Digital Geometry Processing

Computer Graphics
CMU 15-462/15-662

Last time: Meshes \& Manifolds

- Mathematical description of geometry
- simplifying assumption: manifold
- for polygon meshes:"fans, not fins"
- Data structures for surfaces
- polygon soup
- halfedge mesh
- storage cost vs. access time, etc.
- Today:
- how do we manipulate geometry?
- geometry processing/resampling

Today: Geometry Processing

- Extend traditional digital signal processing (audio, video, etc.) to deal with geometric signals:
- upsampling/downsampling/resampling/filtering ...
- aliasing (reconstructed surface gives "false impression")
- Beyond pure geometry, these are basic building blocks for many areas/algorithms in graphics (rendering, animation...)

Digital Geometry Processing: Motivation

Geometry Processing Pipeline

Geometry Processing Tasks

compression

Geometry Processing: Reconstruction

- Given samples of geometry, reconstruct surface
- What are "samples"? Many possibilities:
- points, points \& normals, ...
- image pairs / sets (multi-view stereo)
- line density integrals (MRI/CT scans)

- How do you get a surface? Many techniques:
- silhouette-based (visual hull)
- Voronoi-based (e.g., power crust)
- PDE-based (e.g., Poisson reconstruction)
- Radon transform / isosurfacing (marching cubes)

Geometry Processing: Upsampling

- Increase resolution via interpolation
- Images: e.g., bilinear, bicubic interpolation
- Polygon meshes:
- subdivision
- bilateral upsampling
- ...

Geometry Processing: Downsampling
■ Decrease resolution; try to preserve shape/appearance
■ Images: nearest-neighbor, bilinear, bicubic interpolation
■ Point clouds: subsampling (just take fewer points!)

- Polygon meshes:
- iterative decimation, variational shape approximation, ...

Geometry Processing: Resampling

- Modify sample distribution to improve quality
- Images: not an issue! (Pixels always stored on a regular grid)
- Meshes: shape of polygons is extremely important!
- different notion of "quality" depending on task
- e.g., visualization vs. solving equations

Geometry Processing: Filtering

- Remove noise, or emphasize important features (e.g., edges)
- Images: blurring, bilateral filter, edge detection, ...
- Polygon meshes:
- curvature flow
- bilateral filter
- spectral filter

Geometry Processing: Compression

- Reduce storage size by eliminating redundant data/ approximating unimportant data
- Images:
- run-length, Huffman coding - lossless
- cosine/wavelet (JPEG/MPEG) - lossy
- Polygon meshes:
- compress geometry and connectivity
- many techniques (lossy \& lossless)

Geometry Processing: Shape Analysis

- Identify/understand important semantic features
- Images: computer vision, segmentation, face detection, ...
- Polygon meshes:
- segmentation, correspondence, symmetry detection, ...

Enough overviewLet's process some geometry!

Remeshing as resampling

- Remember our discussion of aliasing
- Bad sampling makes signal appear different than it really is
- E.g., undersampled curve looks flat
- Geometry is no different!
- undersampling destroys features

- oversampling bad for performance

What makes a "good" mesh?

- One idea: good approximation of original shape!
- Keep only elements that contribute information about shape
- Add additional information where, e.g., curvature is large

Approximation of position is not enough!

- Just because the vertices of a mesh are close to the surface it approximates does not mean it's a good approximation!
- Can still have wrong appearance, wrong area, wrong...
- Need to consider other factors*, e.g., close approximation of surface normals
vertices exactly on smooth cylinder

true area
flattening of smooth cylinder \& meshes

What else makes a "good" triangle mesh?

- Another rule of thumb: triangle shape

pronunciation:

- E.g., all angles close to 60 degrees
- More sophisticated condition: Delaunay (empty circumcircles) - often helps with numerical accuracy/stability - coincides with shockingly many other desirable properties (maximizes minimum angle, provides smoothest
interpolation, guarantees maximum principle...)
- Tradeoffs w/ good geometric approximation*
-e.g., long \& skinny might be "more efficient"

What else constitutes a "good" mesh?

- Another rule of thumb: regular vertex degree
- Degree 6 for triangle mesh, 4 for quad mesh

"G00D"

"OK"

"BAD"

Why? Better polygon shape; more regular computation; smoother subdivision:

Fact: in general, can't have regular vertex degree everywhere!

How do we upsample a mesh?

Upsampling via Subdivision

- Repeatedly split each element into smaller pieces
- Replace vertex positions with weighted average of neighbors
- Main considerations:
- interpolating vs. approximating
- limit surface continuity $\left(C^{1}, C^{2}, \ldots\right.$)
- behavior at irregular vertices

- Many options:
- Quad: Catmull-Clark
- Triangle: Loop, Butterfly, Sqrt(3)

Catmull-Clark Subdivision

- Step 0: split every polygon (any \# of sides) into quadrilaterals:

■ New vertex positions are weighted combination of old ones:
STEP 1: Face coords

New vertex coords:
n - vertex degree
STEP 3: Vertex coords

$$
\begin{array}{cl}
Q+2 R+(n-3) S \\
n
\end{array} \begin{aligned}
& \mathrm{Q} \text { - average of face coords around vertex } \\
& \mathrm{R} \mathrm{-} \mathrm{average} \mathrm{of} \mathrm{edge} \mathrm{midpoints} \mathrm{around} \mathrm{vertex} \\
& \mathrm{~S} \text { - original vertex position }
\end{aligned}
$$

Catmull-Clark: Boundaries

- How to handle boundaries?

