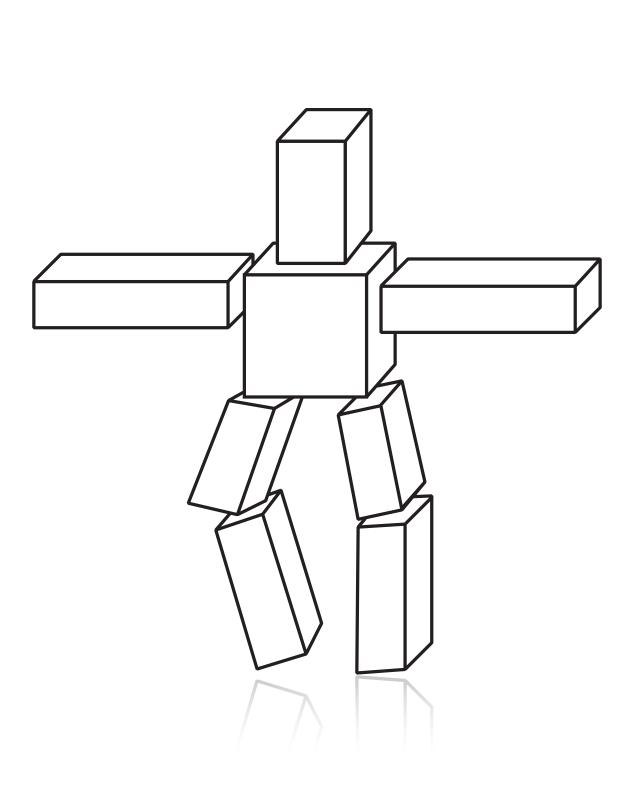
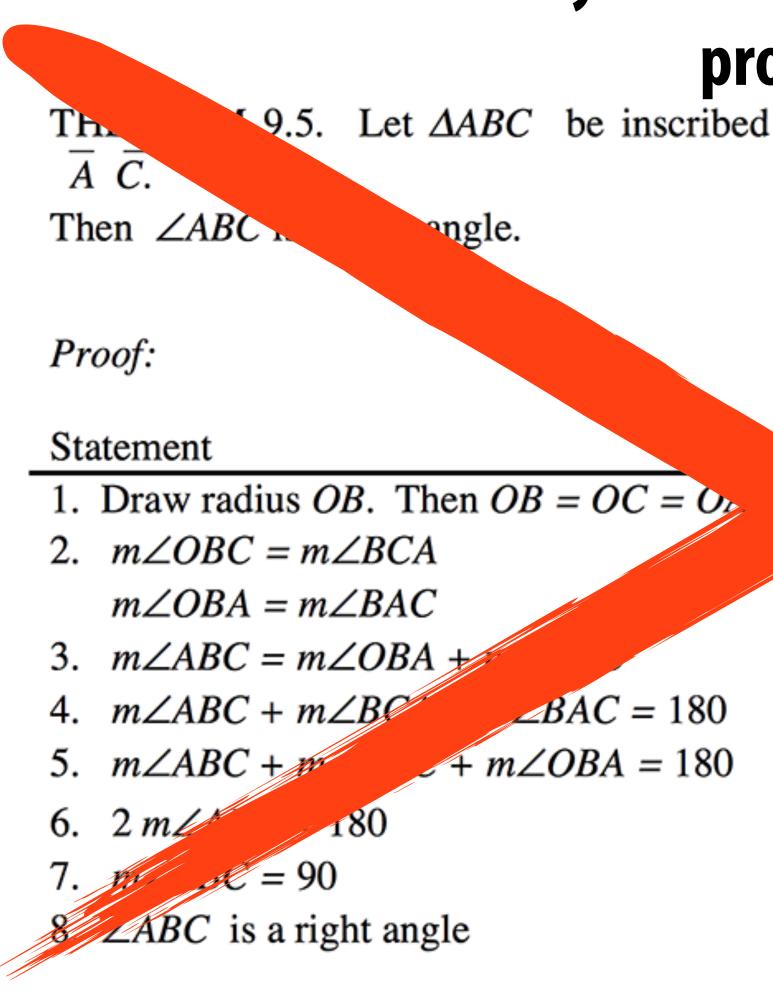
Introduction to Geometry

Computer Graphics CMU 15-462/15-662

Increasing the complexity of our modelsTransformationsGeometryMaterials, lighting, ...



Q: What is geometry? A: Geometry is the study of two-column proofs.



Ceci n'est pas géométrie.

Let $\triangle ABC$ be inscribed in a semicircle with diameter

Given

sceles Triangle Theorem

- 3. Ang. Ostulate
- 4. The sum concerned of a triangle is 180

B

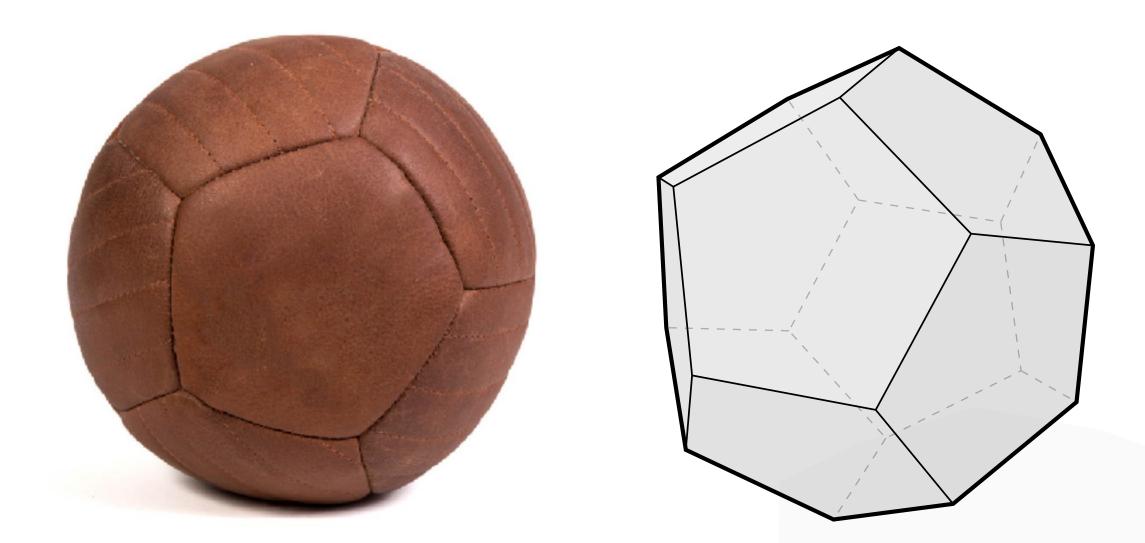
0

С

- 5. Substitution (Inc.
- 6. Substitution (line 3)
- 7. Division Property of Equality
- 8. Definition of Right Angle

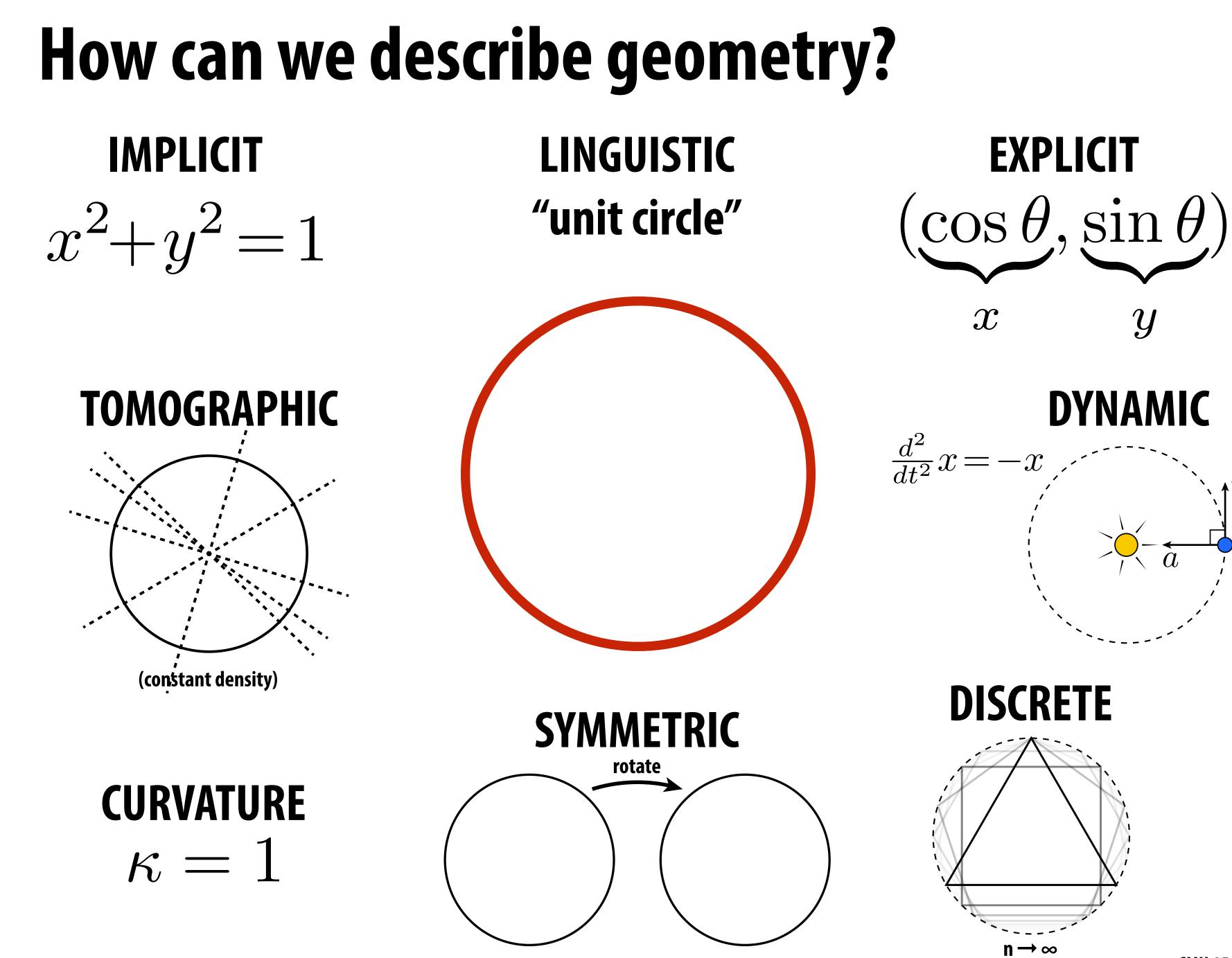
What is geometry?

"Earth" "measure" ge•om•et•ry/jē'ämətrē/ n. angles, etc.) can be measured.

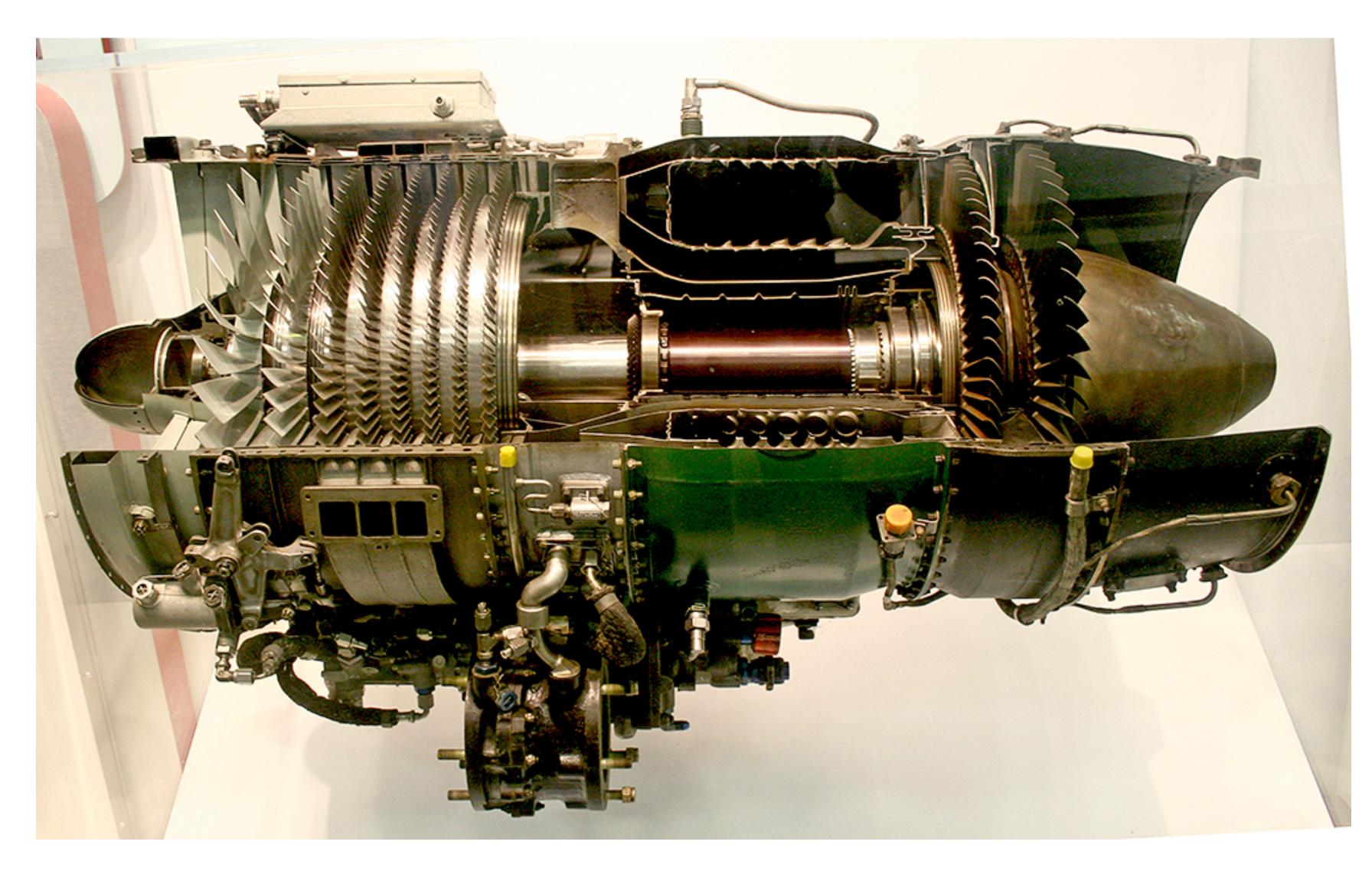


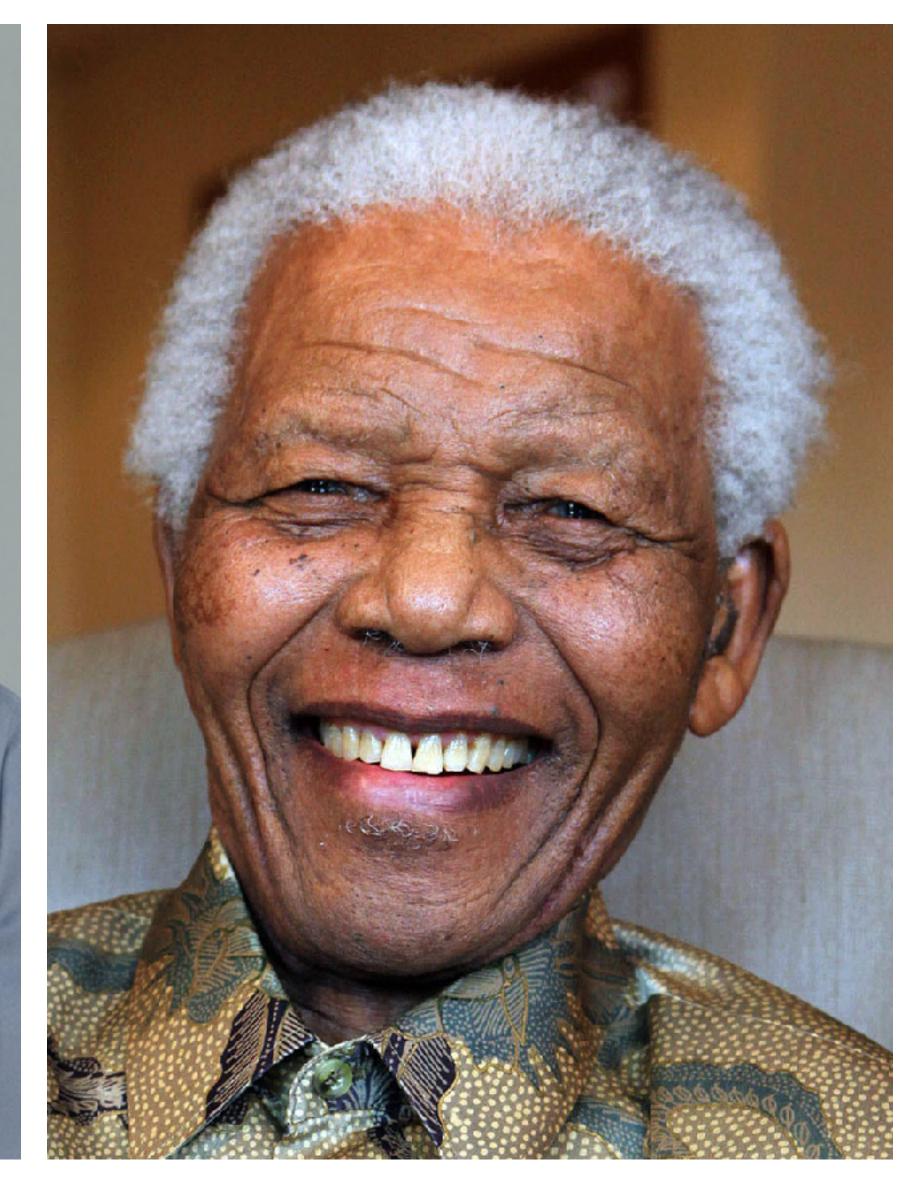
Plato: "...the earth is in appearance like one of those balls which have leather coverings in twelve pieces..."

