with rasterization (e.g., shadow maps)… just results in more complexity

Q: What illumination effects are missing from the image on the left?
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Monte Carlo Ray Tracing
▪ To develop a full-blown photorealistic ray tracer, will need to 

apply Monte Carlo integration to the rendering equation

▪ To determine color of each pixel, integrate incoming light

▪ What function are we integrating?


- illumination along different paths of light

▪ What does a “sample” mean in this context?


- each path we trace is a sample
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Monte Carlo Integration
▪ Started looking at Monte Carlo integration in our lecture on numerical 

integration


▪ Basic idea: take average of random samples


▪ Will need to flesh this idea out with some key concepts:

- EXPECTED VALUE — what value do we get on average?

- VARIANCE — what’s the expected deviation from the average?

- IMPORTANCE SAMPLING — how do we (correctly) take more samples 

in more important regions?
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Expected Value

▪ E.g., consider a fair coin where heads = 1, tails = 0


▪ Equal probability of heads & is tails (1/2 for both)


▪ Expected value is then (1/2)•1 + (1/2)•0 = 1/2

Properties of expectation:

E

"
X

i

Yi

#
=
X

i

E[Yi]

E[aY ] =aE[Y ]

(Can you show these are true?)

number of possible outcomes

probability of ith outcome
value of ith outcome

expected value of 
random variable Y

Intuition: what value does a random variable take, on average?
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Variance
Intuition: how far are our samples from the average, on average?

x1

p(xi)

x2 x3 x4 x5 x6 x7

p(xi)

x1 x2 x3 x4 x5 x6 x7

Q: Which of these has higher variance?

V [aY ] = a2 V [Y ]

Properties of variance:

V

"
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#
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NX
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V [Yi]

(Can you show these are true?)

Definition
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Law of Large Numbers
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▪ Important fact: for any random variable, the average value of 
N trials approaches the expected value as we increase N


▪ Decrease in variance is always linear in N:

Consider a coconut…
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Q: Why is the law of large numbers 
important for Monte Carlo ray tracing?

A: No matter how hard the integrals are 
(crazy lighting, geometry, materials, 
etc.), can always* get the right image 
by taking more samples.

*As long as we make sure to sample all possible kinds of light paths…
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Biasing
▪ So far, we’ve picked samples uniformly from 

the domain (every point is equally likely)

▪ Suppose we pick samples from some other 

distribution (more samples in one place than 
another)


▪ Q: Can we still use samples f(Xi) to get a 
(correct) estimate of our integral?


▪ A: Sure!  Just weight contribution of each 
sample by how likely we were to pick it


▪ Q: Are we correct to divide by p?  Or… should 
we multiply instead?


▪ A: Think about a simple example where we 
sample RED region 8x as often as BLUE region


▪ average color over square should be purple


▪ if we multiply, average will be TOO RED


▪ if we divide, average will be JUST RIGHT

(uniform)
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Importance sampling
Q: Ok, so then WHERE is the best place to take samples?

θ

φ

(BRDF)
(image-based lighting)

Idea: put more where integrand is large (“most useful samples”).  E.g.:

f(x)

p1(x)

p2(x)

Think:

• What is the behavior of f(x)/p1(x)?  f(x)/p2(x)?

• How does this impact the variance of the estimator?
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Example: Direct Lighting
Light source

Occluder 
(blocks light)

How bright is each point on the ground?

Visibility function:
p

p’
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Direct lighting—uniform sampling

✓

d!

dA

E(p) =

Z
L(p,!) cos ✓ d!

=2⇡

Z
L(p,!) cos ✓

1

2⇡
d!

=2⇡

Z
L(p,!) cos ✓ p(!) d!

Estimator:
L(p,!)

p(!) =
1

2⇡

Uniformly-sample hemisphere of directions with respect to solid angle

Xi ⇠ p(!)

Yi = f(Xi)

Yi = L(p,!i)cos ✓i

FN =
2⇡

N

NX

i=1

Yi
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Aside: Picking points on unit hemisphere
How do we uniformly sample directions from the hemisphere?

One way: use rejection sampling. (How?)

