Numerical Integration

Computer Graphics
CMU 15-462/15-662

Motivation: The Rendering Equation

- Recall the rendering equation, which models light "bouncing around the scene":

$$
\begin{aligned}
L_{o}\left(\mathbf{p}, \omega_{o}\right)= & L_{e}\left(\mathbf{p}, \omega_{o}\right)+ \\
& \int_{\mathcal{H}^{2}} f_{r}\left(\mathbf{p}, \omega_{i} \rightarrow \omega_{o}\right) L_{i}\left(\mathbf{p}, \omega_{i}\right) \cos \theta d \omega_{i}
\end{aligned}
$$

How can we possibly evaluate this integral?

Numerical Integration—Overview

- In graphics, many quantities we're interested in are naturally expressed as integrals (total brightness, total area, ...)
- For very, very simple integrals, we can compute the solution analytically
- For everything else, we have to

$$
\int_{0}^{1} \frac{1}{3} x^{2} d x=\left[x^{3}\right]_{0}^{1}=1
$$ compute a numerical approximation

- Basicidea:
- integral is "area under curve"
- sample the function at many points
- integral is approximated as weighted sum

Rendering: what are we integrating?

- Recall this view of the world:

Want to "sum up"-i.e., integrate!-light from all directions (But let's start a little simpler...)

Review: integral as "area under curve"

$$
\int_{a}^{b} f(x) d x
$$

Or: average value times size of domain

Review: fundamental theorem of calculus

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =F(b)-F(a) \\
f(x) & =\frac{d}{d x} F(x)
\end{aligned}
$$

Simple case: constant function

$$
\int_{a}^{b} C d x=(b-a) C
$$

Affine function: $f(x)=c x+d$

$$
\int_{a}^{b} f(x) d x=\frac{1}{2}(f(a)+f(b))(b-a)
$$

Need only one sample of the function (at just the right place...)

More general polynomials?

Gauss Quadrature

- For any polynomial of degree n, we can always obtain the exact integral by sampling at a special set of n points and taking a special weighted combination

Piecewise affine function

For piecewise functions, just sum integral of each piece:

Key idea so far:

To approximate an integral, we need
(i) quadrature points, and
(ii) weights for each point

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

Arbitrary function $\mathrm{f}(\mathrm{x})$?

Trapezoid rule

Approximate integral of $f(x)$ by pretending function is piecewise affine
For equal length segments: $h=\frac{b-a}{n-1}$

Trapezoid rule

Consider cost and accuracy of estimate as $n \rightarrow \infty \quad$ (or $h \rightarrow 0$)

Work: $O(n)$
Error can be shown to be: $O\left(h^{2}\right)=O\left(\frac{1}{n^{2}}\right)$

What about a 2D function?

How should we approximate the area underneath?

Integration in 2D

Consider integrating $f(x, y)$ using the trapezoidal rule (apply rule twice: when integrating in x and in y)

$$
\begin{aligned}
& =O\left(h^{2}\right)+\sum_{i=0}^{n} A_{i} \int_{a_{y}}^{b_{y}} f\left(x_{i}, y\right) d y \\
& =O\left(h^{2}\right)+\sum_{i=0}^{n} A_{i}\binom{\square}{\vdots} \text { Second application } \\
& =O\left(h^{2}\right)+\sum_{i=0}^{n} \sum_{j=0}^{n} A_{i} A_{j} f\left(x_{i}, y_{j}\right)
\end{aligned}
$$

Errors add, so error still: $O\left(h^{2}\right)$ But work is now: $O\left(n^{2}\right)$
($\boldsymbol{n} \times \mathrm{n}$ set of measurements)

Must perform much more work in 2D to get same error bound on integral!
$\ln \mathrm{K}$ - \mathbf{D}, let $N=n^{k}$
Error goes as: $O\left(\frac{1}{N^{2 / k}}\right)$

Curse of Dimensionality

■ How much does it cost to apply the trapezoid rule as we go up in dimension?

- 1D:0(n)
- 2D: 0(n²)
- ...
- kD: $0\left(n^{k}\right)$

- For many problems in graphics (like rendering), k is very, very big (e.g., tens or hundreds or thousands)
- Applying trapezoid rule does not scale!

- Need a fundamentally different approach...