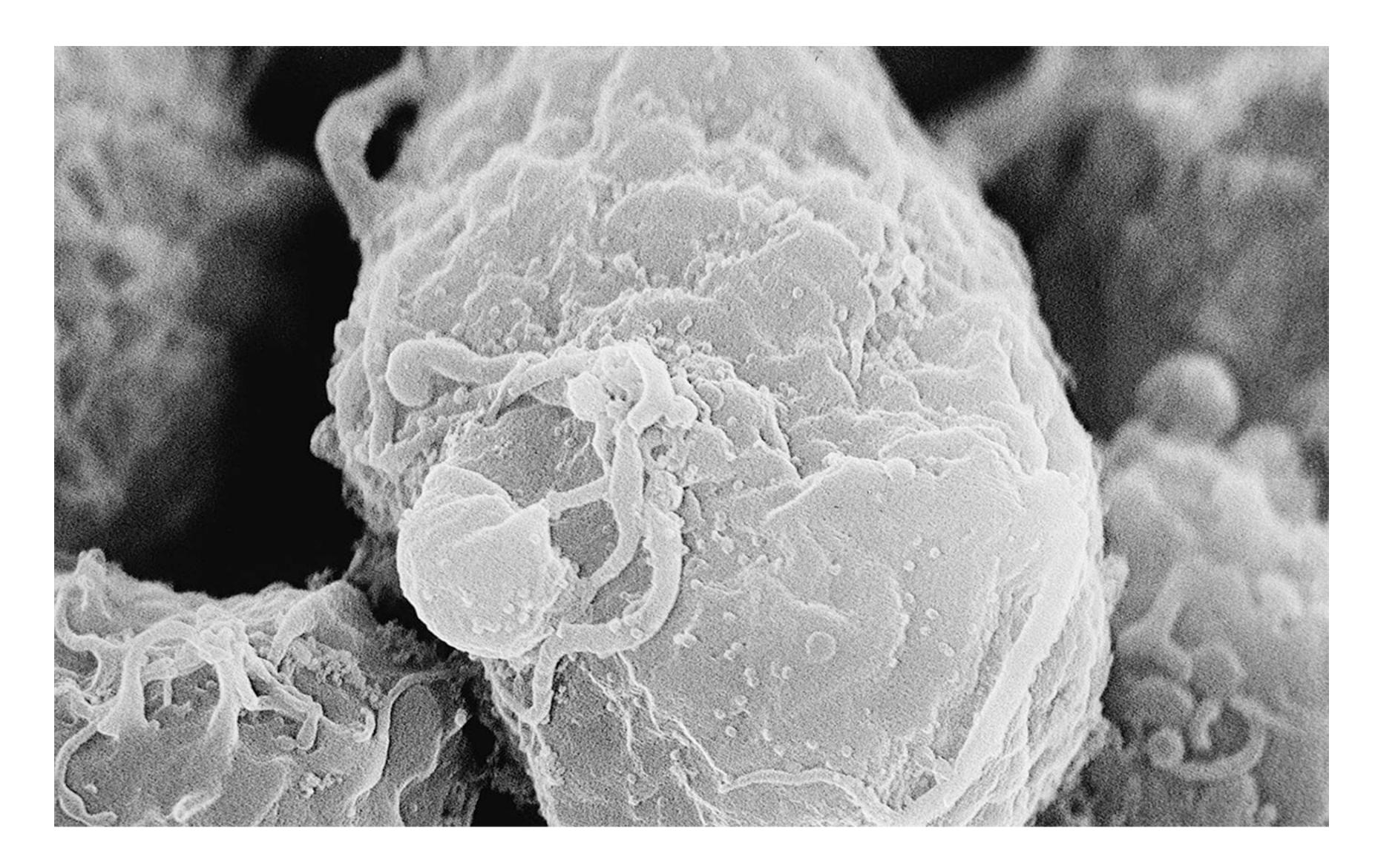
1. The study of shapes, sizes, patterns, and positions. 2. The study of spaces where some quantity (lengths,



Given all these options, what's the <u>best</u> way to encode geometry on a computer?







It's a Jungle Out There!

No one "best" choice—geometry is hard!

"I hate meshes. I cannot believe how hard this is. Geometry is hard."

Slide cribbed from Jeff Erickson.

—David Baraff

Senior Research Scientist Pixar Animation Studios

Many ways to digitally encode geometry

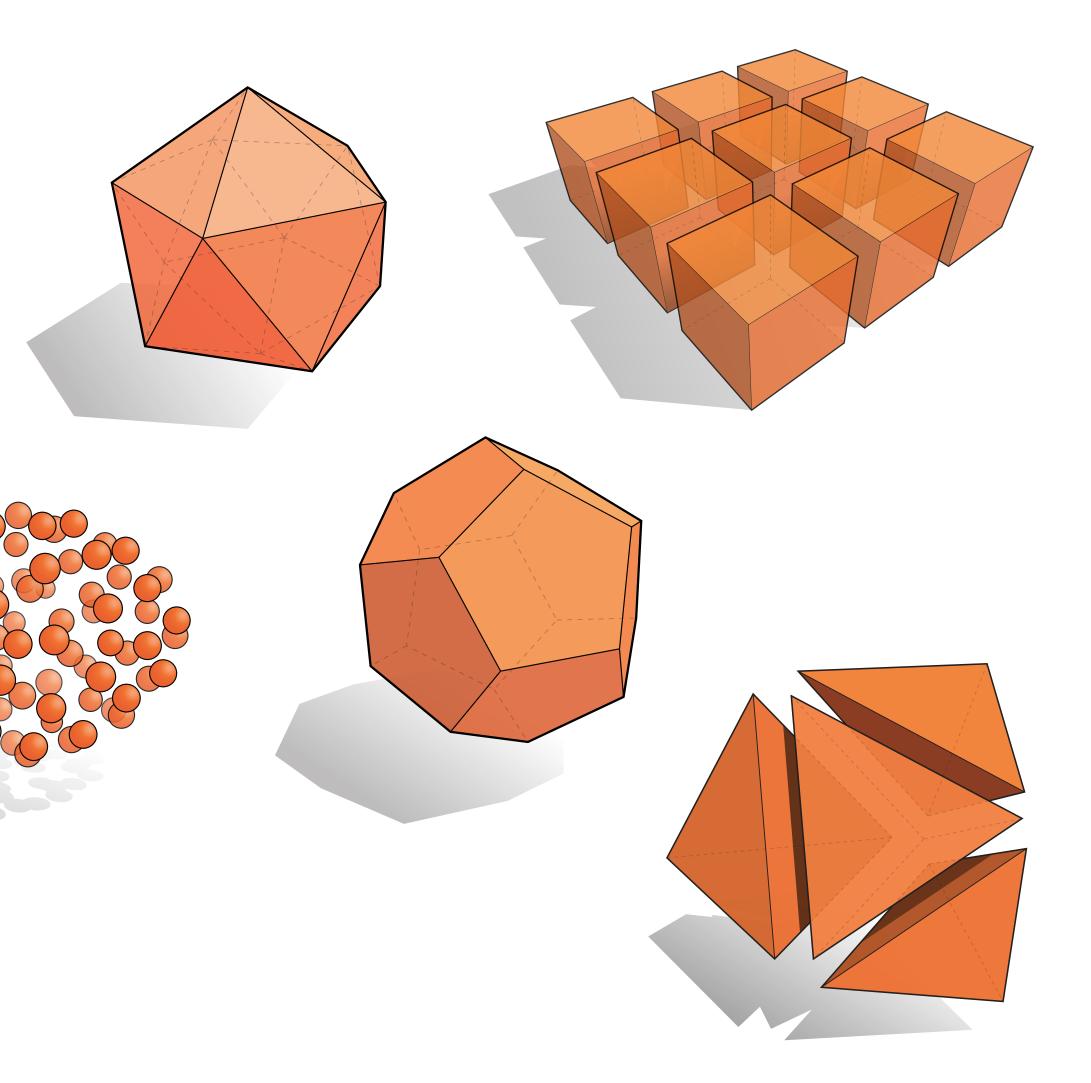
EXPLICIT

- point cloud
- polygon mesh
- subdivision, NURBS

IMPLICIT

- level set
- algebraic surface
- L-systems

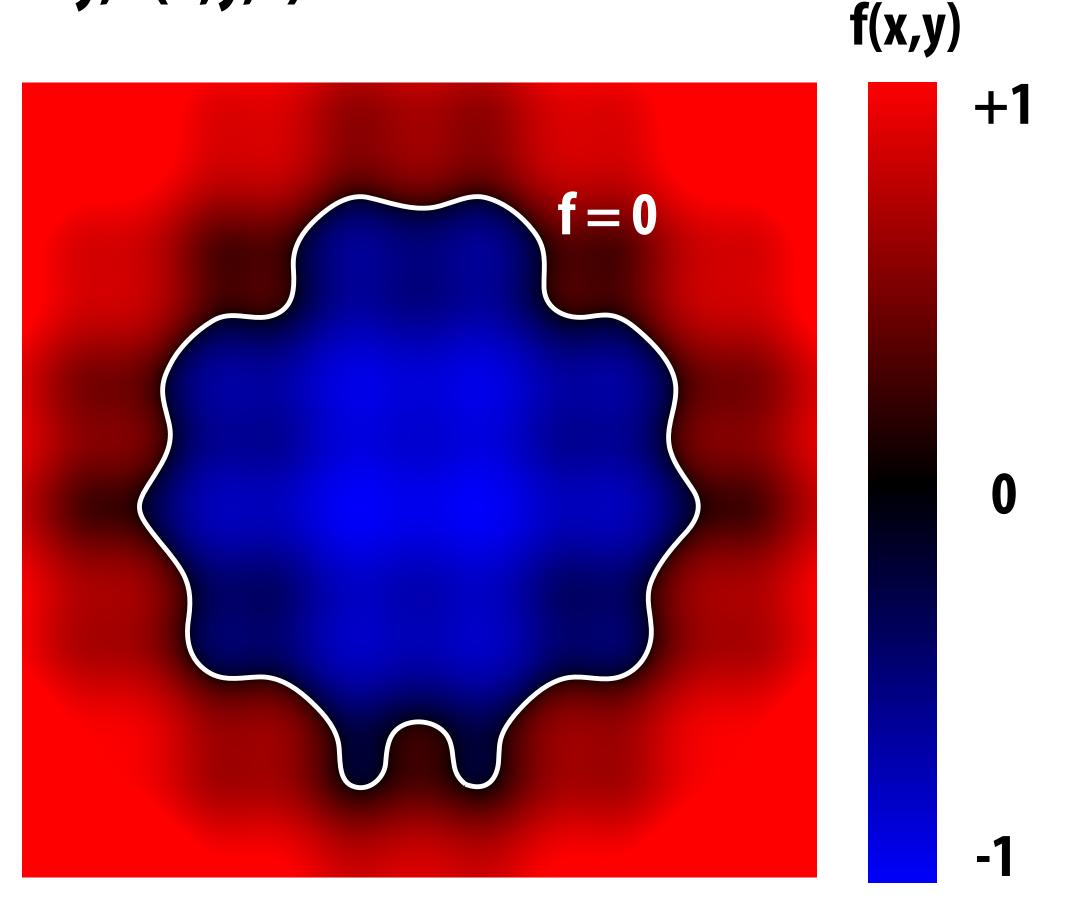
 $\bullet \bullet \bullet$



Each choice best suited to a different task/type of geometry

"Implicit" Representations of Geometry

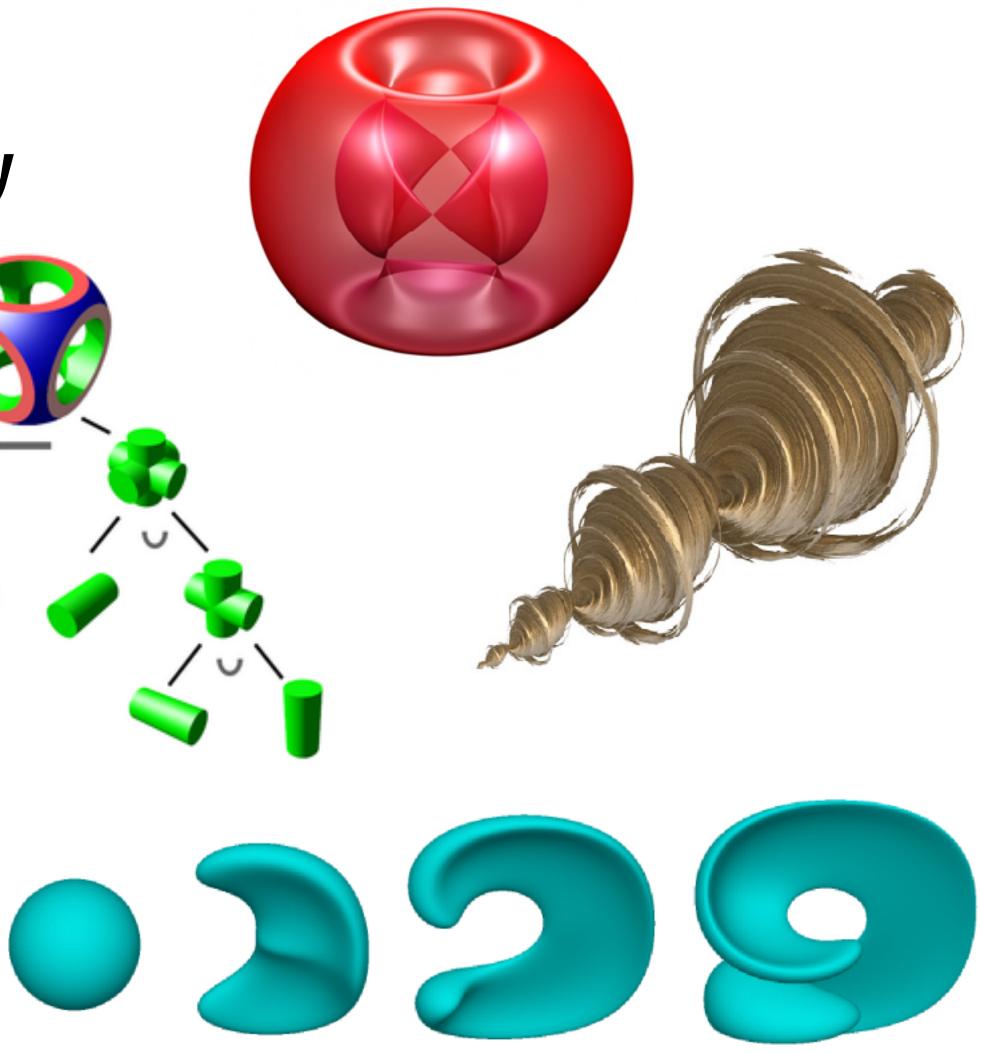
E.g., unit sphere is all points such that $x^2+y^2+z^2=1$ More generally, f(x,y,z) = 0



Points aren't known directly, but satisfy some relationship

Many implicit representations in graphics algebraic surfaces constructive solid geometry level set methods blobby surfaces fractals

(Will see some of these a bit later.)



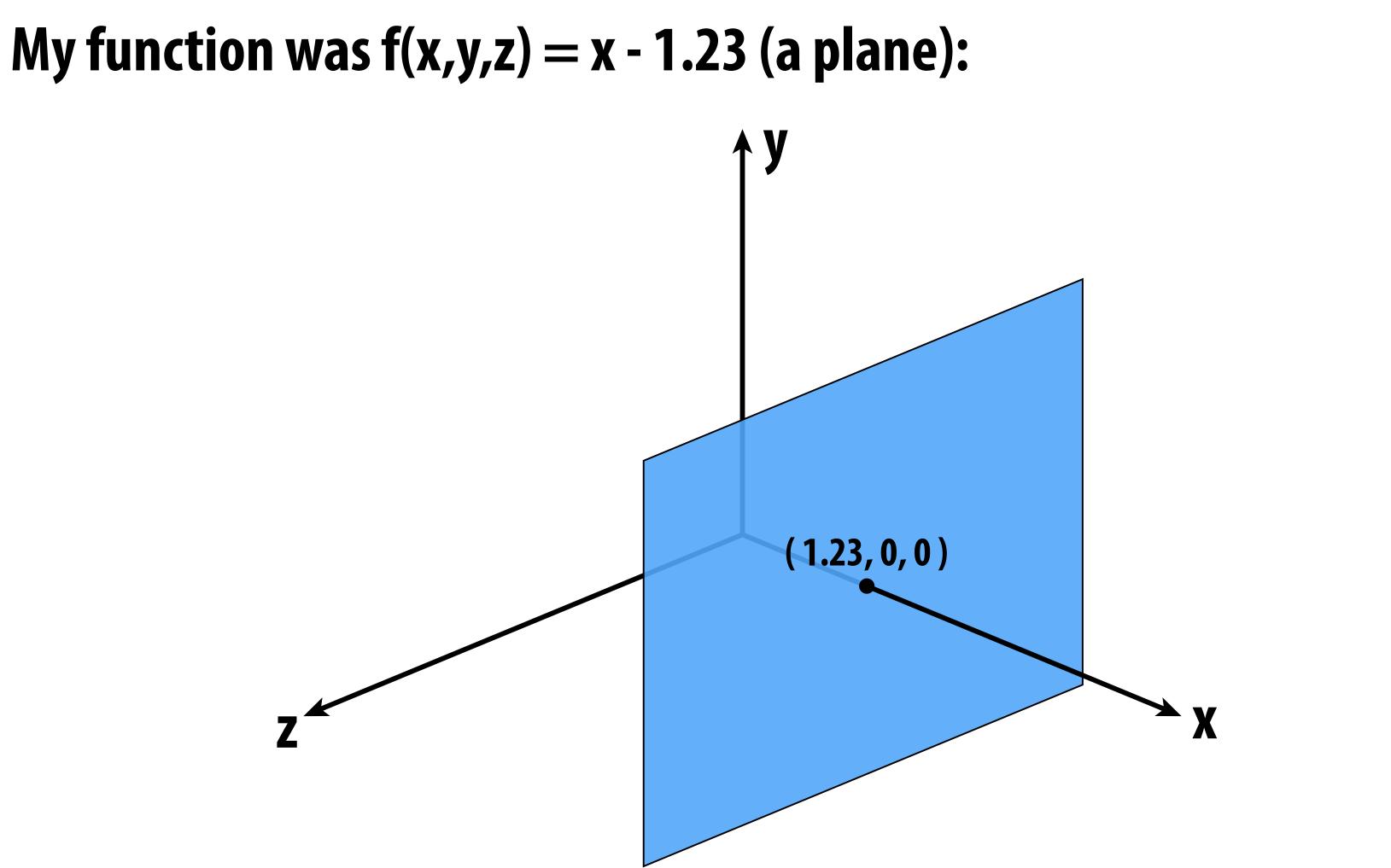
But first, let's play a game:

I'm thinking of an implicit surface f(x,y,z)=0.

Find any point on it.

