Meshes and Manifolds

Computer Graphics CMU 15-462/15-662

Last time: overview of geometry

- Many types of geometry in nature
- **Demand sophisticated representations**
- **Two major categories:**
 - IMPLICIT "tests" if a point is in shape
 - EXPLICIT directly "lists" points
- Lots of representations for both

Today:

- what is a surface, anyway?
- nuts & bolts of polygon meshes
- geometry processing / resampling

Geometry

Manifold Assumption

- Can be hard to understand motivation at first!
- So first, let's revisit a more familiar example...

Today we're going to introduce the idea of *manifold* geometry

Bitmap Images, Revisited To encode images, we used a *regular grid* of pixels:

But images are not fundamentally made of little squares:

Goyō Hashiguchi, *Kamisuki* (ca 1920)

photomicrograph of paint

So why did we choose a square grid?

... rather than dozens of possible alternatives?

Regular grids make life easy

- **One reason: SIMPLICITY / EFFICIENCY**
 - E.g., always have four neighbors
 - Easy to index, easy to filter...
 - Storage is just a list of numbers
- **Another reason: GENERALITY**
 - Can encode basically any image
- Are regular grids always the best choice for bitmap images?
 - No! E.g., suffer from anisotropy, don't capture edges, ...
 - But more often than not are a pretty good choice
- Will see a similar story with geometry...

(i,j-1)

(i,j)

(i,j+1)

(i+1,j)

(i-1,j)

So, how should we encode surfaces?

Smooth Surfaces

- (Think about the candy shell, not the chocolate.)
- Surfaces are *manifold*:

 - E.g., the Earth from space vs. from the ground

Intuitively, a *surface* is the boundary or "shell" of an object

- If you zoom in far enough, can draw a regular coordinate grid

Examples—Manifold vs. Nonmanifold

A manifold polygon mesh has fans, not fins For polygonal surfaces just two easy conditions to check: 1. Every edge is contained in only two polygons (no "fins")

2. The polygons containing each vertex make a single "fan"

What about boundary?

- The boundary is where the surface "ends."
- E.g., waist & ankles on a pair of pants.
- Locally, looks like a *half* disk
- Globally, each boundary forms a loop

Polygon mesh:

- one polygon per boundary edge
- boundary vertex looks like "pacman"

YES

Ok, but why is the manifold assumption useful?

Keep it Simple!

Same motivation as for images:

	(i,j-1)	
(i-1,j)	(i,j)	(i+1,j)
	(i,j+1)	

make some assumptions about our geometry to keep data structures/algorithms simple and efficient

in *many common cases,* doesn't fundamentally limit what we can do with geometry

How do we actually encode all this data?

Warm up: storing numbers

Q: Why bother with the linked list?

Q: What data structures can we use to store a list of numbers? One idea: use an array (constant time lookup, coherent access)

Alternative: use a linked list (linear lookup, incoherent access)

- A: For one, we can easily insert numbers wherever we like...

Polygon Soup

Most basic idea:

- For each triangle, just store three coordinates
- No other information about connectivity
- Not much different from point cloud! ("Triangle cloud?")
- **Pros:**
 - **Really stupidly simple**
- Cons:
 - **Redundant storage**
 - Hard to do much beyond simply drawing the mesh on screen
 - **Need spatial data structures** (later) to find neighbors

3: –1

Very expensive to find the neighboring polygons! (What's the cost?)

Incidence Matrices

- **neighbors**?
- Can encode all neighbor information via *incidence matrices*

E.g., tetrahedron:	<u>VERTEX⇔EDC</u>				
5.	7	70	v1	v2	v
	e0	1	1	0	
	e1	0	1	1	
	e2	1	0	1	
	e 3	1	0	0	
	e4	0	0	1	
	e5	0	1	0	

- 1 means "touches"; 0 means "does not touch"
- Instead of storing lots of 0's, use sparse matrices
- Still large storage cost, but finding neighbors is now O(1)
- Hard to change connectivity, since we used fixed indices
- Bonus feature: mesh does not have to be manifold