Monte Carlo Integration

Monte Carlo Integration

- Estimate value of integral using random sampling of function - _
- Value of estimate depends on random samples used
- But algorithm gives the correct value of integral "on average"
- Only requires function to be evaluated at random points on its domain
- Applicable to functions with discontinuities, functions that are impossible to integrate directly
- Error of estimate is independent of the dimensionality of the integrand
- Depends on the number of random samples used: $O\left(n^{1 / 2}\right)$

Review: random variables

$X \quad$ random variable. Represents a distribution of potential values
$X \sim p(x)$ probability density function (PDF). Describes relative probability of a random process choosing value x

Uniform PDF: all values over a domain are equally likely
e.g., for an unbiased die
X takes on values $\mathbf{1 , 2 , 3 , 4 , 5 , 6}$
$p(1)=p(2)=p(3)=p(4)=p(5)=p(6)$

Discrete probability distributions

\boldsymbol{n} discrete values x_{i}

With probability p_{i}

Requirements of a PDF:

$$
\begin{aligned}
& p_{i} \geq 0 \\
& \sum_{i=1}^{n} p_{i}=1
\end{aligned}
$$

Six-sided die example: $p_{i}=\frac{1}{6}$
Think: p_{i} is the probability that a random measurement of X will yield the value x_{i}
X takes on the value x_{i} with probability p_{i}

Cumulative distribution function (CDF)

(For a discrete probability distribution)

Cumulative PDF: $\quad P_{j}=\sum_{i=1}^{j} p_{i}$

where:

$$
\begin{aligned}
& 0 \leq P_{i} \leq 1 \\
& P_{n}=1
\end{aligned}
$$

How do we generate samples of a discrete random variable (with a known PDF?)

Sampling from discrete probability distributions

To randomly select an event,
 select x_{i} if
$P_{i-1}<\xi \leq P_{i}$
\uparrow
Uniform random variable $\in[0,1)$

Note: "inversion method" is $0(\log \mathrm{~N})$ work per sample. But $0(1)$ is possible! (More on the "Alias Method" later.)

Continuous probability distributions

PDF $p(x)$

$$
p(x) \geq 0
$$

CDF $P(x)$

$$
\begin{aligned}
& P(x)=\int_{0}^{x} p(x) \mathrm{d} x \\
& P(x)=\operatorname{Pr}(X<x) \\
& P(1)=1
\end{aligned}
$$

$$
\operatorname{Pr}(a \leq X \leq b)=\int_{a}^{b} p(x) \mathrm{d} x
$$

$$
=P(b)-P(a)
$$

Uniform distribution
(for random variable X defined on $[0,1]$ domain)

Sampling continuous random variables using the inversion method

Cumulative probability distribution function

$$
P(x)=\operatorname{Pr}(X<x)
$$

Construction of samples:
Solve for $x=P^{-1}(\xi)$

Must know the formula for:

1. The integral of $p(x)$
2. The inverse function $P^{-1}(x)$

Example—Sampling Quadratic Distribution

- As a toy example, consider the simple probability distribution $\mathrm{p}(\mathrm{x}):=3(1-\mathrm{x})^{2}$ over the interval $[0,1]$
- How do we pick random samples

$$
p(x):=3(1-x)^{2}
$$

$$
P(x)=x^{3}-3 x^{2}+3 x
$$ distributed according to $\mathrm{p}(\mathrm{x})$?

- First, integrate probability distribution $p(x)$ to get cumulative distribution $P(x)$

$$
x=1-(1-y)^{\frac{1}{3}}
$$

- Invert $P(x)$ by solving $y=P(x)$ for x
- Finally, plug uniformly distributed random values y in $[0,1]$ into this expression

$$
\int_{0}^{s} 3(1-x)^{2} d x=s^{3}-3 s^{2}+3 s
$$

How do we uniformly sample the unit circle?

I.e., choose any point $\mathrm{P}=(\mathrm{px}, \mathrm{py})$ in circle with equal probability)

Uniformly sampling unit circle: first try

- $\theta=$ uniform random angle between 0 and 2π
- $r=$ uniform random radius between $\mathbf{0}$ and $\mathbf{1}$
- Return point: $(r \cos \theta, r \sin \theta)$

This algorithm does not produce the desired uniform sampling of the area of a circle. Why?

Because sampling is not uniform in area!

Points farther from center of circle are less likely to be chosen

$$
\theta=2 \pi \xi_{1} \quad r=\xi_{2}
$$

So how should we pick samples? Well, think about how we integrate over a disk in polar coordinates...