Give up? My function was f(x,y,z) = x - 1

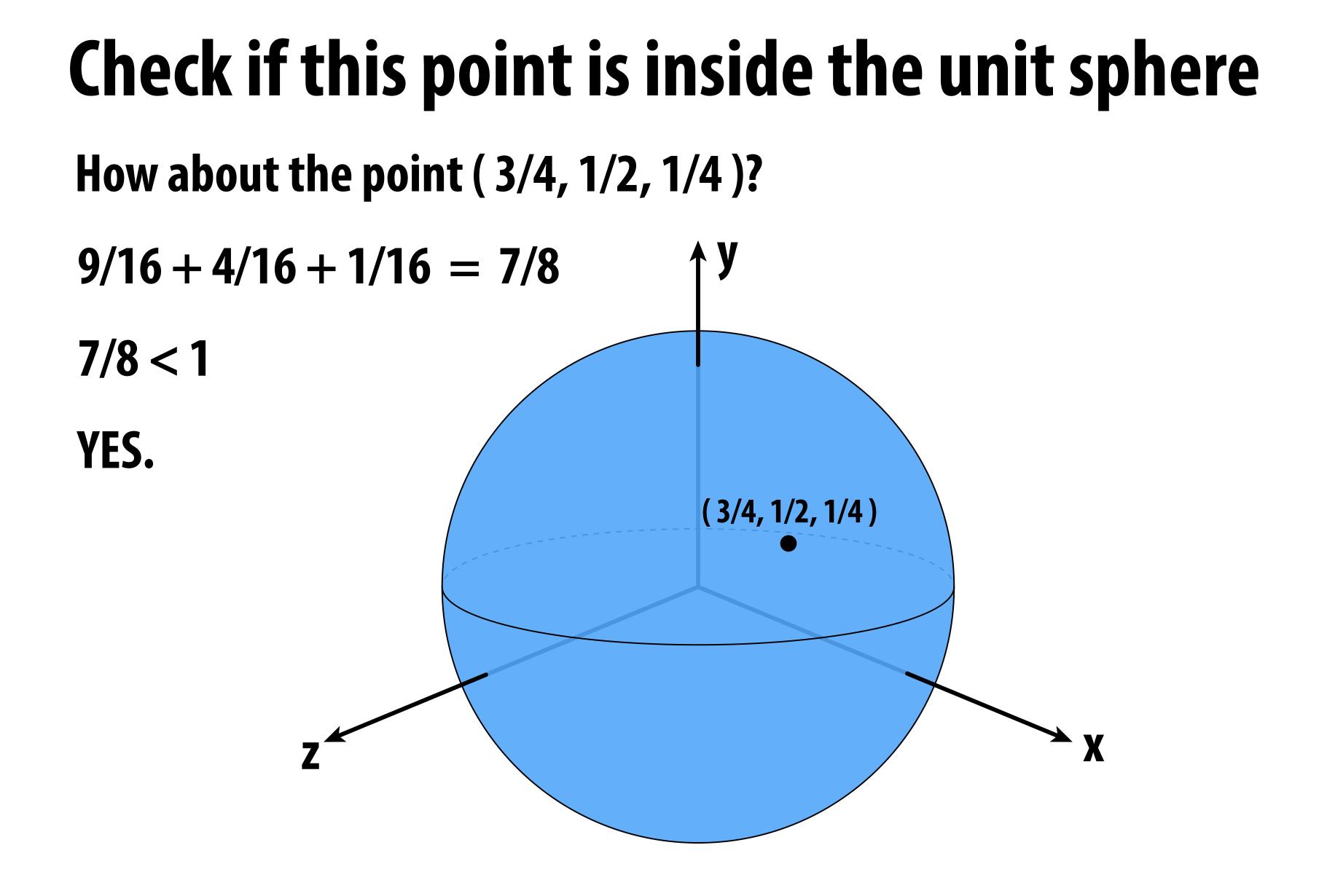
Observation: implicit surfaces make some tasks hard (like sampling)



Let's play another game.

I have a new surface $f(x,y,z) = x^2 + y^2 + z^2 - 1$.

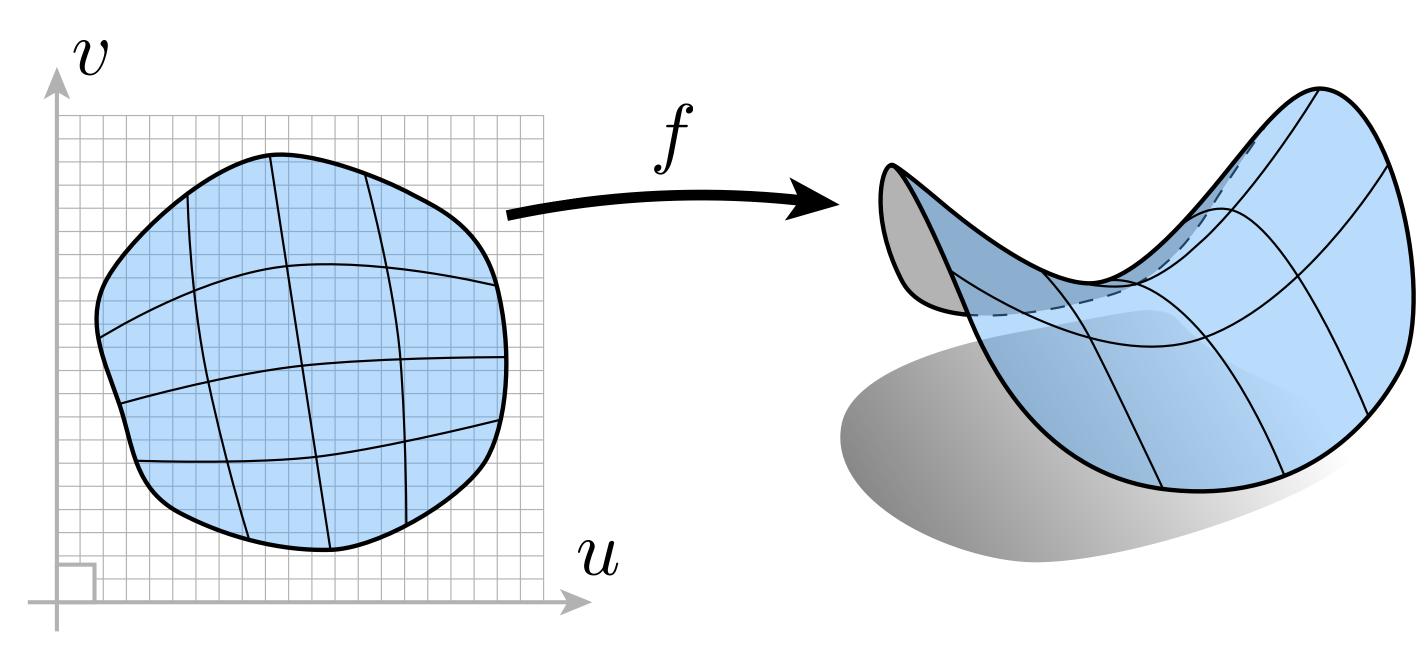
I want to see if a point is *inside* it.



Implicit surfaces make other tasks easy (like inside/outside tests).

"Explicit" Representations of Geometry All points are given directly • E.g., points on sphere are $(\cos(u)\sin(v), \sin(u)\sin(v), \cos(v)),$

• More generally: $f : \mathbb{R}^2 \to \mathbb{R}^3$; $(u, v) \mapsto (x, y, z)$

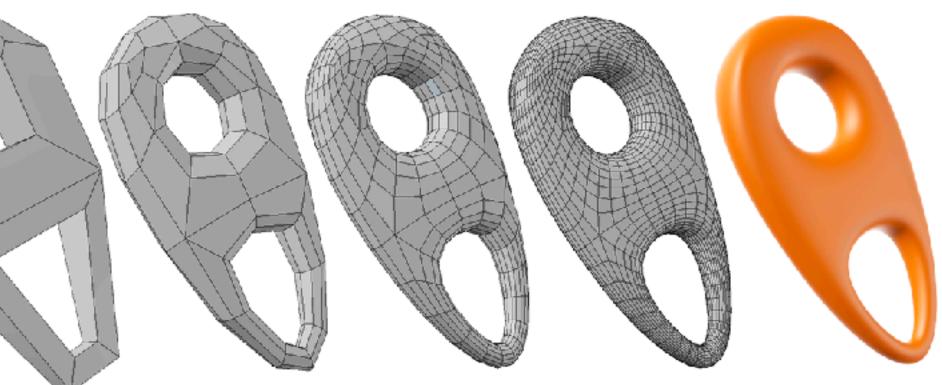


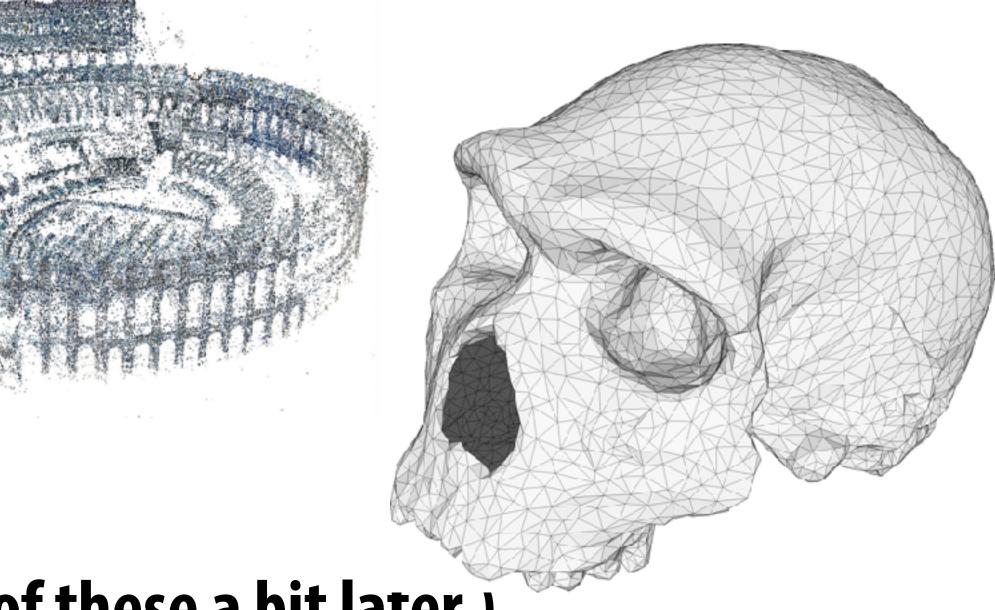
for $0 \le u \le 2\pi$ and $0 \le v \le \pi$

Might have a bunch of these maps, e.g., one per triangle!)

Many explicit representations in graphics

- triangle meshes
- polygon meshes
 - subdivision surfaces
- NURBS
- point clouds



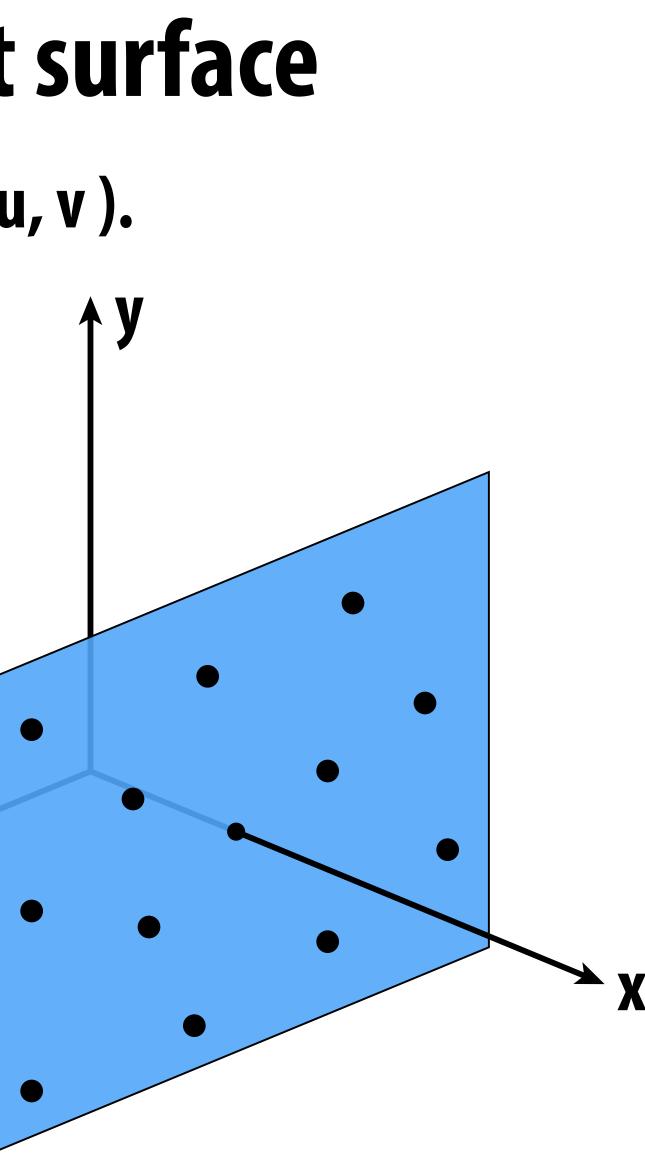


But first, let's play a game:

I'll give you an explicit surface.

You give me some points on it.

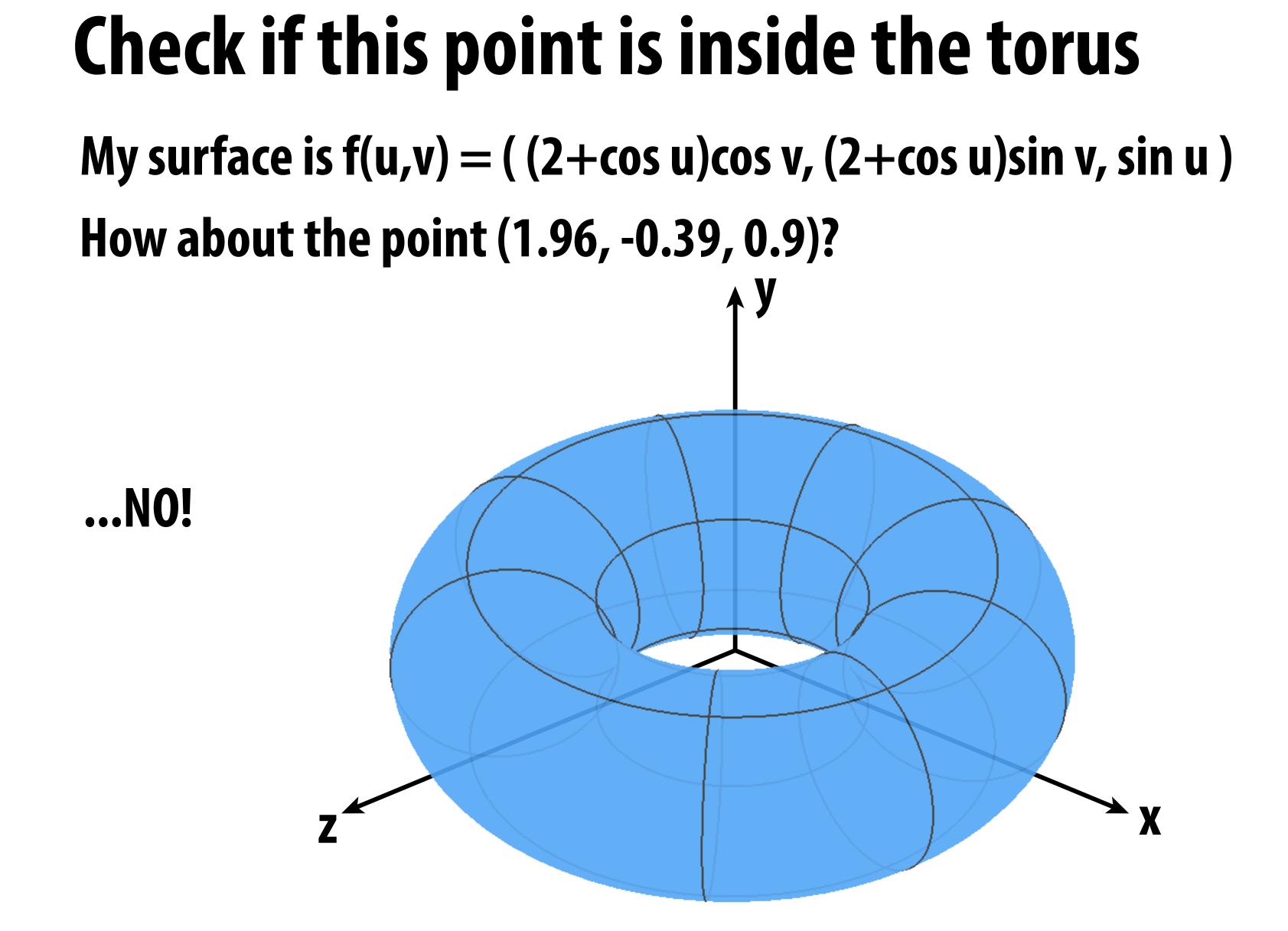
Sampling an explicit surface My surface is f(u, v) = (1.23, u, v). Just plug in any values u, v!



Let's play another game.

I have a new surface f(u,v).

I want to see if a point is *inside* it.



Explicit surfaces make other tasks hard (like inside/outside tests).

CONCLUSION: Some representations work better than others—depends on the task!

Different representations will also be better suited to different types of geometry.

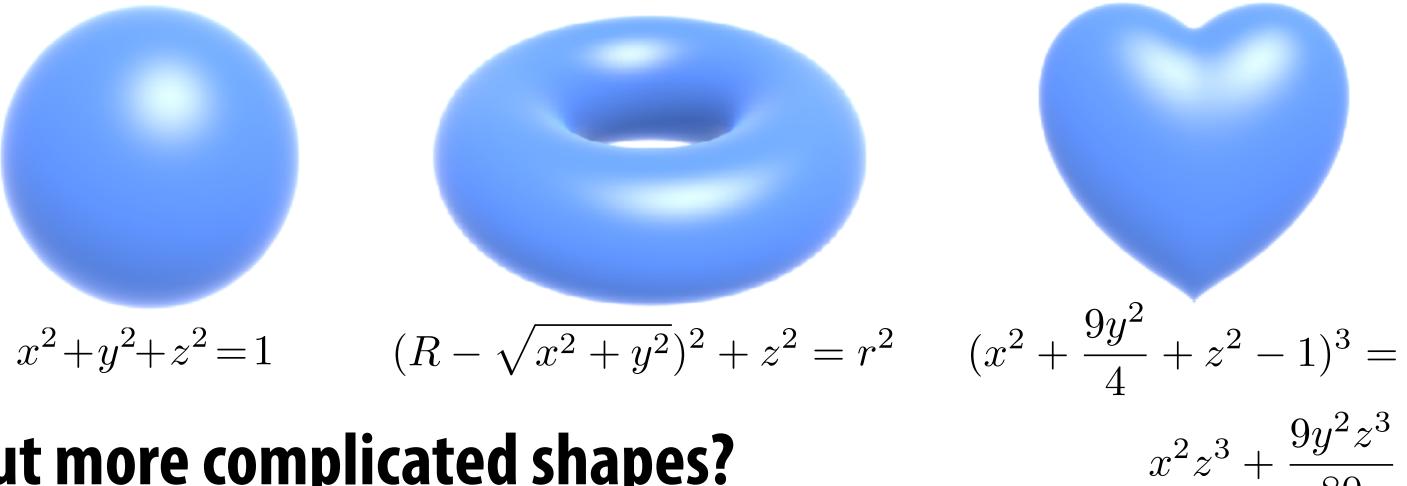
Let's take a look at some common representations used in computer graphics.

Algebraic Surfaces (Implicit)

Surface is zero set of a polynomial in x, y, z **Examples:**

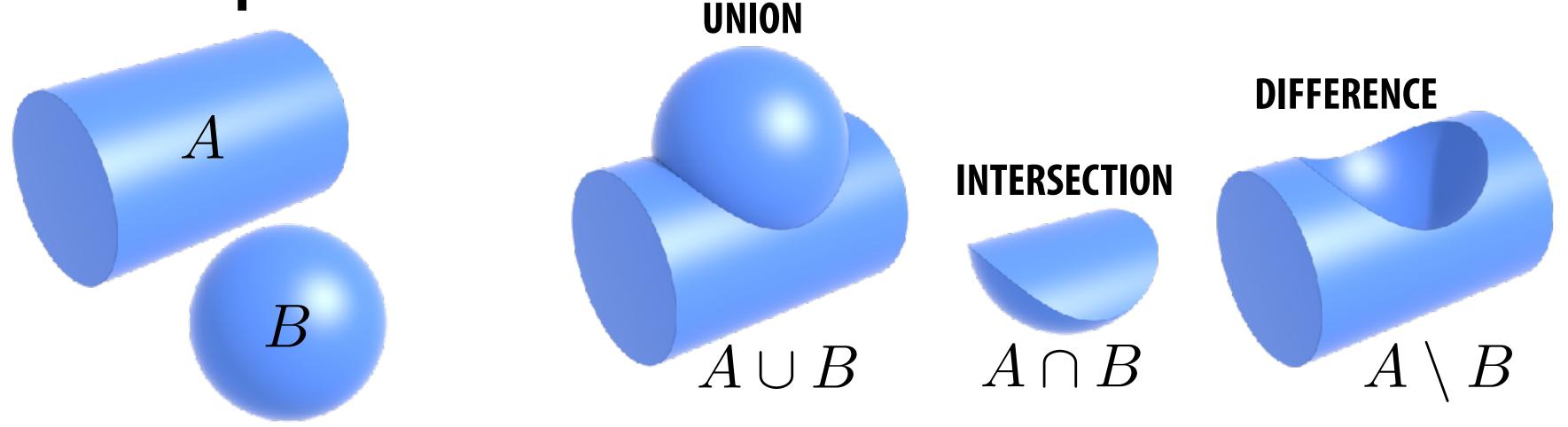
What about more complicated shapes?