Idea: want the subdivision to "behave the same" if tube gets cut in half
=> edge points: midpoints $e=(a+b) / 2$
=> vertex positions:

$$
v=1 / 8 a+1 / 8 c+3 / 4 b
$$

Catmull-Clark on quad mesh

few irregular vertices

Catmull-Clark on triangle mesh

Loop Subdivision

- Alternative subdivision scheme for triangle meshes
- Curvature is continuous away from irregular vertices (" $C^{2 "}$)
- Algorithm:
- Split each triangle into four

- Assign new vertex positions according to weights:

1/8

n : vertex degree
$u: 3 / 16$ if $n=3,3 /(8 n)$ otherwise

Loop Subdivision via Edge Operations

- First, split edges of original mesh in any order:

- Next, flip new edges that touch a new \& old vertex:

(Don't forget to update vertex positions!)

What if we want fewer triangles?

Simplification via Edge Collapse

■ One popular scheme: iteratively collapse edges

- Greedy algorithm:
- assign each edge a cost
- collapse edge with least cost
- repeat until target number of elements is reached
- Particularly effective cost function: quadric error metric*

Quadric Error Metric

- Approximate distance to a collection of triangles

■ Q: Distance to plane w/ normal n passing through point p?

- $\mathrm{A}: \operatorname{dist}(\mathbf{x})=\langle\mathbf{n}, \mathbf{x}\rangle-\langle\mathbf{n}, \mathbf{p}\rangle=\langle\mathbf{n}, \mathbf{x}-\mathbf{p}\rangle$
- Quadric error is then sum of squared point-to-plane distances:

Quadric Error - Homogeneous Coordinates

- Suppose in coordinates we have
- a query point $\mathbf{x}=(x, y, z)$
- \mathbf{a} normal $\mathbf{n}=(a, b, c)$
- an offset $d:=\langle\mathbf{n}, \mathbf{p}\rangle$
- In homogeneous coordinates, let
- $\mathbf{u}:=(x, y, z, 1)$
- $\mathbf{v}:=(a, b, c, d)$

$$
K=\left[\begin{array}{llll}
a^{2} & a b & a c & a d \\
a b & b^{2} & b c & b d \\
a c & b c & c^{2} & c d \\
a d & b d & c d & d^{2}
\end{array}\right]
$$

- Signed distance to plane is then just $\langle\mathbf{u}, \mathbf{v}\rangle=a x+b y+c z+d$
- Squared distance is $\langle\mathbf{u}, \mathbf{v}\rangle^{2}=\mathbf{u}^{\top}\left(\mathbf{v} \mathbf{v}^{\top}\right) \mathbf{u}=: \mathbf{u}^{\top} K \mathbf{u}$
- Matrix $K=\mathbf{v} \mathbf{v}^{T}$ encodes squared distance to plane Key idea: sum of matrices $K \Longleftrightarrow$ distance to union of planes

$$
\mathbf{u}^{\top} K_{1} \mathbf{u}+\mathbf{u}^{\top} K_{2} \mathbf{u}=\mathbf{u}^{\top}\left(K_{1}+K_{2}\right) \mathbf{u}
$$

Quadric Error of Edge Collapse

- How much does it cost to collapse an edge $e_{i j}$?

■ Idea: compute midpoint \mathbf{m}, measure error $Q(\mathbf{m})=\mathbf{m}^{\top}\left(K_{i}+K_{j}\right) \mathbf{m}$

- Error becomes "score" for $e_{i j}$, determining priority

Review: Minimizing a Quadratic Function

- Suppose you have a function $f(x)=a x^{2}+b x+c \quad f(x)$

■ Q: What does the graph of this function look like?
■ Could also look like this!
■ Q: How do we find the minimum?

- A: Find where the function looks "flat" if we zoom in really close

$$
\begin{array}{r}
2 a x+b=0 \\
x=-b / 2 a
\end{array}
$$

(What does x describe for the second function?)

Minimizing Quadratic Polynomial

- Not much harder to minimize a quadratic polynomial in n variables
- Can always write in terms of a symmetric matrix A
- E.g., in 2D: $f(x, y)=a x^{2}+b x y+c y^{2}+d x+e y+g$

$$
\begin{gathered}
\mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad A=\left[\begin{array}{cc}
a & b / 2 \\
b / 2 & c
\end{array}\right] \quad \mathbf{u}=\left[\begin{array}{l}
d \\
e
\end{array}\right] \\
f(x, y)=\mathbf{x}^{\top} A \mathbf{x}+\mathbf{u}^{\top} \mathbf{x}+g
\end{gathered}
$$

(will have this same form for any n)
■ Q: How do we find a critical point (min/max/saddle)?