If we want to know who our neighbors are, why not just store a list of

EDGE ↔ **FACE** <u>GE</u> e1 e2 e3 73 e4 e5 **f3** 0

Aside: Sparse Matrix Data Structures

- Ok, but how do we actually store a "sparse matrix"?
- Lots of possible data structures:
 - <u>Associative array</u> from (row, column) to value
 - easy to lookup/set entries, fast (e.g., hash table)
 - harder to do matrix operations (e.g., multiplication)
 - <u>Array of linked lists</u> (one per row)
 - conceptually simple
 - slow access time, incoherent memory access
 - <u>Compressed column format</u>—pack entries in list
 - hard to add/modify entries
 - fast for actual matrix operations
- In practice: often build up entries using an "easier" data structure, convert to compressed format for computation

(row,col) val (0,0) -> 4(0,1) -> 2(1,2) -> 3(2,1) -> 7

Halfedge Data Structure (Linked-list-like)

Store some information about neighbors Don't need an exhaustive list; just a few key pointers Key idea: two *halfedges* act as "glue" between mesh elements:

Each vertex, edge face points to just one of its halfedges.

Halfedge makes mesh traversal easy

Use "twin" and "next" pointers to move around mesh

Example: visit all vertices of a face:

Halfedge* h = f->halfedge; do h = h - next;// do something w/ h->vertex while(h != f->halfedge);

Example: visit all neighbors of a vertex:

do

Note: only makes sense if mesh is manifold!

Use "vertex", "edge", and "face" pointers to grab element

Halfedge connectivity is always manifold Consider simplified halfedge data structure **Require only "common-sense" conditions**

struct Halfedge { Halfedge *next, *twin; };

Keep following next, and you'll get faces. Keep following twin and you'll get edges. Keep following next->twin and you'll get vertices.

Q: Why, therefore, is it impossible to encode the red figures?

(pointer to yourself!)

twin->twin == this twin != this every he is someone's "next"

- positions! Just connectivity

Halfedge meshes are easy to edit

- **Remember key feature of linked list: insert/delete elements** Same story with halfedge mesh ("linked list on steroids") E.g., for triangle meshes, several atomic operations:

How? Allocate/delete elements; reassigning pointers. Must be careful to preserve manifoldness!

Edge Flip

Triangles (a,b,c), (b,d,c) become (a,d,c), (a,b,d):

- Long list of pointer reassignments (edge->halfedge = ...)
- However, no elements created/destroyed.
- Q: What happens if we flip twice?

Challenge: can you implement edge flip such that pointers are *unchanged* after two flips?

Edge Flip Can generalize:

How many flips until back at the start?

Edge Split

Insert midpoint *m* of edge (*c*, *d*), connect to get four faces:

This time, have to *add* new elements. Lots of pointer reassignments. Q: Can we "reverse" this operation?

Edge Split

Works on faces of any size:

Where to split?

Edge Collapse

Replace edge (b,c) with a single vertex m:

- Now have to *delete* elements.
- **Still lots of pointer assignments!**

Q: How would we implement this with an adjacency list?

Any other good way to do it? (E.g., different data structure?)

Alternatives to Halfedge

Many very similar data structures:

- winged edge
- corner table
- quadedge

- **Each stores local neighborhood information**
- Similar tradeoffs relative to simple polygon list:
 - **CONS**: additional storage, incoherent memory access
 - traversal of local neighborhoods

*see for instance http://geometry-central.net/

Paul Heckbert (former CMU prof.) quadedge code - http://bit.ly/1QZLHos

dodec (+ icos

PROS: better access time for individual elements, intuitive

With some thought*, <u>can</u> design halfedge-type data structures with coherent data storage, support for non manifold connectivity, etc.

Comparison of Polygon Mesh Data Strucutres

	Adjacency List	Incidence Matrices	Halfedge Mesh
constant-time neighborhood access?	ΝΟ	YES	YES
easy to add/remove mesh elements?	NO	NO	YES
nonmanifold geometry?	YES	YES	NO

Conclusion: pick the right data structure for the job!

Ok, but what can we actually do with our fancy new data structures?

Subdivision Modeling

Subdivision Modeling Common modeling paradigm in modern 3D tools:

- Coarse "control cage"
- Perform local operations to control/edit shape
- Global subdivision process determines final surface

Subdivision Modeling—Local Operations For general polygon meshes, we can dream up lots of local mesh operations that might be useful for modeling:

...and many, many more!

Next Time: Digital Geometry Processing

- Extend traditional digital signal processing (audio, video, etc.) to deal with *geometric* signals:
 - upsampling / downsampling / resampling / filtering ...
 - aliasing (reconstructed surface gives "false impression")