Very hard to come up with polynomials!

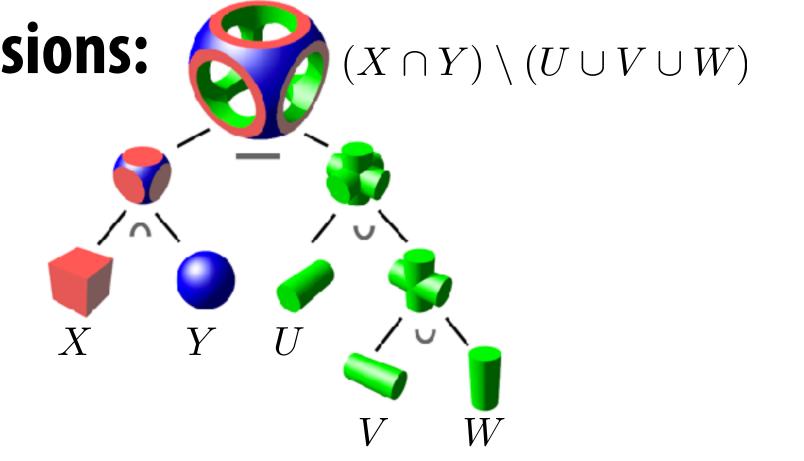


Constructive Solid Geometry (Implicit)

Build more complicated shapes via Boolean operations Basic operations:



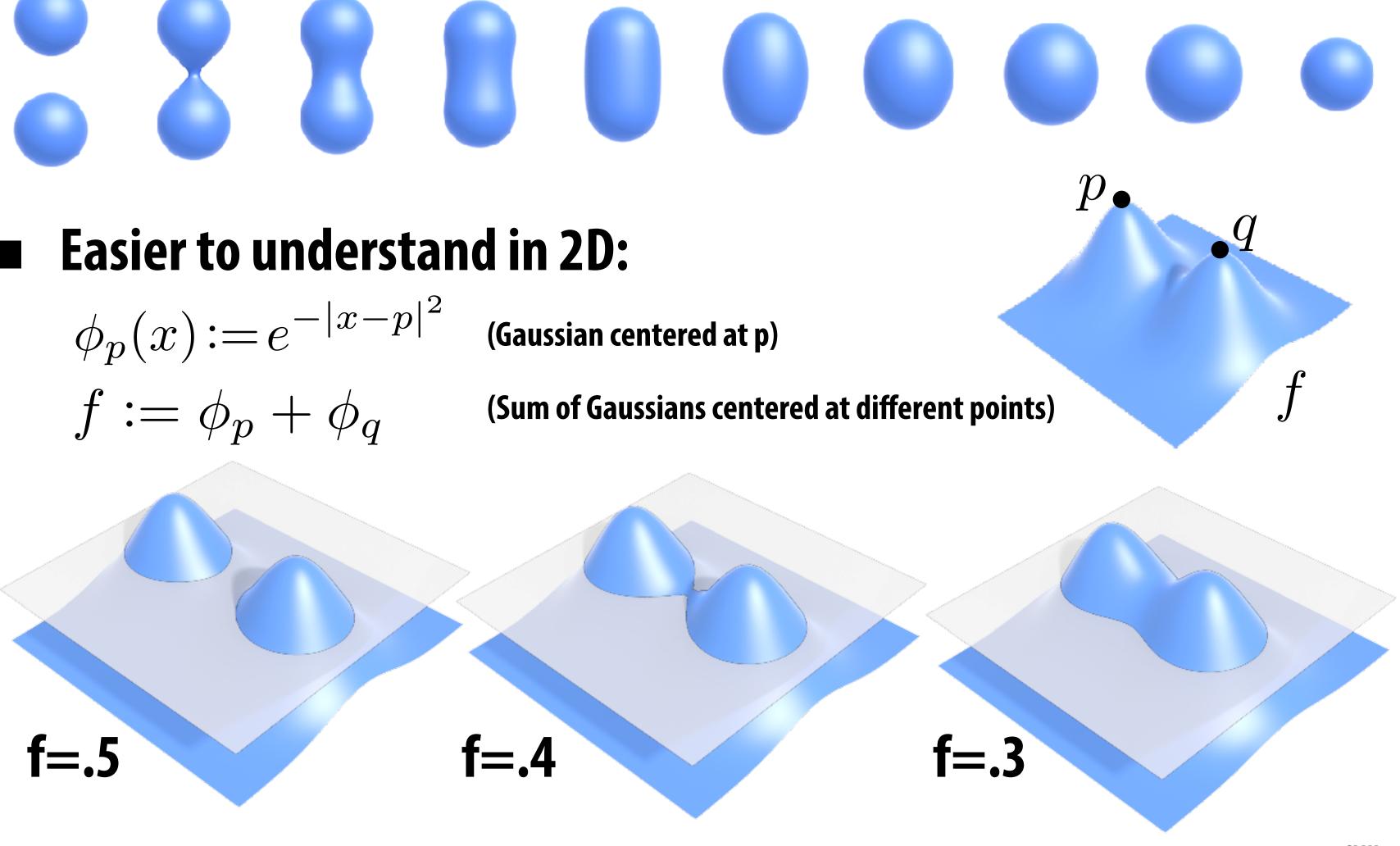
Then chain together expressions:



Blobby Surfaces (Implicit)

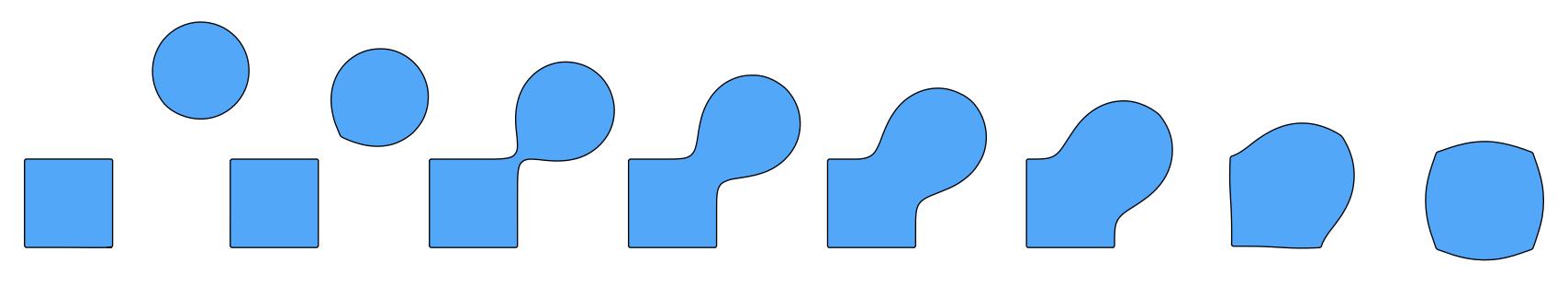
Instead of Booleans, gradually blend surfaces together:

Easier to understand in 2D:



Blending Distance Functions (Implicit)

Can blend any two distance functions d₁, d₂:



- $f(x) := e^{d_1(x)}$
- **Appearance depends on how we combine functions** • Q: How do we implement a Boolean union of $d_1(x)$, $d_2(x)$?
- A: Just take the minimum: $f(x) = \min(d_1(x), d_2(x))$

A *distance function* gives distance to closest point on object

Similar strategy to points, though many possibilities. E.g.,

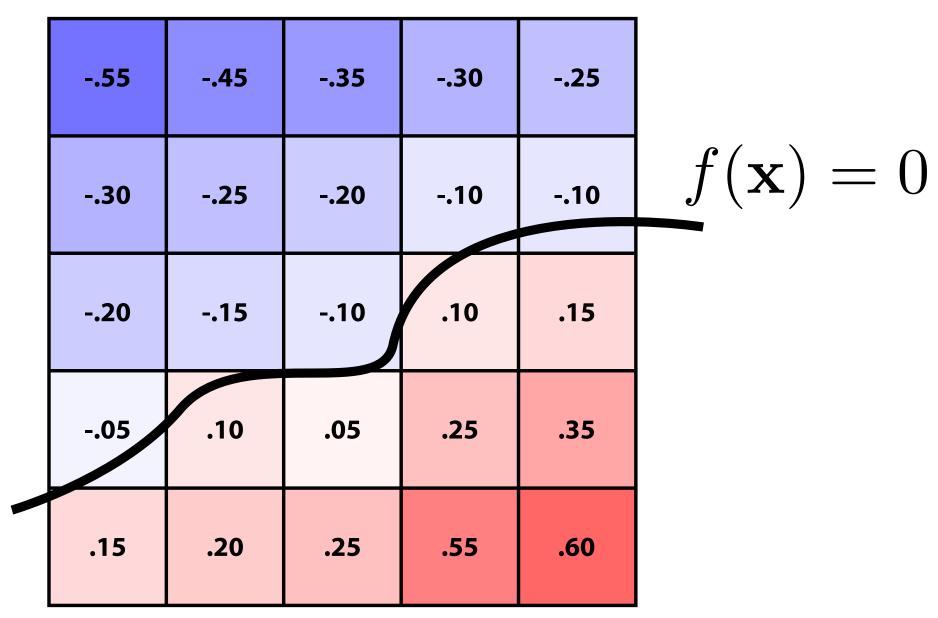
$$(x)^2 + e^{d_2(x)^2} - \frac{1}{2}$$

Scene of pure distance functions (not easy!)



see http://iquilezles.org/

Level Set Methods (Implicit) Implicit surfaces have some nice features (e.g., merging/splitting) But, hard to describe complex shapes in closed form Alternative: store a grid of values approximating function



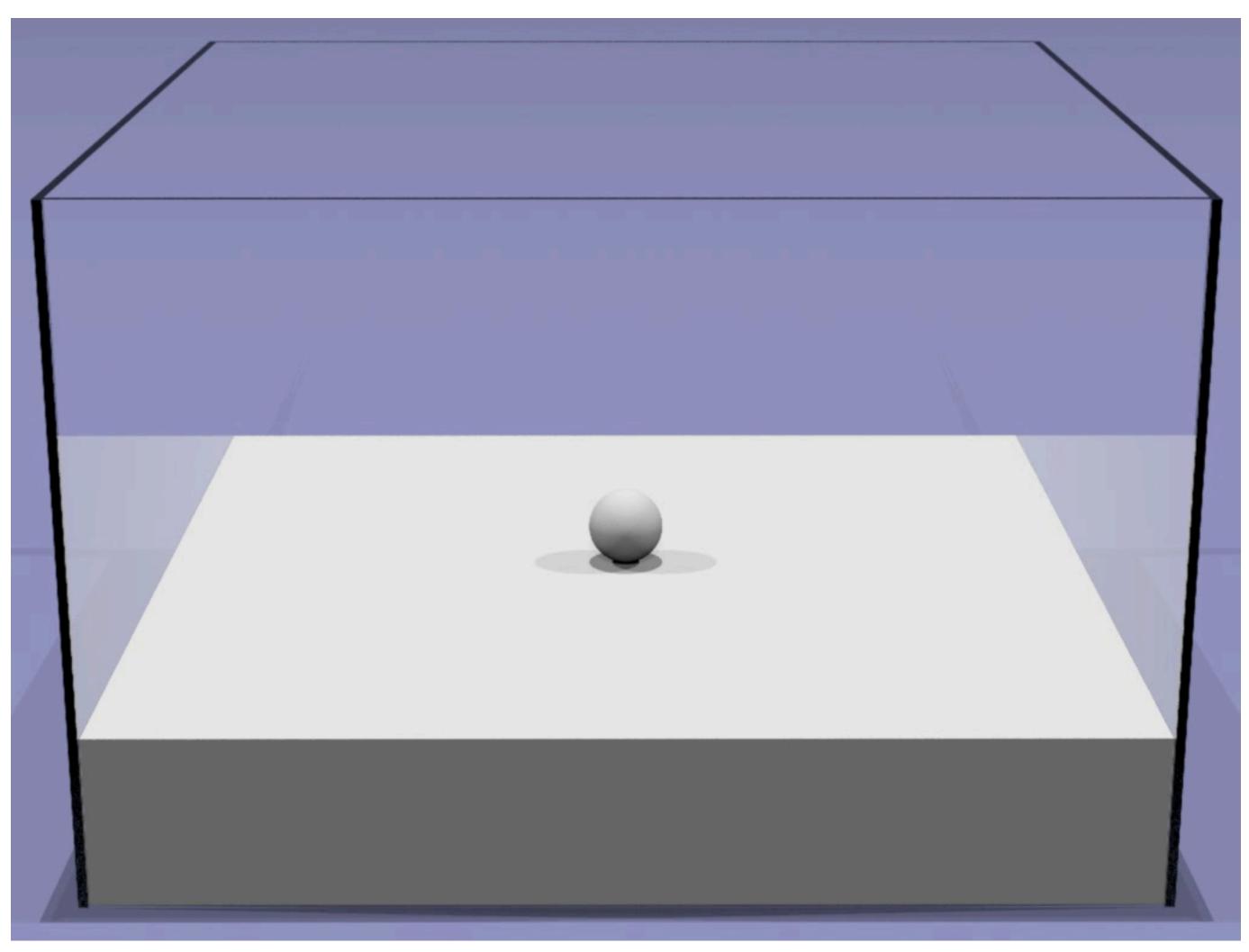
Surface is found where *interpolated* values equal zero **Provides much more explicit control over shape (like a texture)** Unlike closed-form expressions, run into problems of <u>aliasing</u>!

Level Sets from Medical Data (CT, MRI, etc.)

Level sets encode, e.g., constant tissue density



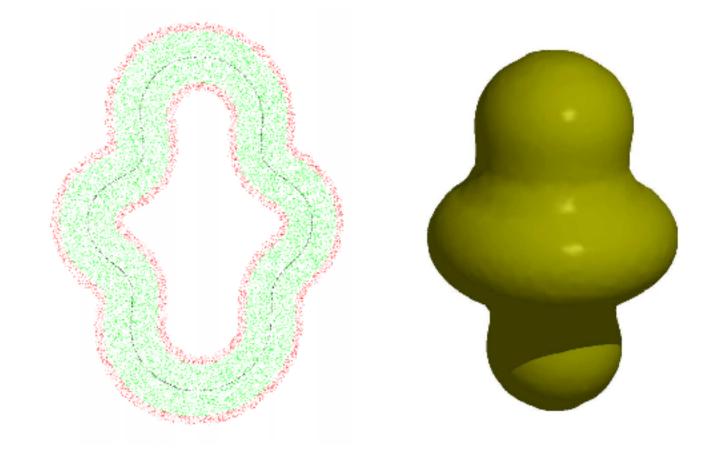
Level Sets in Physical Simulation Level set encodes distance to air-liquid boundary:

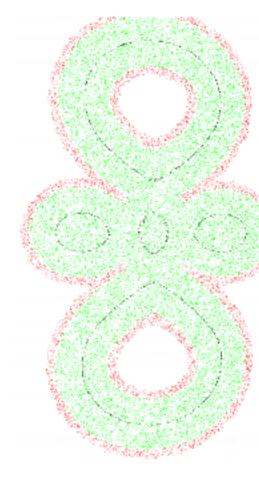


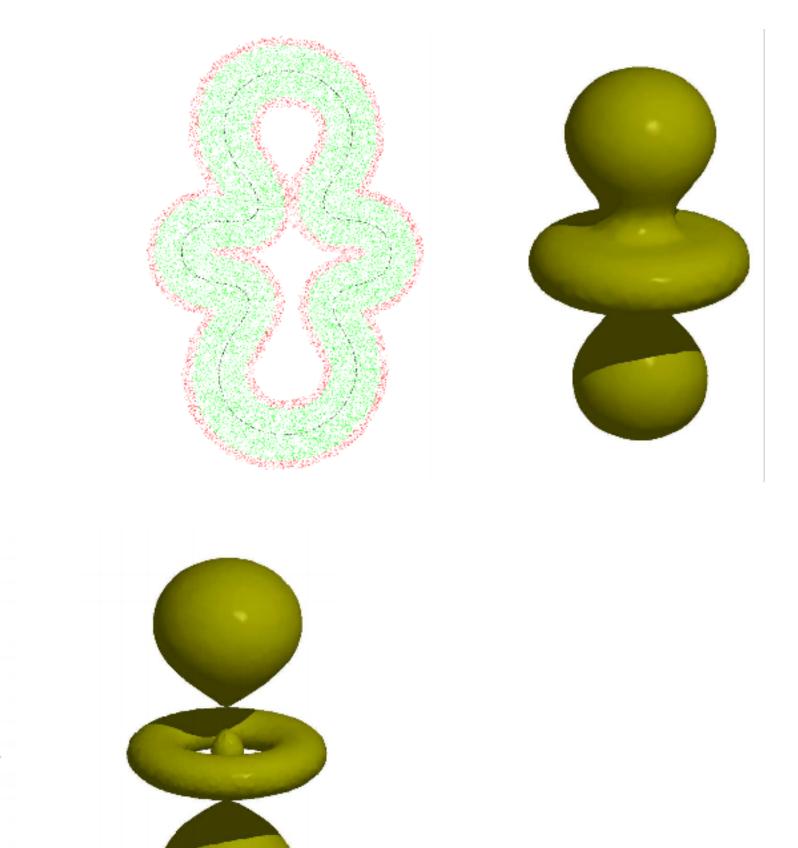
see http://physbam.stanford.edu

Level Set Storage

Drawback: storage for 2D surface is now O(n³) Can reduce cost by storing only a narrow band around surface:

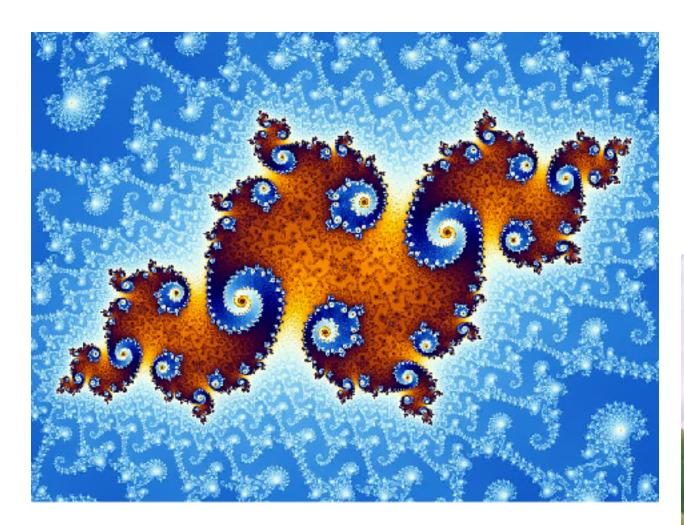






Fractals (Implicit)

New "language" for describing natural phenomena Hard to control shape!