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Exercise: derive from the inversion method

(⇠1, ⇠2) = (
q

1� ⇠21 cos(2⇡⇠2),
q

1� ⇠21 sin(2⇡⇠2), ⇠1)

Another way: “warp” two values in [0,1] via the inversion method:
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Direct lighting—uniform sampling (algorithm)

Given surface point p


For each of N samples:


Generate random direction:


Compute incoming radiance arriving          at p from direction:  


Compute incident irradiance due to ray: 


Accumulate                      into estimator

Uniformly-sample hemisphere of directions with respect to solid angle

2⇡

N
dEi

dEi = Licos ✓i

Li

!i

!i

A ray tracer evaluates radiance along a ray 
(see Pathtracer::trace() in pathtracer.cpp)

E(p) =

Z
L(p,!) cos ✓ d!

=2⇡

Z
L(p,!) cos ✓

1

2⇡
d!

=2⇡

Z
L(p,!) cos ✓ p(!) d!

p(!) =
1

2⇡
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Hemispherical solid angle 
sampling, 100 sample rays


(random directions drawn 
uniformly from hemisphere)

Light source

Occluder 
(blocks light)
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Why is the image in the previous slide “noisy”?
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Incident lighting estimator uses different 
random directions in each pixel. Some of those 
directions point towards the light, others do not.


(Estimator is a random variable)
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How can we reduce noise?
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One idea: just take more samples!


Another idea:

•Don’t need to integrate over entire hemisphere of directions 

(incoming radiance is 0 from most directions).

•Just integrate over the area of the light (directions where 

incoming radiance is non-zero)and  weight appropriately
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Direct lighting: area integral
E(p) =

Z
L(p,!) cos ✓ d!

=2⇡

Z
L(p,!) cos ✓

1

2⇡
d!

=2⇡

Z
L(p,!) cos ✓ p(!) d!

Previously: just integrate over all directions

Change of variables 
to integrate over area 
of light

E(p) =

Z

A0
Lo(p

0,!0)V (p, p0)
cos ✓ cos ✓0

|p� p0|2 dA0

Outgoing radiance from light point 
p, in direction w’ towards p

Binary visibility function:

1 if p’ is visible from p, 0 otherwise

(accounts for light occlusion)

A0

p0

p

✓

✓0

!0 = p� p0

! = p0 � p

<latexit sha1_base64="9VU+GiTJ76NgOLThN3xpMo97nA4="></latexit>

d! =
dA

|p0 � p|2 =
dA0cos ✓0

|p0 � p|2



 CMU 15-462/662

Direct lighting: area integral

Sample shape uniformly by area A’
Z

A0
p(p0) dA0 = 1

p(p0) =
1

A0

E(p) =

Z

A0
Lo(p

0,!0)V (p, p0)
cos ✓ cos ✓0

|p� p0|2 dA0

A0

p0

p

✓

✓0

!0 = p� p0

! = p0 � p
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Direct lighting: area integral

Estimator

E(p) =

Z

A0
Lo(p

0,!0)V (p, p0)
cos ✓ cos ✓0

|p� p0|2 dA0

A0

p0

p

✓

✓0

!0 = p� p0

! = p0 � p

p(p0) =
1

A0

Probability:

Yi = Lo(p
0
i,!

0
i)V (p, p0i)

cos ✓i cos ✓0i
|p� p0i|2

FN =
A0

N

NX

i=1

Yi

Yi = Lo(p
0
i,!

0
i)V (p, p0i)

cos ✓i cos ✓0i
|p� p0i|2

FN =
A0

N

NX

i=1

Yi
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Light source area

sampling, 100 sample rays

If no occlusion is present, all directions chosen in computing estimate “hit” the light source.
(Choice of direction only matters if portion of light is occluded from surface point p.)
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1 area light sample

(high variance in irradiance estimate)
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16 area light samples

(lower variance in irradiance estimate)



 CMU 15-462/662

Comparing different techniques
▪ Variance in an estimator manifests as noise in rendered images


▪ Estimator efficiency measure:


▪ If one integration technique has twice the variance of another, 
then it takes twice as many samples to achieve the same 
variance


▪ If one technique has twice the cost of another technique with 
the same variance, then it takes twice as much time to achieve 
the same variance

E�ciency / 1

Variance⇥ Cost
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Example—Cosine-Weighted Sampling

p(!) =
1

2⇡
f(!) = Li(!) cos ✓

Consider uniform hemisphere sampling in irradiance estimate:

Z

⌦
f(!) d! ⇡ 1

N

NX

i

f(!)

p(!)
=

1

N

NX

i

Li(!) cos ✓

1/2⇡
=

2⇡

N

NX

i

Li(!) cos ✓

(⇠1, ⇠2) = (
q

1� ⇠21 cos(2⇡⇠2),
q

1� ⇠21 sin(2⇡⇠2), ⇠1)
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Example—Cosine-Weighted Sampling

f(!) = Li(!) cos ✓

Cosine-weighted hemisphere sampling in irradiance estimate:

p(!) =
cos ✓

⇡

Z

⌦
f(!) d! ⇡ 1

N

NX

i

f(!)

p(!)
=

1

N

NX

i

Li(!) cos ✓

cos ✓/⇡
=

⇡

N

NX

i

Li(!)