- A: Set derivative to zero!

$$
\begin{array}{lc}
2 A \mathbf{x}+\mathbf{u}=0 & \text { (compare with } \\
\mathbf{x}=-\frac{1}{2} A^{-1} \mathbf{u} & x=-b / 2 a
\end{array}
$$

Positive Definite Quadratic Form

- Just like our 1D parabola, critical point is not always a min!
- Q: In 2D, 3D, nD, when do we get a minimum?
- A: When matrix A is positive-definite:

$$
\mathbf{x}^{\top} A \mathbf{x}>0 \quad \forall \mathbf{x}
$$

- 1D: Must have $x a x=a x^{2}>0$. In other words: a is positive!

■ 2D: Graph of function looks like a"bowl":

positive definite

positive semidefinite

indefinite

Positive-definiteness extremely important in computer graphics: means we can find minimizers by solving linear equations. Starting point for many algorithms (geometry processing, simulation, ...)

Minimizing Quadric Error

■ Find "best" point for edge collapse by minimizing quadratic form

$$
\min _{\mathbf{u} \in \mathbb{R}^{4}} \mathbf{u}^{T} K \mathbf{u}
$$

- Already know fourth (homogeneous) coordinate for a point is 1
- So, break up our quadratic function into two pieces:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\mathbf{x}^{\top} & 1
\end{array}\right]\left[\begin{array}{cc}
B & \mathbf{w} \\
\mathbf{w}^{\top} & d^{2}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x} \\
1
\end{array}\right]} \\
& \quad=\mathbf{x}^{\top} B \mathbf{x}+2 \mathbf{w}^{\top} \mathbf{x}+d^{2}
\end{aligned}
$$

- Now we have a quadratic polynomial in the unknown position $\mathbf{x} \in \mathbb{R}^{3}$
- Can minimize as before:

$$
2 B \mathbf{x}+2 \mathbf{w}=0 \quad \Longleftrightarrow \quad \mathbf{x}=-B^{-1} \mathbf{w}
$$

Q: Why should B be positive-definite?

Quadric Error Simplification: Final Algorithm

- Compute K for each triangle (squared distance to plane)
- Set K_{i} at each vertex to sum of K s from incident triangles

■ For each edge $e_{i j}$:

- set $K_{i j}=K_{i}+K_{j}$
- find point \mathbf{x} minimizing error, set cost to $K_{i j}(\mathbf{x})$

■ Until we reach target number of triangles:

- collapse edge $e_{i j}$ with smallest cost to optimal point x
- set quadric at new vertex to $K_{i j}$
- update cost of edges touching new vertex
- More details in assignment writeup!

Quadric Simplification—Flipped Triangles

- Depending on where we put the new vertex, one of the new triangles might be "flipped" (normal points in instead of out):

- Easy solution: for each triangle $i j k$ touching collapsed vertex i, consider normals $N_{i j k}$ and $N_{k j l}$ (where $k j l$ is other triangle containing edge $j k$)
■ If $\left\langle N_{i j k}, N_{k j l}\right\rangle$ is negative, don't collapse this edge!

What if we're happy with the number of triangles, but want to improve quality?

How do we make a mesh "more Delaunay"?

- Already have a good tool: edge flips!
- If $\alpha+\beta>\pi$, flip it!

- FACT: in 2D, flipping edges eventually yields Delaunay mesh
- Theory: worst case $O\left(n^{2}\right)$; doesn't always work for surfaces in 3D
- Practice: simple, effective way to improve mesh quality

Alternatively: how do we improve degree?

- Same tool: edge flips!

■ If total deviation from degree-6 gets smaller, flip it!

- FACT: average degree approaches 6 as number of elements increases
- Iterative edge flipping acts like "discrete diffusion" of degree

■ No (known) guarantees; works well in practice

How do we make a triangles "more round"?

■ Delaunay doesn't guarantee triangles are"round" (angles near 60°)

- Can often improve shape by centering vertices:

- Simple version of technique called "Laplacian smoothing"
- On surface: move only in tangent direction

■ How? Remove normal component from update vector

Isotropic Remeshing Algorithm

- Try to make triangles uniform shape \& size
- Repeat four steps:
- Split any edge over $4 / 3$ rds mean edge length
- Collapse any edge less than $4 / 5$ ths mean edge length
- Flip edges to improve vertex degree
- Center vertices tangentially

What can go wrong when you resample a signal?

Danger of Resampling

Q: What happens if we repeatedly resample an image?

Danger of Resampling

Q:What happens if we repeatedly resample a mesh?

A: Signal also degrades!

But wait: we have the original signal (mesh). Why not just project each new sample point onto the closest point of the original mesh?

Next Time: Geometric Queries

- Q: Given a point, in space, how do we find the closest point on a surface? Are we inside or outside the surface? How do we find intersection of two triangles? Etc.
- Do implicit/explicit representations make such tasks easier?
- What's the cost of the naïve algorithm, and how do we accelerate such queries for large meshes?
- So many questions!