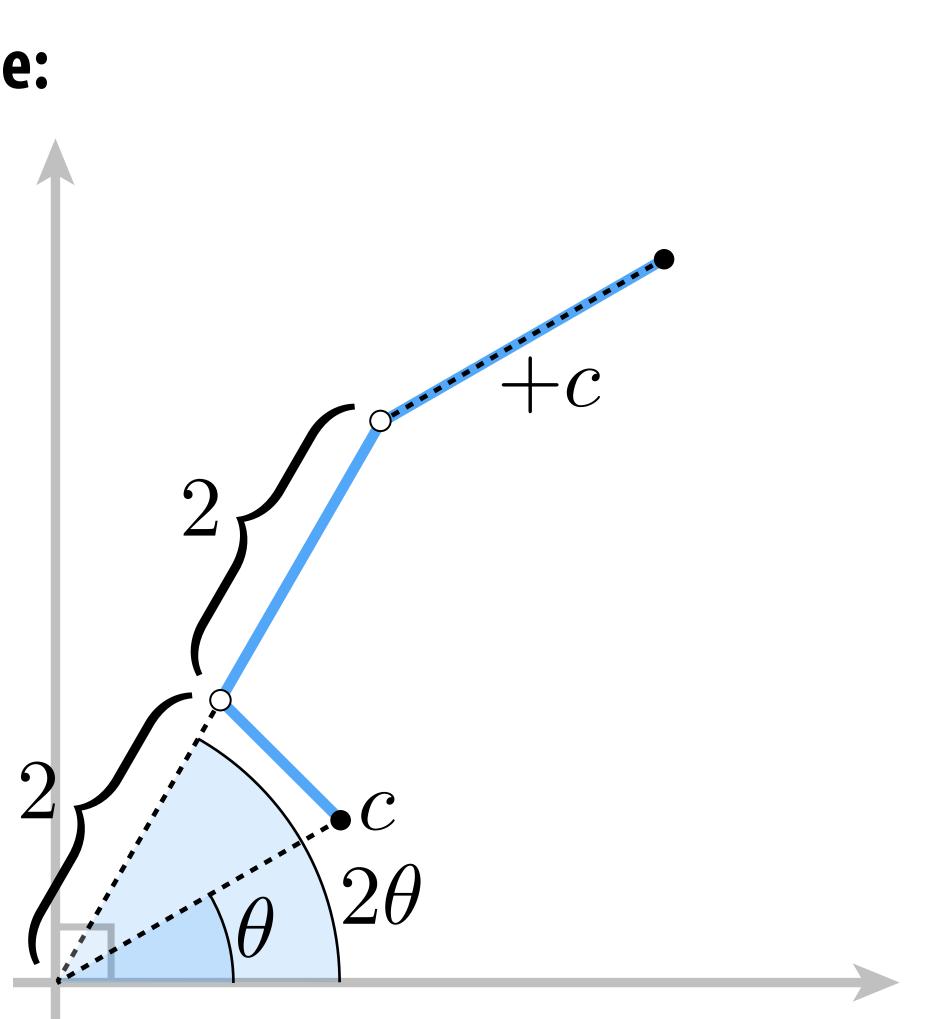


No precise definition; exhibit self-similarity, detail at all scales

Mandelbrot Set - Definition

For each point *c* in the plane:

- double the angle
- square the magnitude
- add the original point *C*
- repeat
- **Complex version:**
 - **Replace** z with $z^2 + c$
 - repeat

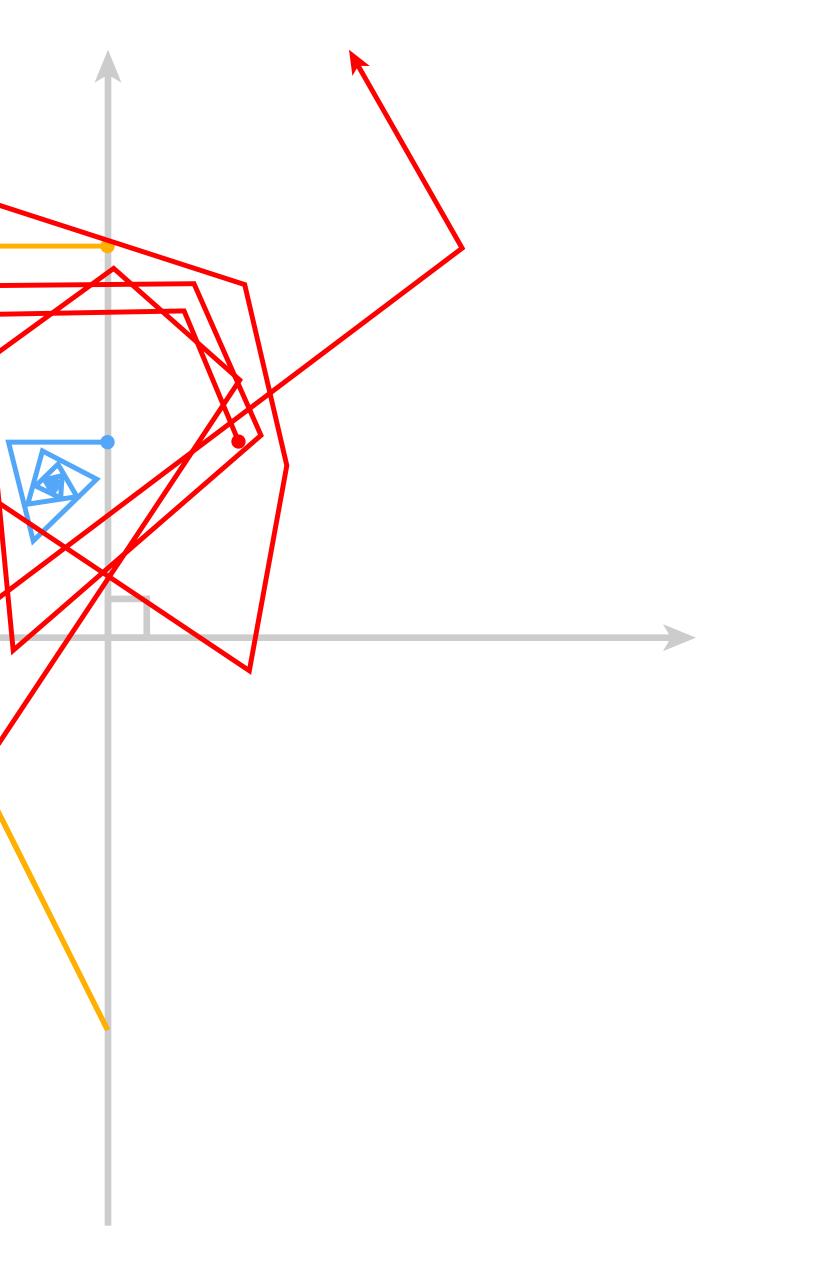


If magnitude remains bounded (never goes to ∞), it's in the Mandelbrot set.

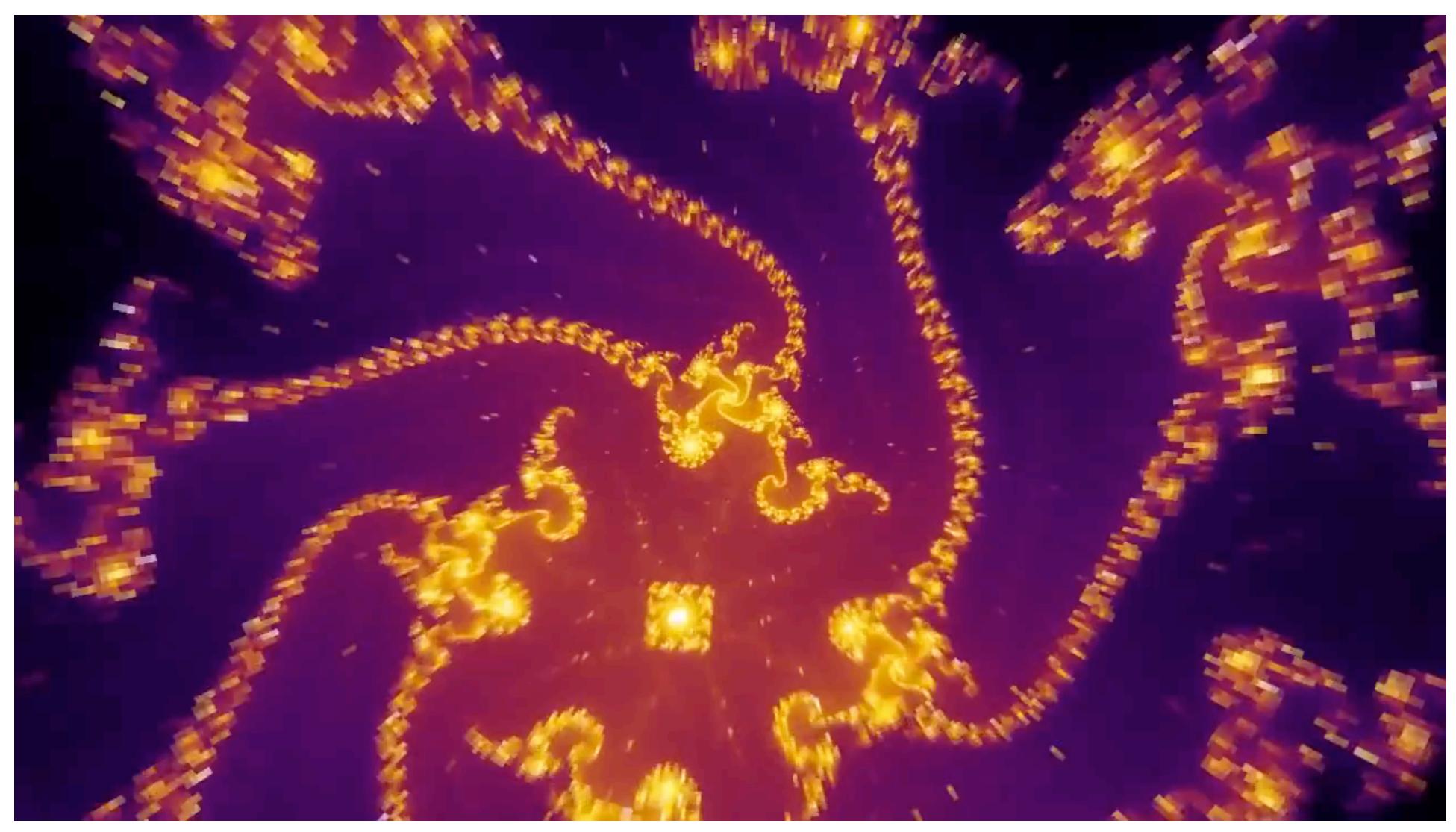
Mandelbrot Set - Examples

starting point

(0, 1/2) (converges) (0, 1) (periodic) (1/3, 1/2) (diverges)

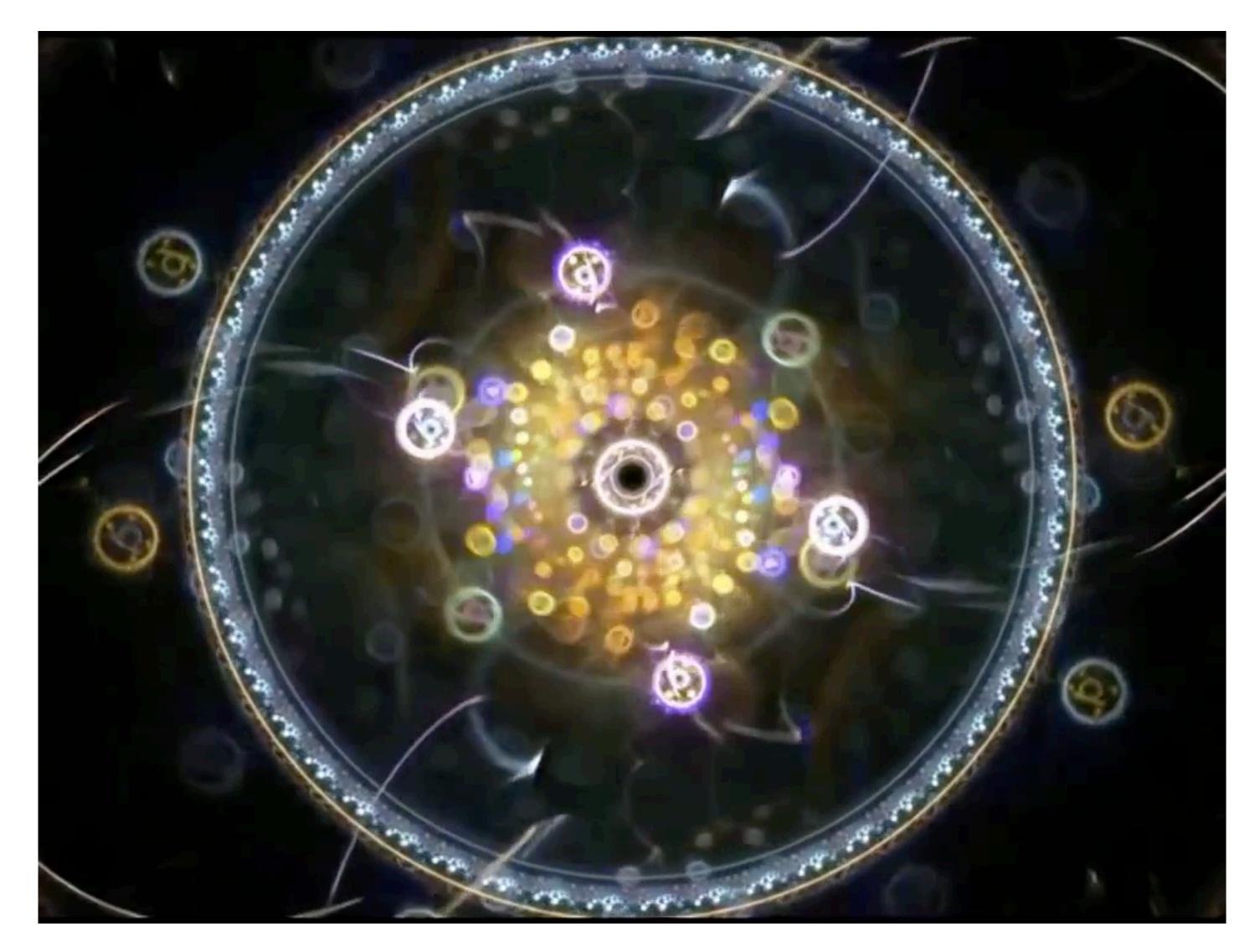


Mandelbrot Set - Zooming In



(Colored according to how quickly each point diverges/converges.)

Iterated Function Systems



Scott Draves (CMU alumn) - see <u>http://electricsheep.org</u>

Implicit Representations - Pros & Cons

■ Pros:

- description can be very compact (e.g., a polynomial) - easy to determine if a point is in our shape (just plug it in!) - other queries may also be easy (e.g., distance to surface) - for simple shapes, exact description/no sampling error - easy to handle changes in topology (e.g., fluid)

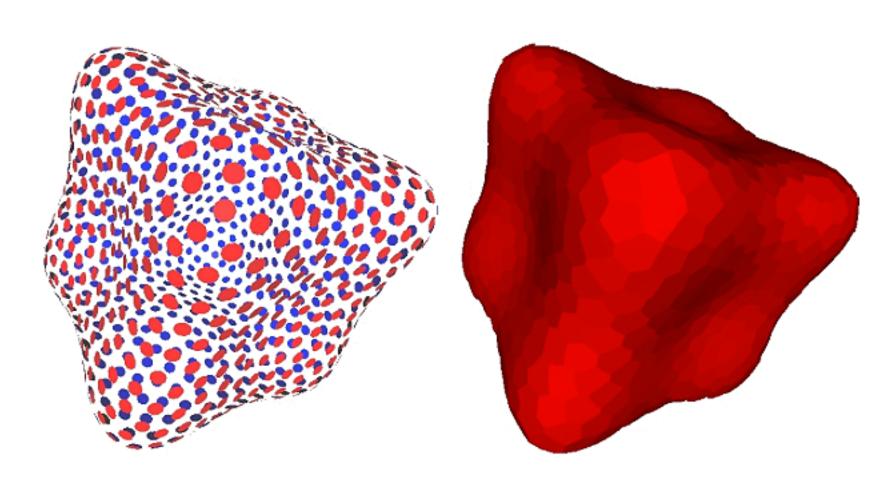
■ Cons:

- expensive to find all points in the shape (e.g., for drawing)
- - very difficult to model complex shapes

What about explicit representations?

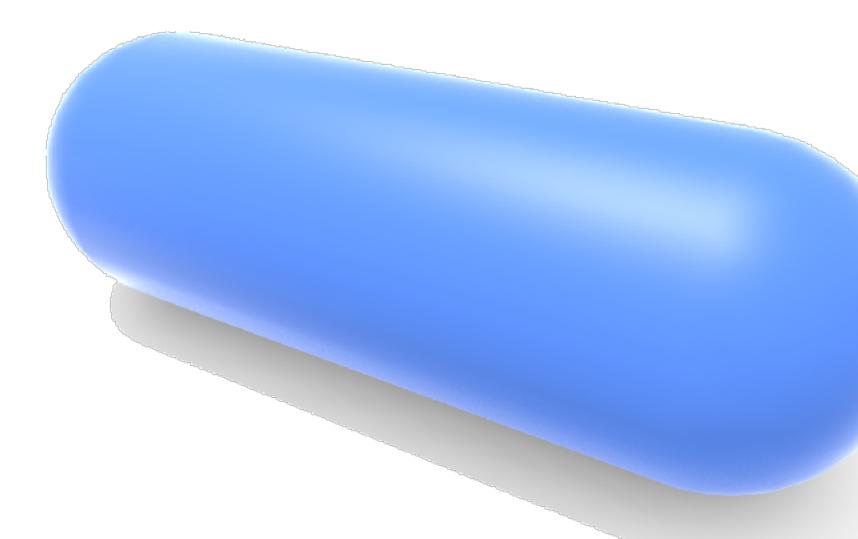
Point Cloud (Explicit)

- **Easiest representation: list of points (x,y,z)**
- Often augmented with *normals*
- **Easily represent any kind of geometry**
- Easy to draw dense cloud (>>1 point/pixel) Hard to interpolate undersampled regions Hard to do processing / simulation / ...



