Meshes and Manifolds

Computer Graphics
CMU 15-462/15-662

Last time: overview of geometry

- Many types of geometry in nature
- Demand sophisticated representations
- Two major categories:
- IMPLICIT - "tests" if a point is in shape
- EXPLICIT - directly"lists" points
- Lots of representations for both
- Today:
- what is a surface, anyway?
- nuts \& bolts of polygon meshes
- geometry processing/resampling

Geometry

Manifold Assumption

- Today we're going to introduce the idea of manifold geometry
- Can be hard to understand motivation at first!
- So first, let's revisit a more familiar example...

Bitmap Images, Revisited

To encode images, we used a regular grid of pixels:

But images are not fundamentally made of little squares:

photomicrograph of paint

So why did we choose a square grid?

...rather than dozens of possible alternatives?

Regular grids make life easy

- One reason: SIMPLICITY / EFFICIENCY
- E.g., always have four neighbors
- Easy to index, easy to filter...
- Storage is just a list of numbers
- Another reason: GENERALITY
- Can encode basically any image

- Are regular grids always the best choice for bitmap images?
- No! E.g., suffer from anisotropy, don't capture edges, ...
- But more often than not are a pretty good choice
- Will see a similar story with geometry...

So, how should we encode surfaces?

Smooth Surfaces

- Intuitively, a surface is the boundary or "shell" of an object
- (Think about the candy shell, not the chocolate.)
- Surfaces are manifold:
- If you zoom in far enough, can draw a regular coordinate grid
- E.g., the Earth from space vs. from the ground

Isn't every shape manifold?

Can't draw ordinary 2D grid at center, no matter how close we get.

Examples—Manifold vs. Nonmanifold

- Which of these shapes are manifold?

A manifold polygon mesh has fans, not fins

- For polygonal surfaces just two easy conditions to check:

1. Every edge is contained in only two polygons (no "fins")
2. The polygons containing each vertex make a single "fan"

What about boundary?

- The boundary is where the surface "ends."
- E.g., waist \& ankles on a pair of pants.

■ Locally, looks like a half disk

- Globally, each boundary forms a loop

- Polygon mesh:

- one polygon per boundary edge
- boundary vertex looks like "pacman"

Ok, but why is the manifold assumption useful?

Keep it Simple!

- Same motivation as for images:
- make some assumptions about our geometry to keep data structures/algorithms simple and efficient
- in many common cases, doesn't fundamentally limit what we can do with geometry

How do we actually encode all this data?

Warm up: storing numbers

- Q: What data structures can we use to store a list of numbers?
- One idea: use an array (constant time lookup, coherent access)

1.7	2.9	0.3	7.5	9.2	4.8	6.0	0.1

- Alternative: use a linked list (linear lookup, incoherent access)

- Q: Why bother with the linked list?
- A: For one, we can easily insert numbers wherever we like...

Polygon Soup

- Most basic idea:
- For each triangle, just store three coordinates
- No other information about connectivity
- Not much different from point cloud! ("Triangle cloud?")
- Pros:
- Really stupidly simple
- Cons:
- Redundant storage
- Hard to do much beyond simply drawing the mesh on screen
- Need spatial data structures (later) to find neighbors

$$
\begin{array}{lll}
x 0, y 0, z 0 & x 1, y 1, z 1 & x 3, y 3, z 3 \\
x 1, y 1, z 1 & x 2, y 2, z 2 & x 3, y 3, z 3
\end{array}
$$

Adjacency List (Array-like)

- Store triples of coordinates (x, y, z), tuples of indices
- E.g., tetrahedron: VERTICES POLYGONS

	\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{i}	\mathbf{j}	\mathbf{k}
$\mathbf{0}:$	-1	-1	-1	0	2	1
$\mathbf{1 :}$	1	-1	1	0	3	2
$\mathbf{2 :}$	1	1	-1	3	0	1
$\mathbf{3}:$	-1	1	1	3	1	2

- Q: How do we find all the polygons touching vertex 2?
- Ok, now consider a more complicated mesh:
~1 billion polygons

Very expensive to find the neighboring polygons! (What's the cost?)

Incidence Matrices

- If we want to know who our neighbors are, why not just store a list of neighbors?
- Can encode all neighbor information via incidence matrices
- E.g., tetrahedron:

VERTEX \rightarrow EDGE				
$\mathbf{v 0}$	$\mathbf{v 1}$	$\mathbf{v 2}$	$\mathbf{v 3}$	
$\mathbf{e 0}$	1	1	0	0
\mathbf{e}	0	1	1	0
$\mathbf{e} 2$	1	0	1	0
\mathbf{e}	1	0	0	1
\mathbf{e}	0	0	1	1
e5	0	1	0	1

- 1 means "touches"; 0 means "does not touch"
- Instead of storing lots of 0 's, use sparse matrices
- Still large storage cost, but finding neighbors is now $\mathbf{0}$ (1)

- Hard to change connectivity, since we used fixed indices
- Bonus feature: mesh does not have to be manifold

Aside: Sparse Matrix Data Structures

- Ok, but how do we actually store a "sparse matrix"?
- Lots of possible data structures:
- Associative array from (row, column) to value
- easy to lookup/set entries, fast (e.g., hash table)
- harder to do matrix operations (e.g., multiplication)