Idea: bias samples toward directions where                 is large

(if L is constant, then these are the directions that contribute most)p(!) =

cos ✓

⇡
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So far we’ve considered light coming 
directly from light sources, scattered once.


How do we use Monte Carlo integration to 
get the final color values for each pixel?
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Need to know incident radiance.

So far, have only computed incoming radiance from scene light sources.

Pinhole x

y

p
!o

!i

Lo(p,!o)

Lo(p,!o) = Le(p,!o) +

Z

H2

fr(p,!i ! !o)Li(p,!i) cos ✓i d!i

Monte Carlo + Rendering Equation
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Accounting for indirect 
illumination

Pinhole x

y

p
!o

!i

Lo(p,!o)

Incoming light energy from direction        may be due to light 
reflected off another surface in the scene (not an emitter)

!i

Lo(p,!o) = Le(p,!o) +

Z

H2

fr(p,!i ! !o)Li(p,!i) cos ✓i d!i
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Path tracing: indirect illumination

▪ Sample incoming direction from some distribution 
(e.g. proportional to BRDF):


▪ Recursively call path tracing function to compute incident 
indirect radiance

!i ⇠ p(!)

Z

H2

fr(!i ! !o)Lo,i(tr(p,!i),�!i) cos ✓i d!i
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Direct illumination

p
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One-bounce global illumination

p



 CMU 15-462/662

Two-bounce global illumination

p
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Four-bounce global illumination

p
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Eight-bounce global illumination

p
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Sixteen-bounce global illumination

p
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Wait a minute…

When do we stop?!
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Russian roulette
▪ Idea: want to avoid spending time evaluating function for 

samples that make a small contribution to the final result


▪ Consider a low-contribution sample of the form:

V (p, p0)

L =
fr(!i ! !o)Li(!i)V (p, p0) cos ✓i

p(!i)
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Russian roulette

▪ If tentative contribution (in brackets) is small, total 
contribution to the image will be small regardless of 


▪ Ignoring low-contribution samples introduces systematic error

- No longer converges to correct value!


▪ Instead, randomly discard low-contribution samples in a way 
that leaves estimator unbiased

V (p, p0)

L =


fr(!i ! !o)Li(!i) cos ✓i

p(!i)

�
V (p, p0)

L =
fr(!i ! !o)Li(!i)V (p, p0) cos ✓i

p(!i)



 CMU 15-462/662

Russian roulette
▪ New estimator: evaluate original estimator with probability     

       , reweight.  Otherwise ignore.


▪ Same expected value as original estimator:

prr

<latexit sha1_base64="GzY92EOFR2jIfpSFBu9cckupyvQ="></latexit>

X 0 =

⇢
X if t > tmin

KX/prr otherwise
<latexit sha1_base64="JEwPKJuVhBQqSKCjXQoHA0ef2Ug="></latexit>

K ⇠ p(k) where p(1) = prr, p(0) = 1� prr

“low throughput” threshold

probability of  rejecting

<latexit sha1_base64="7MZEjQgmfaFrBJypi9IMIbNCdd0="></latexit>

E[X 0] = prrE


X

prr

�
+ (1� prr)E[0] = E[X]
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No Russian roulette: 6.4 seconds
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Russian roulette: terminate 50% of all contributions with 
luminance less than 0.25: 5.1 seconds
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Russian roulette: terminate 50% of all contributions with 
luminance less than 0.5: 4.9 seconds



 CMU 15-462/662

Russian roulette: terminate 90% of all contributions with 
luminance less than 0.125: 4.8 seconds
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Russian roulette: terminate 90% of all contributions with 
luminance less than 1: 3.6 seconds
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Monte Carlo Rendering—Summary
▪ Light hitting a point (e.g., pixel) described by rendering 

equation

- Expressed as recursive integral

- Can use Monte Carlo to estimate this integral

- Need to be intelligent about how to sample!
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Next time:
▪ Variance reduction—how do we get the most out of our samples?