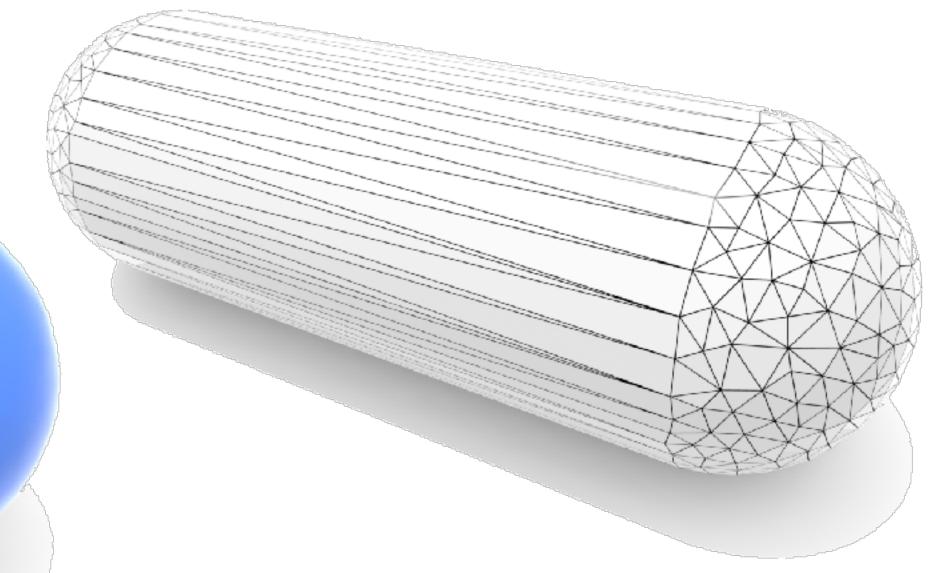
Polygon Mesh (Explicit)

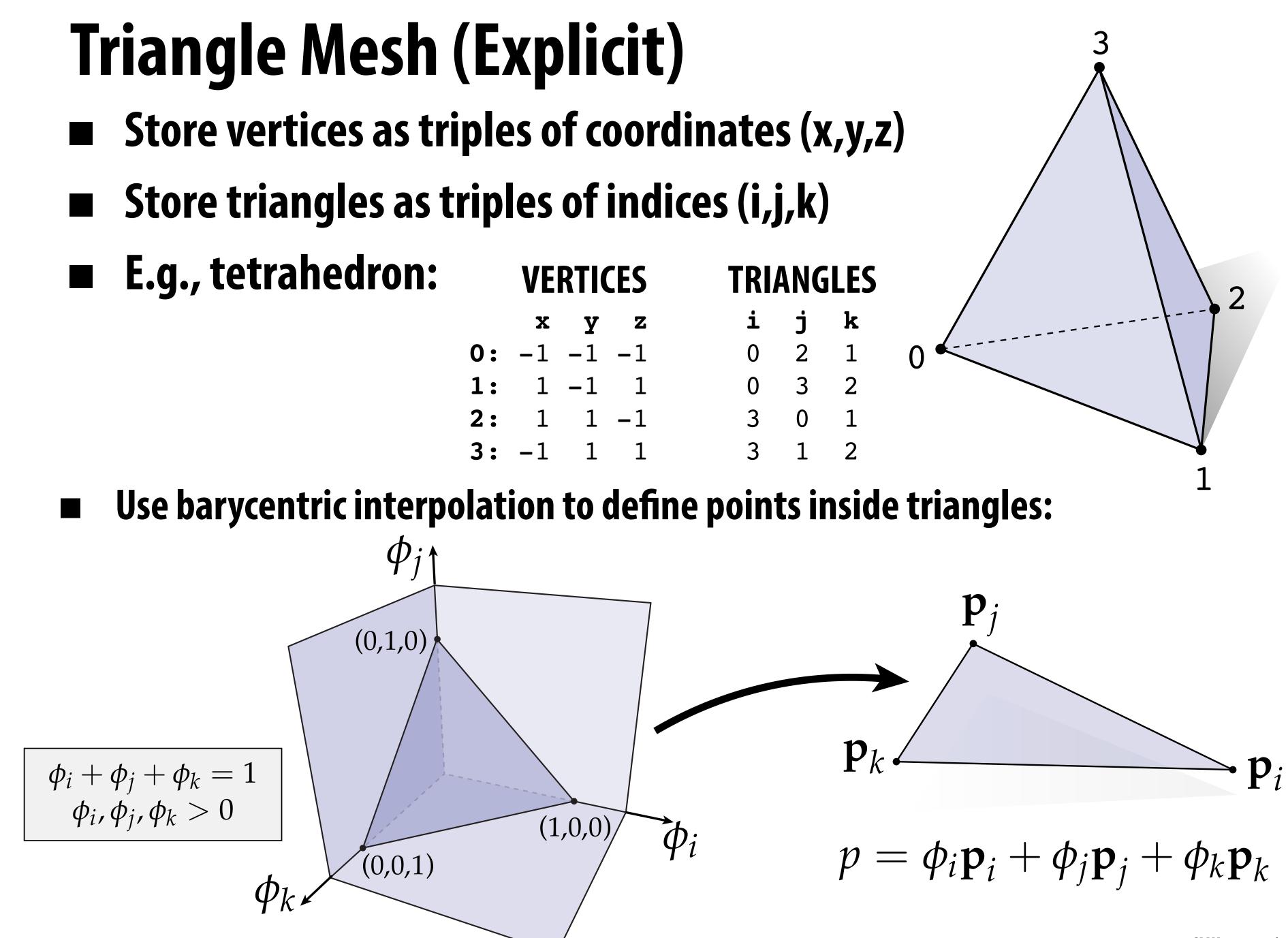
- Easier to do processing/simulation, adaptive sampling
- More complicated data structures
- Irregular neighborhoods



(Much more about polygon meshes in upcoming lectures!)

Store vertices and polygons (most often triangles or quads)

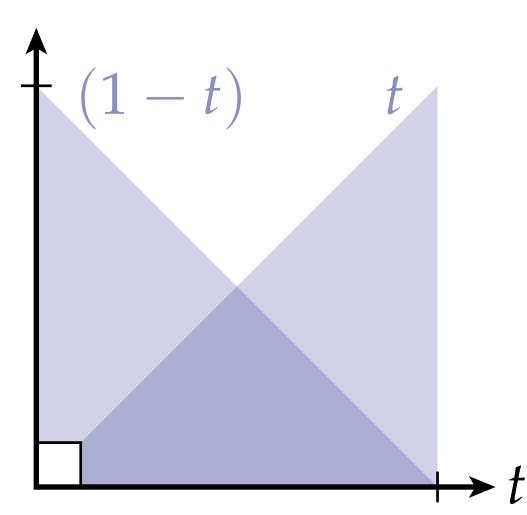




Recall: Linear Interpolation (1D)

Interpolate values using *linear interpolation*; in 1D:

Can think of this as a linear combination of two functions:



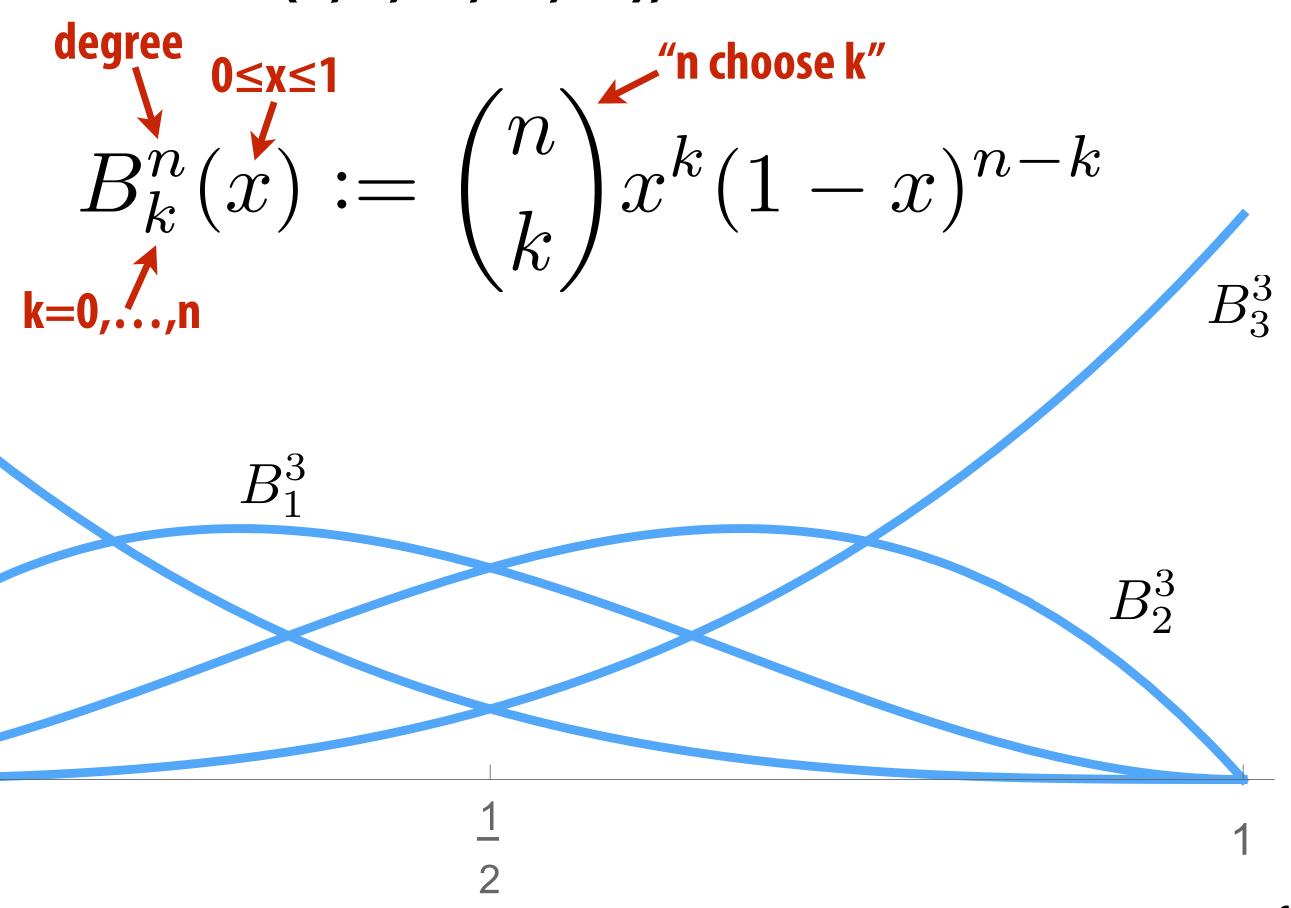
Why limit ourselves to <u>linear</u> basis functions? Can we get more interesting geometry with other bases?

 $\hat{f}(t) = (1-t)f_i + tf_j$

Bernstein Basis

Instead of usual basis (1, x, x², x³, ...), use Bernstein basis: B_{0}^{3} <u>1</u> 2 B_{1}^{3}

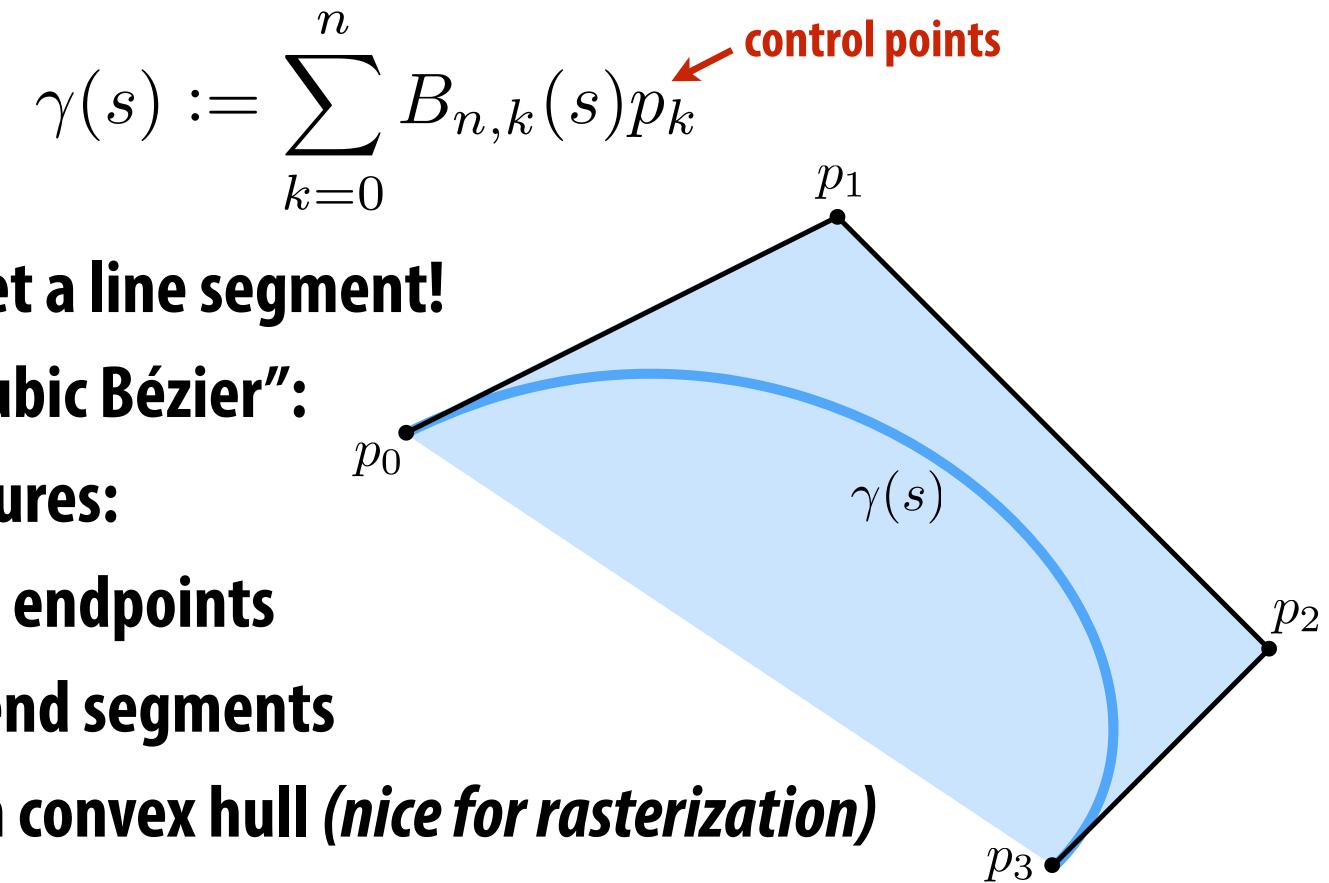
Linear interpolation essentially uses 1st-order polynomials Provide more flexibility by using higher-order polynomials



Bézier Curves (Explicit)

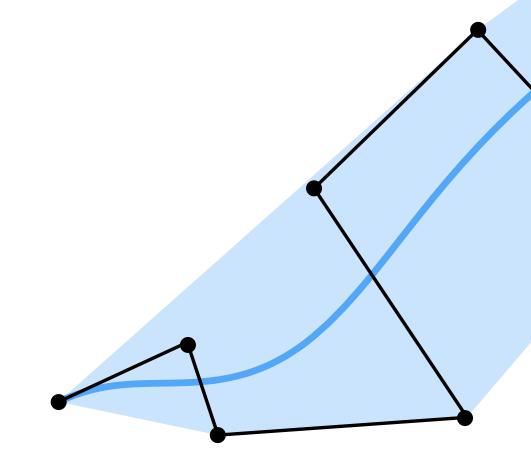
A Bézier curve is a curve expressed in the Bernstein basis:

- For n=1, just get a line segment!
- For n=3, get "cubic Bézier":
- **Important features:**
 - 1. interpolates endpoints
 - 2. tangent to end segments
 - 3. contained in convex hull (*nice for rasterization*)

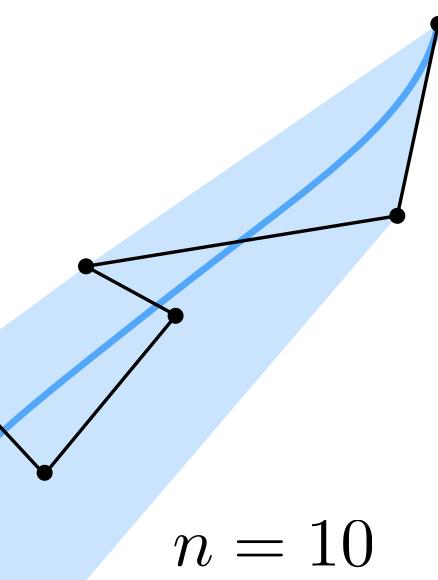


Just keep going...?

What if we want an even more interesting curve?



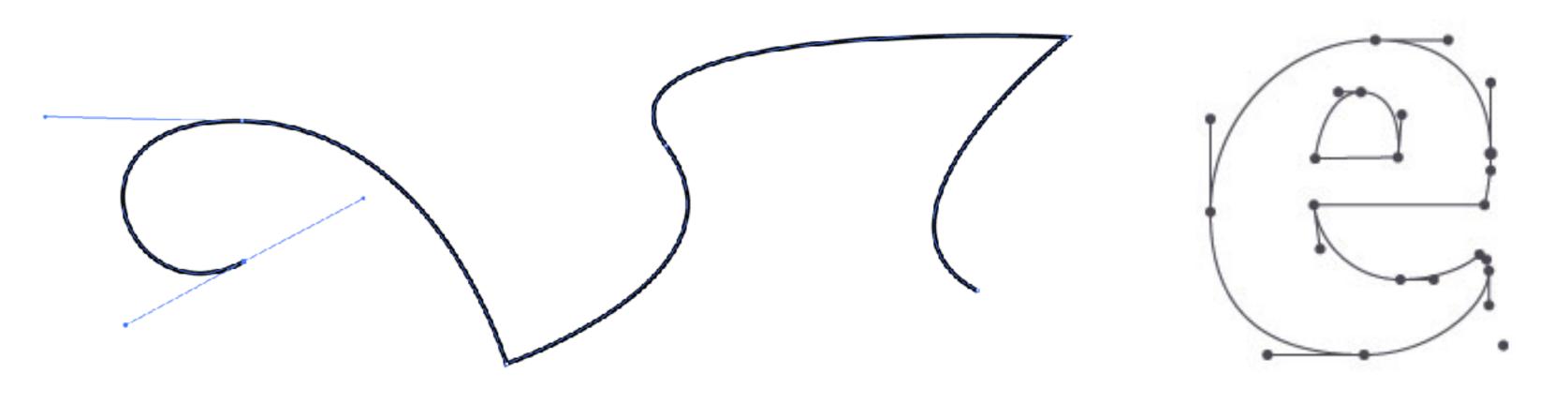
High-degree Bernstein polynomials don't interpolate well:



Very hard to control!

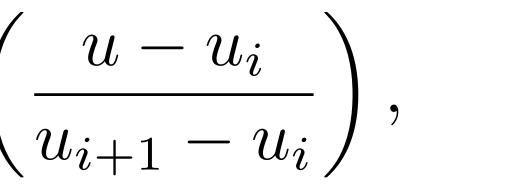
Piecewise Bézier Curves (Explicit)

Alternative idea: piece together many Bézier curves Widely-used technique (Illustrator, fonts, SVG, etc.)