(row, col) | $(0,0)$ | $->$ | 4 |
| :--- | :--- | :--- |
| $(0,1)$ | $->$ | 2 |
| $(1,2)$ | $->$ | 3 |
| $(2,1)$ | $->$ | 7 |

- Array of linked lists (one per row)
- conceptually simple
- slow access time, incoherent memory access
- Compressed column format-pack entries in list
(col,val) (col,val)
- hard to add/modify entries
- fast for actual matrix operations
- In practice: often build up entries using an "easier" data $\begin{aligned} \text { row } 0: & (0,4) \\ \text { 1: } & (2,3) \\ \text { 2: } & (1,7)\end{aligned}$
values $4,2,7,3$
row indices $0,0,2,1$ structure, convert to compressed format for computation

```
cumulative 1,3,4
    # entries
    by column
```


Halfedge Data Structure (Linked-list-like)

- Store some information about neighbors
- Don't need an exhaustive list; just a few key pointers
- Key idea: two halfedges act as "glue" between mesh elements:

- Each vertex, edge face points to just one of its halfedges.

Halfedge makes mesh traversal easy

- Use"twin" and "next" pointers to move around mesh

■ Use "vertex", "edge", and "face" pointers to grab element

- Example: visit all vertices of a face:

```
Halfedge* h = f->halfedge;
do {
    h = h->next;
    // do something w/ h->vertex
}
while( h != f->halfedge );
```

- Example: visit all neighbors of a vertex:

```
Halfedge* h = v->halfedge;
do {
    h = h->twin->next;
}
while( h != v->halfedge );
```

■ Note: only makes sense if mesh is manifold!

Halfedge connectivity is always manifold

- Consider simplified halfedge data structure
- Require only "common-sense" conditions

```
struct Halfedge {
    Halfedge *next, *twin;
};
```

```
twin->twin == this
twin != this
every he is someone's "next"
```

- Keep following next, and you'll get faces.
- Keep following twin and you'll get edges.
- Keep following next->twin and you'll get vertices.

Q: Why, therefore, is it impossible to encode the red figures?

Connectivity vs. Geometry

- Recall manifold conditions (fans not fins):
- every edge contained in two faces
- every vertex contained in one fan
- These conditions say nothing about vertex positions! Just connectivity
- Hence, can have perfectly good (manifold) connectivity, even if geometry is awful

- In fact, sometimes you can have perfectly good manifold connectivity for which any vertex positions give "bad" geometry!
- Can lead to confusion when debugging: mesh looks "bad", even though connectivity is fine

Halfedge meshes are easy to edit

- Remember key feature of linked list: insert/delete elements
- Same story with halfedge mesh ("linked list on steroids")
- E.g., for triangle meshes, several atomic operations:

- How? Allocate/delete elements; reassigning pointers.
- Must be careful to preserve manifoldness!

Edge Flip

■ Triangles ($\mathrm{a}, \mathrm{b}, \mathrm{c}$), ($\mathrm{b}, \mathrm{d}, \mathrm{c}$) become ($\mathrm{a}, \mathrm{d}, \mathrm{c}$), $(\mathrm{a}, \mathrm{b}, \mathrm{d})$:

■ Long list of pointer reassignments (edge->halfedge =...)
■ However, no elements created/destroyed.
■ Q: What happens if we flip twice?
■ Challenge: can you implement edge flip such that pointers are unchanged after two flips?

Edge Flip

- Can generalize:

- How many flips until back at the start?

Edge Split

- Insert midpoint m of edge (c, d), connect to get four faces:

- This time, have to add new elements.
- Lots of pointer reassignments.
- Q: Can we "reverse" this operation?

Edge Split

- Works on faces of any size:

■ Where to split?

Edge Collapse

- Replace edge (b,c) with a single vertex m:

- Now have to delete elements.
- Still lots of pointer assignments!
- Q: How would we implement this with an adjacency list?
- Any other good way to do it? (E.g., different data structure?)

Alternatives to Halfedge

- Many very similar data structures:
- winged edge
- corner table
- quadedge
- ...

cube \leftrightarrow oct

dodec \leftrightarrow icos
- Each stores local neighborhood information
- Similar tradeoffs relative to simple polygon list:
- CONS: additional storage, incoherent memory access
- PROS: better access time for individual elements, intuitive traversal of local neighborhoods

■ With some thought*, can design halfedge-type data structures with coherent data storage, support for non manifold connectivity, etc.

Comparison of Polygon Mesh Data Strucutres

	Adjacency List	Incidence Matrices	Halfedge Mesh
constant-time neighborhood access?	NO	YES	YES
easy to add/remove mesh elements?	NO	NO	YES
nonmanifold geometry?	YES	YES	NO

Conclusion: pick the right data structure for the job!

Ok, but what can we actually do with our fancy new data structures?

Subdivision Modeling

Subdivision Modeling

- Common modeling paradigm in modern 3D tools:
- Coarse "control cage"
- Perform local operations to control/edit shape
- Global subdivision process determines final surface

Subdivision Modeling—Local Operations

- For general polygon meshes, we can dream up lots of local mesh operations that might be useful for modeling:

...and many, many more!

Next Time: Digital Geometry Processing

- Extend traditional digital signal processing (audio, video, etc.) to deal with geometric signals:
- upsampling / downsampling / resampling / filtering ...
- aliasing (reconstructed surface gives "false impression")