Sampling a circle (via inversion in 2D)

$$
\begin{aligned}
& A=\int_{0}^{2 \pi} \int_{0}^{1} r \mathrm{~d} r \mathrm{~d} \theta=\int_{0}^{1} r \mathrm{~d} r \int_{0}^{2 \pi} \mathrm{~d} \theta=\left.\left.\left(\frac{r^{2}}{2}\right)\right|_{0} ^{1} \theta\right|_{0} ^{2 \pi}=\pi \\
& p(r, \theta) \mathrm{d} r \mathrm{~d} \theta=\frac{1}{\pi} r \mathrm{~d} r \mathrm{~d} \theta \rightarrow p(r, \theta)=\frac{r}{\pi} \underbrace{\text { so that we integrate to }}_{1 \text { instead of area }} \\
& p(r, \theta)=p(r) p(\theta) \longleftarrow r, \theta \text { independent } \\
& p(\theta)=\frac{1}{2 \pi} \\
& P(\theta)=\frac{1}{2 \pi} \theta \quad \theta=2 \pi \xi_{1} \\
& p(r)=2 r \\
& P(r)=r^{2} \\
& r=\sqrt{\xi_{2}}
\end{aligned}
$$

Uniform area sampling of a circle

WRONG

 probability is uniform; samples are not!

$$
\begin{gathered}
\theta=2 \pi \xi_{1} \\
r=\xi_{2}
\end{gathered}
$$

RIGHT
probability is nonuniform; samples are uniform

$$
\theta=2 \pi \xi_{1}
$$

$$
r=\sqrt{\xi_{2}}
$$

Uniform sampling via rejection sampling

Completely different idea: pick uniform samples in square (easy) Then toss out any samples not in square (easy)

Efficiency of technique: area of circle / area of square

Efficiency of Rejection Sampling

- If the region we care about covers only a very small fraction of the region we're sampling, rejection is probably a bad idea:

Smarter in this case to "warp" our random variables to follow the spiral.

Expected Value

- What value does a random variable Y take, on average?
- E.g., consider a fair coin where heads $=1$, tails $=0$
- Equal probability of heads $\&$ is tails ($1 / 2$ for both)
- Expected value is then $(1 / 2)^{*} 1+(1 / 2) * 0=1 / 2$

$$
\begin{aligned}
& \text { Properties of expectation: } \\
& E\left[\sum_{i} Y_{i}\right]=\sum_{i} E\left[Y_{i}\right] \\
& E[a Y]=a E[Y]
\end{aligned}
$$

(Can you show these are true?)

Putting it all together: Monte Carlo Integration

- Definite integral

What we seek to estimate

- Random variables
X_{i} is the value of a random sample drawn from the distribution $p(x)$ Y_{i} is also a random variable.
- Expectation of f

For a continuous random variable

- Estimator

Estimator
Monte Carlo estimate of $\int_{a}^{b} f(x) d x$

Assuming samples X_{i} drawn from uniform pdf. I will provide estimator for arbitrary PDFs next lecture.

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x \\
& X_{i} \sim p(x) \\
& Y_{i}=f\left(X_{i}\right)
\end{aligned}
$$

$$
E\left[Y_{i}\right]=E\left[f\left(X_{i}\right)\right]=\int_{a}^{b} f(x) p(x) \mathrm{d} x
$$

$$
F_{N}=\frac{b-a}{N} \sum_{i=1}^{N} Y_{i}
$$

Basic unbiased Monte Carlo estimator

Let's compute expected value of our numerical estimate of an integral:

$$
\left.\begin{array}{rl}
E\left[F_{N}\right] & =E\left[\frac{b-a}{N} \sum_{i=1}^{N} Y_{i}\right] \\
& =\frac{b-a}{N} \sum_{i=1}^{N} E\left[Y_{i}\right]=\frac{b-a}{N} \sum_{i=1}^{N} E\left[f\left(X_{i}\right)\right] \\
& =\frac{b-a}{N} \sum_{i=1}^{N} \int_{a}^{b} f(x) p(x) \mathrm{d} x
\end{array}\right] \begin{array}{ll}
\text { is } \\
\text { llue } & =\frac{1}{N} \sum_{i=1}^{N} \int_{a}^{b} f(x) \mathrm{d} x \quad \begin{array}{l}
\text { Assume uniform } \\
\text { probability density for n } \\
X_{i} \sim U(a, b)
\end{array} \\
& =\int_{a}^{b} f(x) \mathrm{d} x \quad \frac{1}{b-a}
\end{array}
$$

Since expected value is
equal to the exact value

Next Time: Monte Carlo Ray Tracing

Fun Stuff: The Alias Method

You can generate samples from any discrete probability distribution in 0(1) time! How? Pre-process to arrange the probability mass to perfectly cover a rectangle:

N outcomes

Hey, is this pre-processing even possible in general?
(Idid only show you one example...)