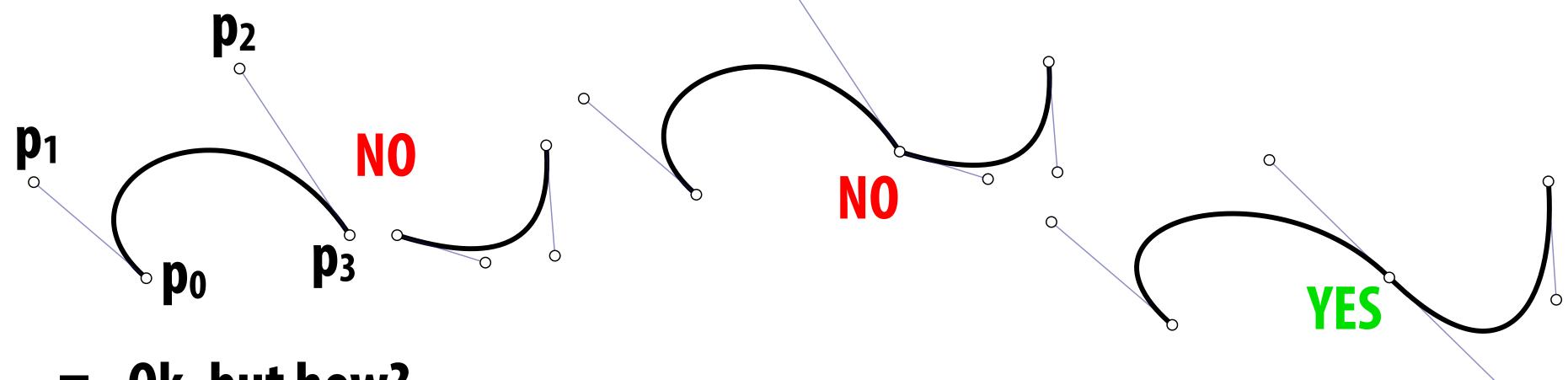
Formally, piecewise Bézier curve:

piecewise Bézier $\gamma(u) := \gamma_i$ $/ \quad \setminus u_{i+1} - u_i /$ single Bézier



 $u_i \le u < u_{i+1}$

Bézier Curves — tangent continuity

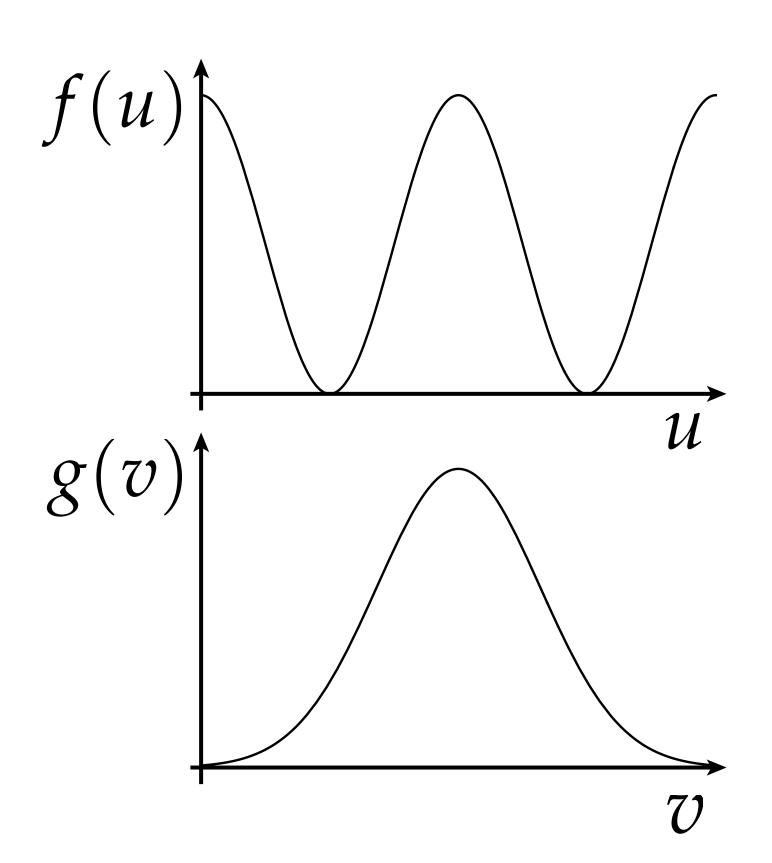


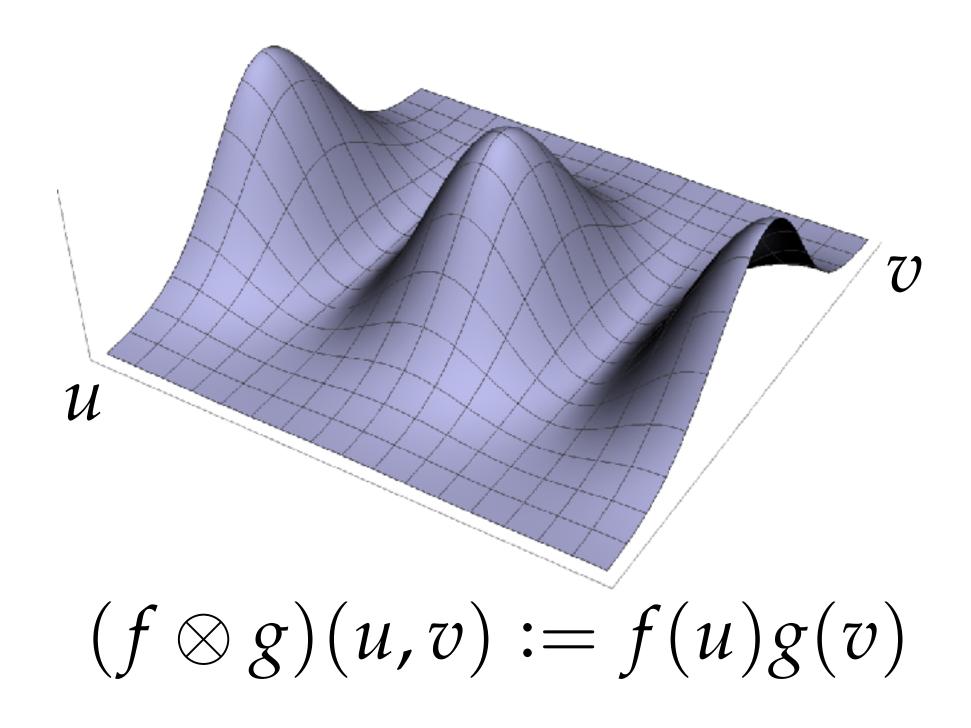
- **Ok**, but how?
- Each curve is cubic: $u^{3}p_{0} + 3u^{2}(1-u)p_{1} + 3u(1-u)^{2}p_{2} + (1-u)^{3}p_{3}$
- Want endpoints of each segment to meet
- Want tangents at endpoints to meet
- Q: Could you do this with quadratic Bézier? Linear Bézier?

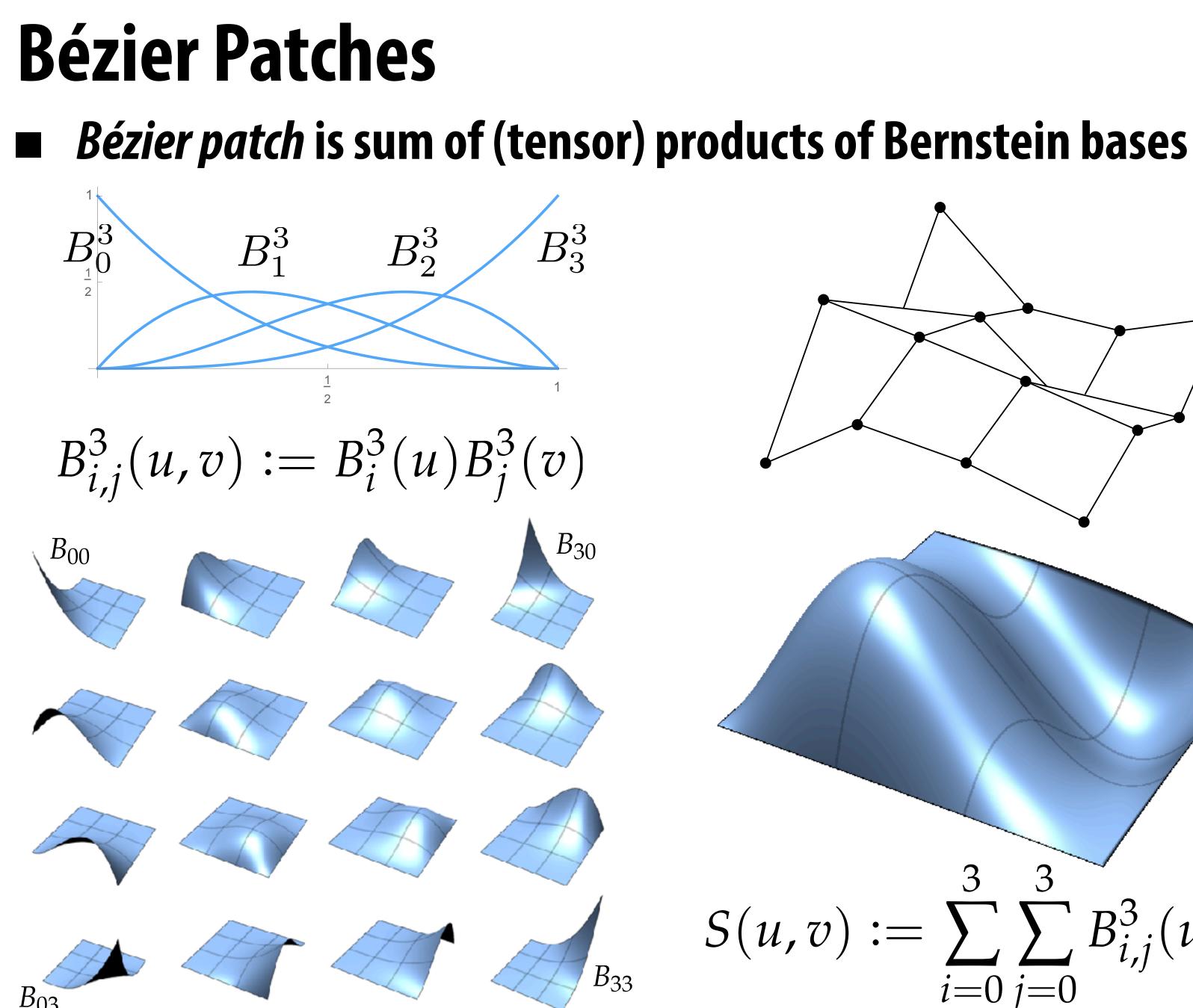
To get "seamless" curves, need points and tangents to line up:

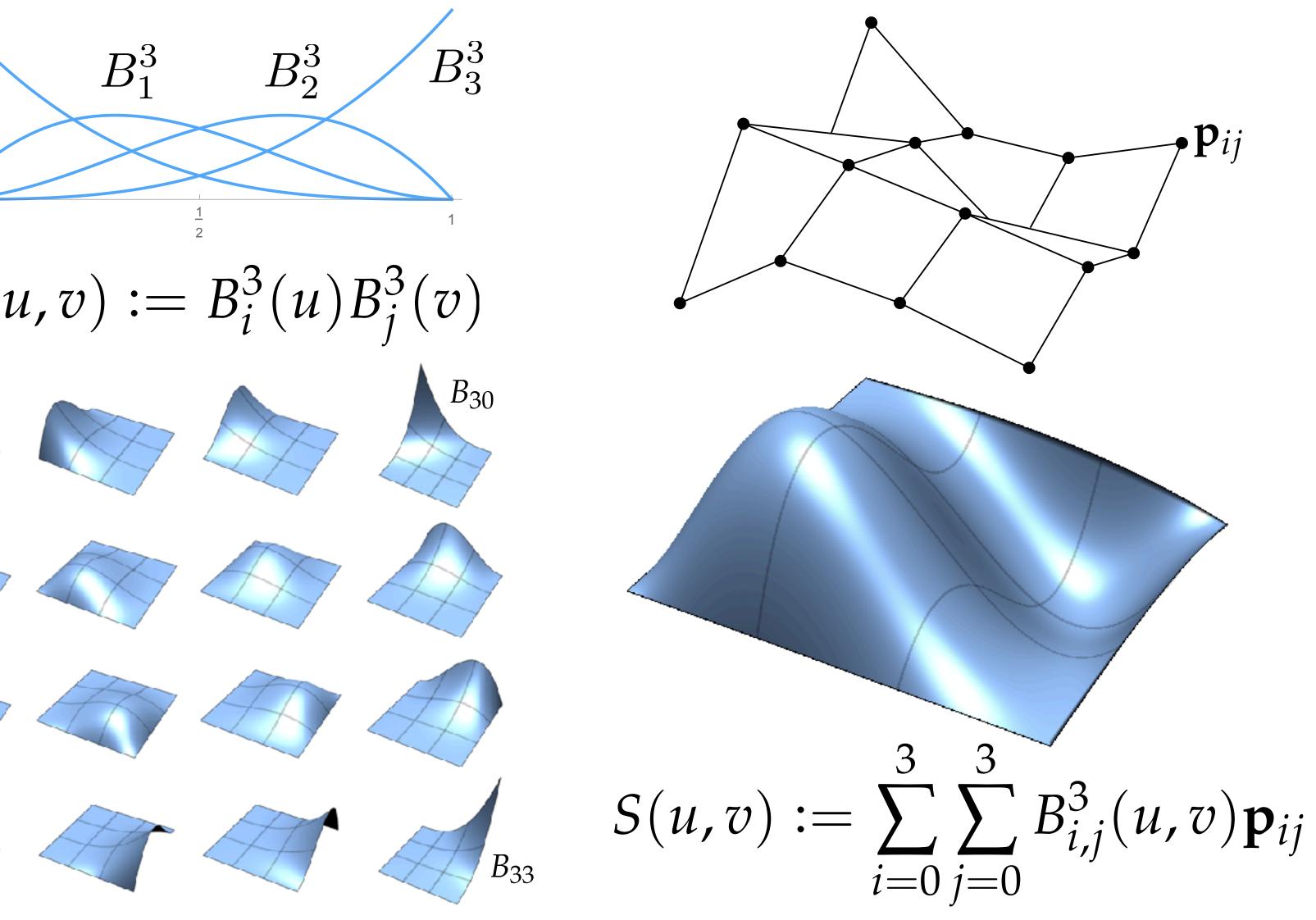
Tensor Product

Can use a pair of curves to get a surface Value at any point (u,v) given by product of a curve f at u and a curve g at v (sometimes called the *"tensor product"*):







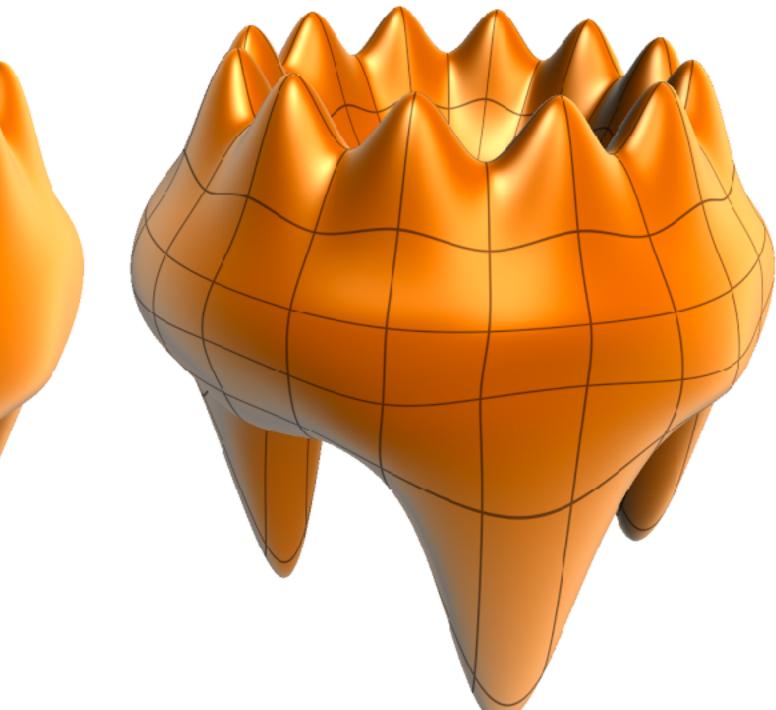


Bézier Surface

to get a surface:

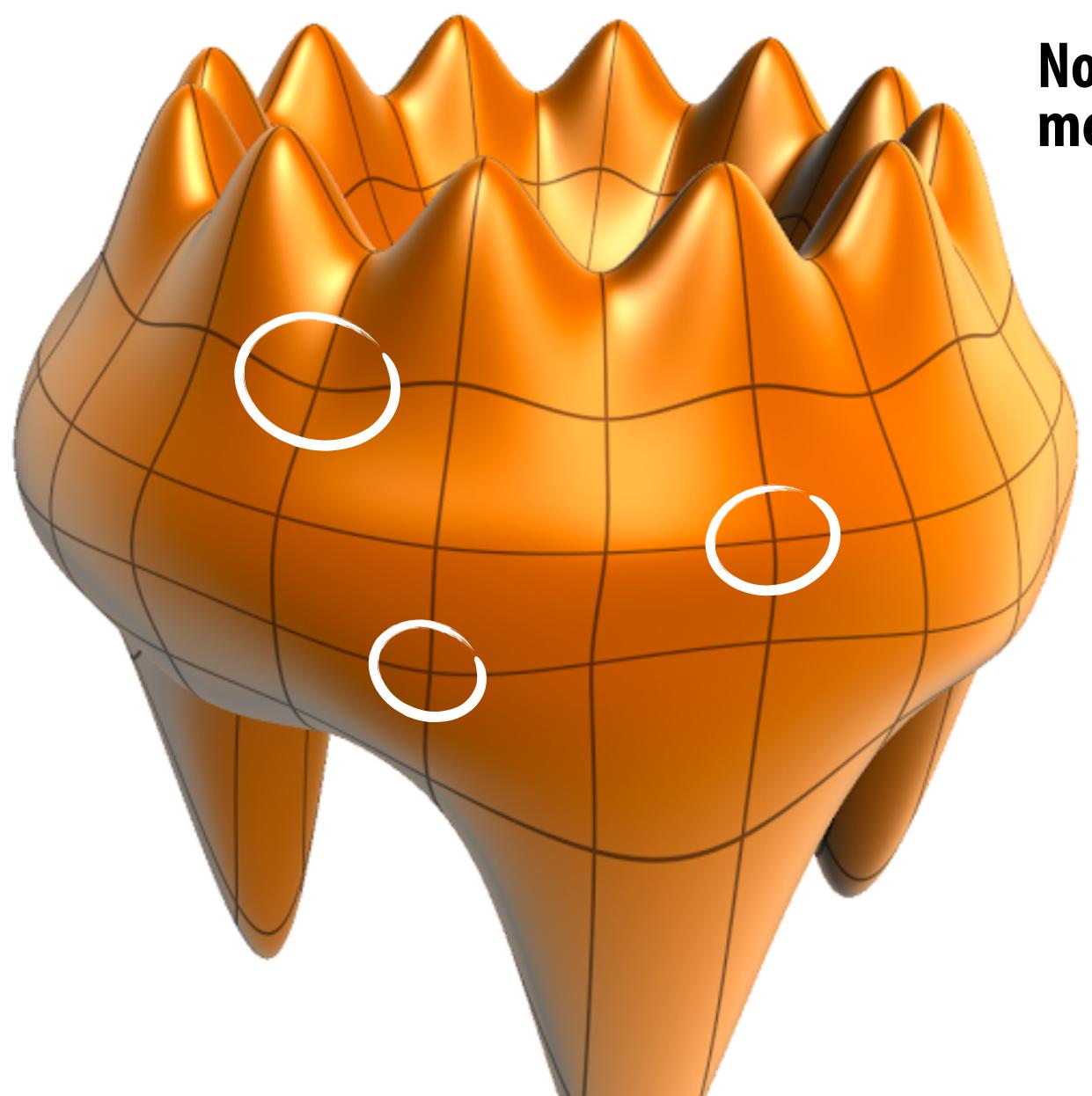
Very easy to draw: just dice each patch into regular (u,v) grid! **Q: Can we always get tangent continuity?** (Think: how many constraints? How many degrees of freedom?)

Just as we connected Bézier *curves*, can connect Bézier *patches*



Notice anything fishy about the last picture?

Bézier Patches are Too Simple



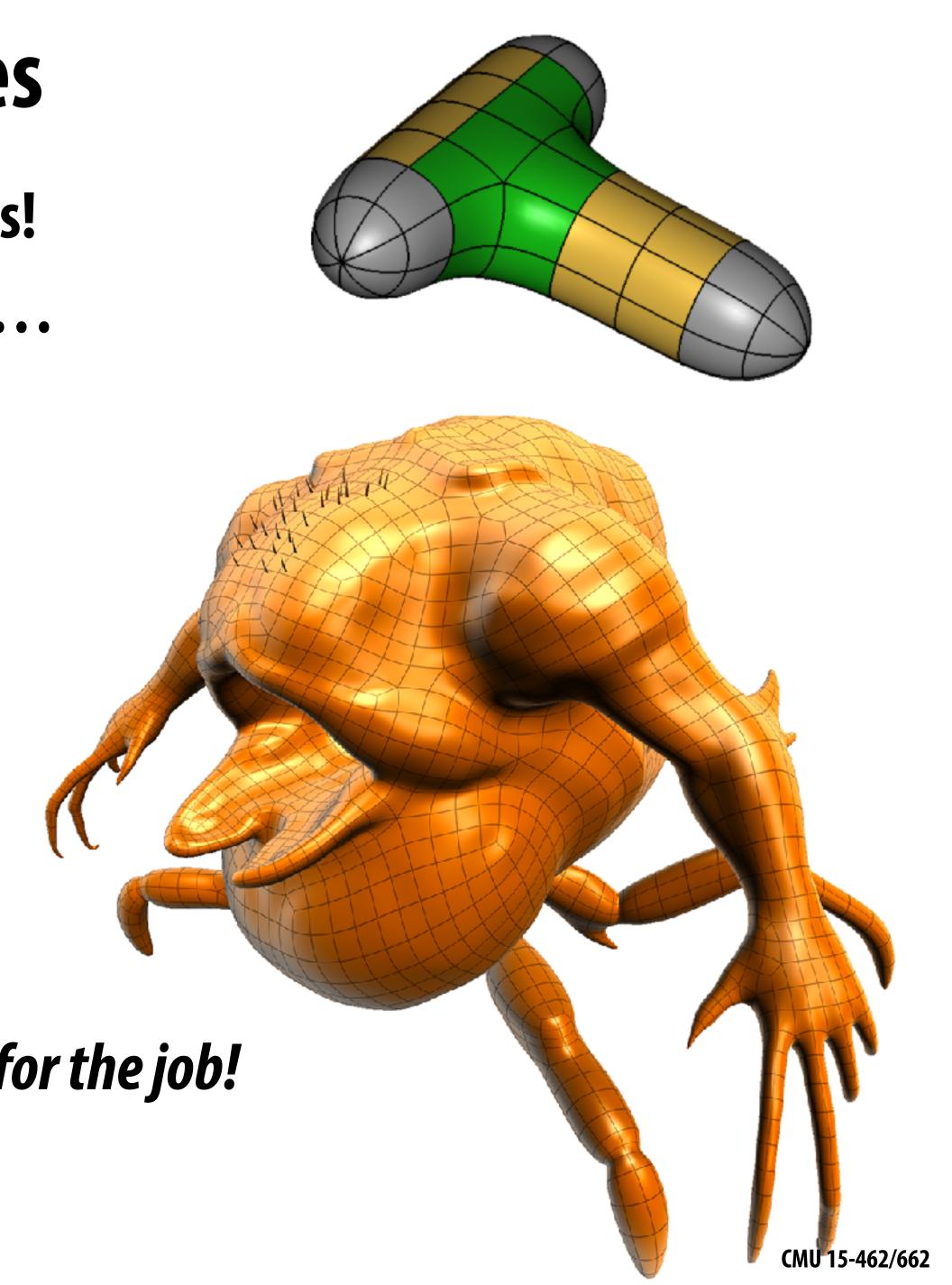
Notice that exactly four patches meet around *every* vertex!

In practice, far too constrained.

To make interesting shapes (with good continuity), we need patches that allow more interesting connectivity...

Spline patch schemes

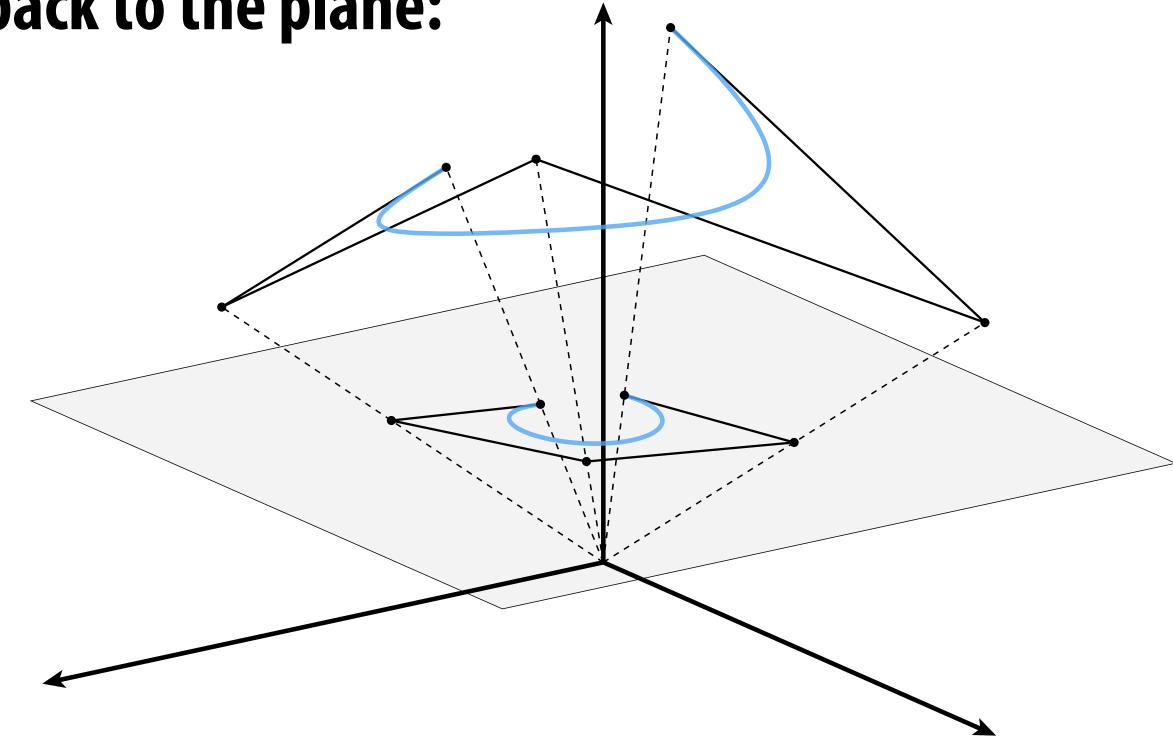
- There are many alternatives!
- NURBS, Gregory, Pm, polar...
- Tradeoffs:
 - degrees of freedom
 - continuity
 - difficulty of editing
 - cost of evaluation
 - generality
- As usual: pick the right tool for the job!



Rational B-Splines (Explicit)

Bézier can't exactly represent *conics*—not even the circle! Solution: interpolate in homogeneous coordinates, then

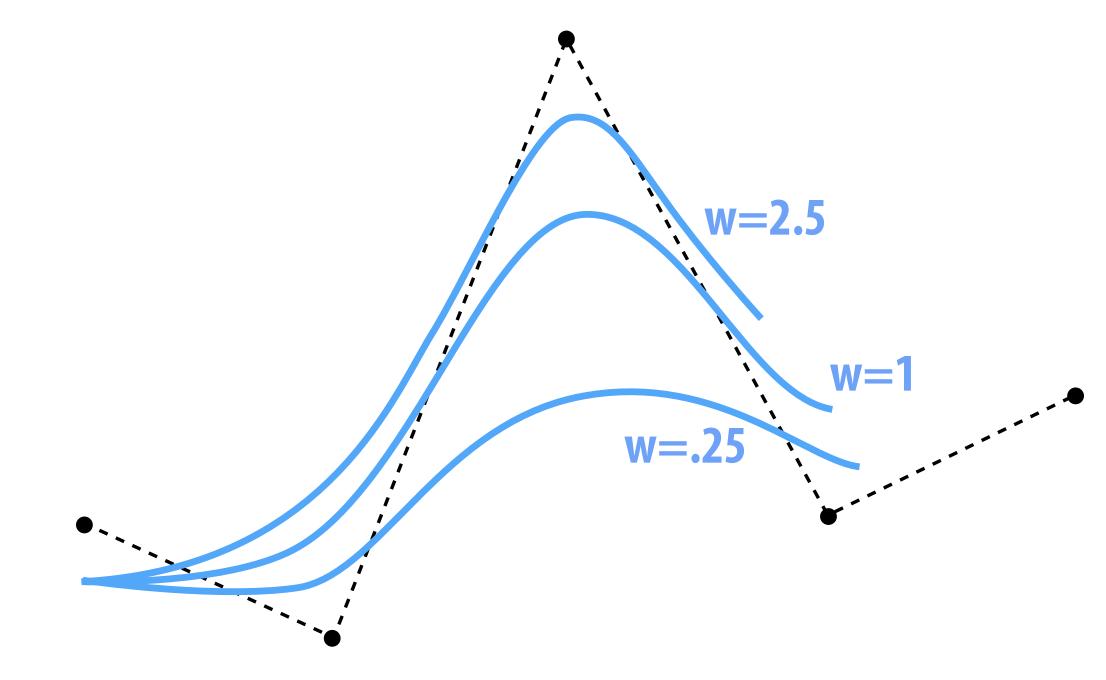
Solution: interpolate in homogeneous coordinates, then project back to the plane:



Result is called a *rational* B-spline.

NURBS (Explicit)

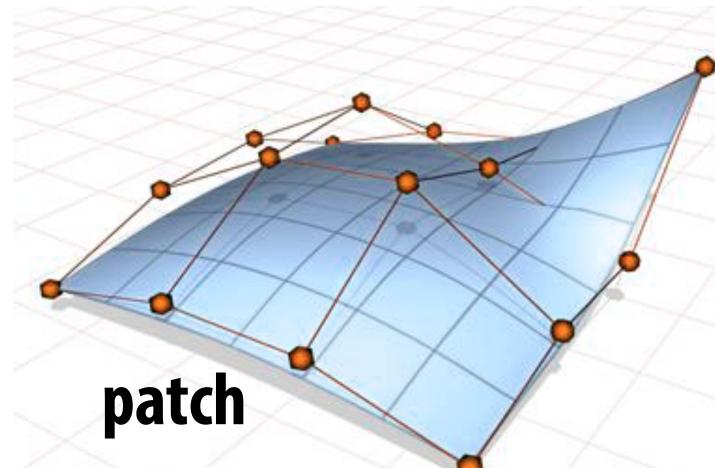
- (N)on-(U)niform (R)ational (B)-(S)pline
 - knots at arbitrary locations (non-uniform)
 - expressed in homogeneous coordinates (rational)
 - piecewise polynomial curve (B-Spline)
- Homogeneous coordinate w controls "strength" of a vertex:



NURBS Surface (Explicit)

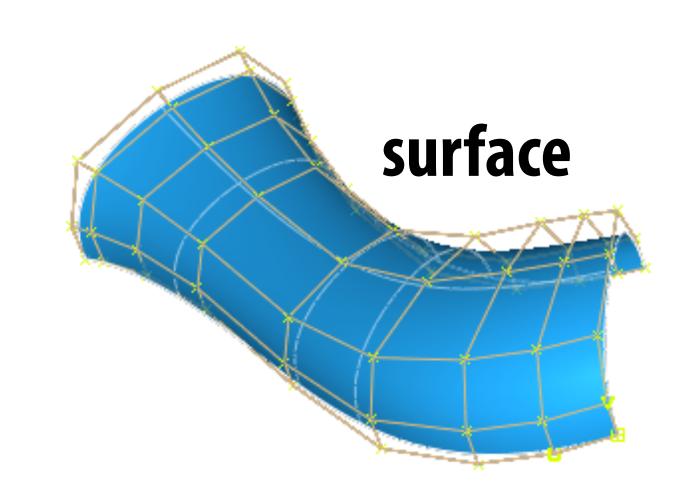
How do we go from curves to surfaces? Use *tensor product* of NURBS curves to get a patch:

Multiple NURBS patches form a surface



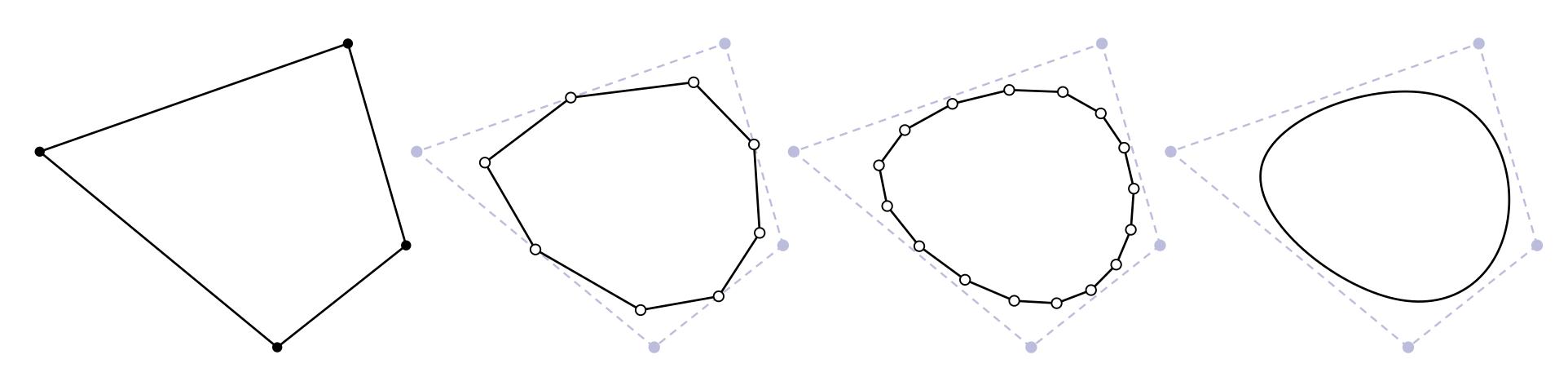
Pros: easy to evaluate, exact conics, high degree of continuity Cons: Hard to piece together patches / hard to edit (many DOFs)

- $S(u,v) := N_i(u)N_j(v)p_{ij}$



Subdivision

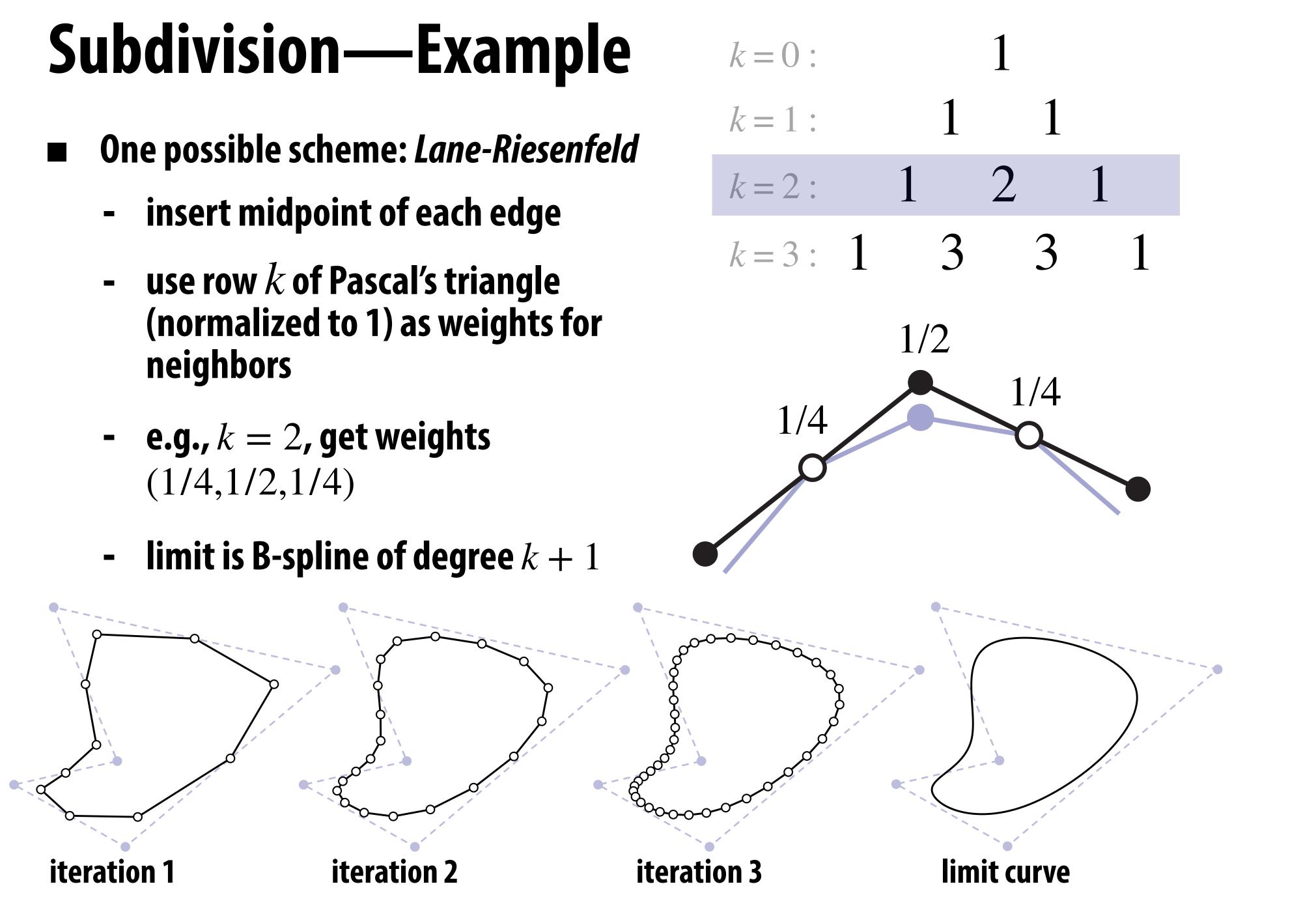
- Start with "control curve"
- Repeatedly split, take weighted average to get new positions
- For careful choice of averaging rule, approaches nice limit curve
- Often exact same curve as well-known spline schemes!



Alternative starting point for curves/surfaces: *subdivision*

Q: Is subdivision an explicit or implicit representation?

- - neighbors
 - (1/4, 1/2, 1/4)



Subdivision Surfaces (Explicit)

- Start with coarse polygon mesh ("control cage")
- Subdivide each element
- Update vertices via local averaging
- Many possible rules:
 - *Catmull-Clark* (quads)
 - Loop (triangles)
- **Common issues:**
 - interpolating or approximating?
 - continuity at vertices?
- Widely used in practice (2019 Academy Awards!)

Easier than splines for modeling; harder to evaluate pointwise

Subdivision in Action (Pixar's "Geri's Game")

see: de Rose et al, "Subdivision Surfaces in Character Animation"

Next time: Curves, Surfaces, & Meshes

