Depth and Transparency

Computer Graphics
(MU 15-462/15-662

Today: Wrap up the rasterization pipeline!

Remember our goal:
- Start with INPUTS (triangles)
—possibly w/ other data (e.g., colors or texture coordinates)
» Apply a series of transformations: STAGES of pipeline
» Produce OUTPUT (final image)

INPUT RASTERIZATION OUTPUT
(TRIANGLES) PIPELINE (BITMAP IMAGE)

ERTICES

14

OQwpr g
N e)

T
(
2 (
(
(

e e
N N S e
N N N N
| |

= e
D I . B |
[

N =
D I . B |

b @ H4HH

’r—

| I
N =
N S S e

1,
1,
1,
1,
S

TRIANGLE
EHF, GFH, FGB, CBG,
GHC, DCH, ABD, CDB,
HED, ADE, EFA, BAF

(MU 15-462/662

What we know how to do so far...

_ e LAV

% . = I VAN

% ® o ls} o o o il aQ

(0, 0) e o o o o o o o
position objects in the world project objects onto the screen sample triangle coverage

(3D transformations) (perspective projection) (rasterization)
. om :
put samples into frame buffer sample texture maps interpolate vertex attributes
(depth & alpha) (filtering, mipmapping) (barycentric coodinates)

(MU 15-462/662

Occlusion

(MU 15-462/662

Occlusion: which triangle is visible at each

covered sample point?

50% transparent triangles

Opaque Triangles

CMU 15-462/662

Sampling Depth

Assume we have a triangle given by:
— the projected 2D coordinates (.x;, y;) of each vertex

— the “depth” d; of each vertex (i.e., distance from the viewer)

(xi/ yl) d;

(K, Vi)
(%), yj) o

screen

Q: How do we compute the depth d at a given sample point (x, y)?

A: Interpolate it using barycentric coordinates—just like any
other attribute that varies linearly over the triangle

(MU 15-462/662

The depth-buffer (Z-buffer)

For each sample, depth-buffer stores the depth of the triangle seen so far

O O O O O O O O O far

near

Initialize all depth buffer values to “infinity” (max value)

(MU 15-462/662

Depth buffer example

near ‘far

(MU 15-462/662

Example: rendering three opaque triangles

Occlusion using the depth-buffer (Z-buffer)

Processing yellow triangle:

depth=0.5

O O O

O O O

Color buffer contents

O

O

O

O

O

O

near [T

@ —sample passed depth test

O O O

O O O

O

O

O

O

O

O

Depth buffer contents

far

(MU 15-462/662

Occlusion using the depth-buffer (Z-buffer)

After processing yellow triangle:

O O O

O O O

Color buffer contents

O

O

O

O

O

O

O

O

near [T

@ —sample passed depth test

O O O

O O O

O

O

O

O

O

O

Depth buffer contents

far

(MU 15-462/662

Occlusion using the depth-buffer (Z-buffer)

Processing blue triangle: near far
depth =0.75

@ —sample passed depth test

O O O O O O O O O O O O O O O O O O
O O O O O O O O O O
O O O O O O O O O O
O O O O O O o O
O O O O O O o O
O O O O o o

O O O O O O O O O O O

O O O O O O O O O O O O O O O O O O

Color buffer contents Depth buffer contents

CMU 15-462/662

Occlusion using the depth-buffer (Z-buffer)

After processing blue triangle:

O O O

Color buffer contents

O

O

O

O

O

O

near [T

@ —sample passed depth test

O O
O O
O O
O O
O
O

®
O O

O

O

O

O

O

O

O

O

Depth buffer contents

far

(MU 15-462/662

Occlusion using the depth-buffer (Z-buffer)

Processing red triangle:

depth =0.25

O ® ®

O O O

Color buffer contents

O

O

O

O

O

O

O

O

near [T

@ —sample passed depth test

O O
O O
O O
O O
O

O

O O

Depth buffer contents

far

(MU 15-462/662

Occlusion using the depth-buffer (Z-buffer)

After processing red triangle:

O O O

Color buffer contents

O

O

O

O

O

O

near [T

@ —sample passed depth test

O O
O O
O O
O O
O
O

®
O O

O

O

O

O

O

O

O

O

Depth buffer contents

far

(MU 15-462/662

Occlusion using the depth buffer

bool pass depth test(dl, d2)
!

return dl < d2;

}

draw sample(x, y, d, c)

{
if(pass depth test(d, zbuffer[x][y]))
{
zbuffer[x][y] = d;
color[x][y] = cC;
}

(MU 15-462/662

Depth + Intersection

Q: Does depth-buffer algorithm handle interpenetrating surfaces?
A: Of course!
Occlusion test is based on depth of triangles at a given sample point.

Relative depth of triangles may be different at different sample points.

Green triangle in
front of yellow
triangle

Yellow triangle in
front of green
triangle

CMU 15-462/662

Intersection

Q: Does depth-buffer algorithm handle interpenetrating surfaces?
A: Of course!

Occlusion test is based on depth of triangles at a given sample point.
Relative depth of triangles may be different at different sample points.

Green triangle in

front of yellow \
triangle
Yellow triangle in —

front of green
triangle

(MU 15-462/662

Depth + Supersampling

Q: Does depth buffer work with super sampling? A:Yes! If done per (super) sample.

(Here: green triangle occludes yellow triangle)

CMU 15-462/662

Depth + Supersampling

Color of super samples after rasterizing w/ depth buffer

(MU 15-462/662

Color buffer contents (4 samples per pixel)

Final resampled result

Note anti-aliasing of edge due to filtering of green and yellow samples

CMU 15-462/662

Summary: occlusion using a depth buffer

B Store one depth value per (super) sample—not one per pixel!

- Hence, constant space for depth buffer
- Doesn’t depend on number of overlapping primitives!

- Read-modify write of depth buffer if “pass” depth test
- Just a read if “fail”

m Not specific to triangles: only requires that surface depth can be
evaluated at a screen sample point

But what about semi-transparent surfaces?

(MU 15-462/662

Compositing

(MU 15-462/662

Representing opacity as alpha

An“alpha”value 0 < a < 1 describes the opacity of an object

fully opaque

a=3/4

a=1/2

a=1/4

a=~0
fully transparent

(MU 15-462/662

Alpha channel of an image

color channels o channel

Key idea: can use o channel to composite one image on top of another.

(MU 15-462/662

Fringing

Poor treatment of color/alpha can yield dark “fringing”:

i ST <k —
A P - 5 9
N 8 \ & G
O o
o "f:_;";'x 3
% o
N
et

.”Zl' ‘ ‘

W g’»it‘,’.ﬁu\j SR

T
i THNACYS
A

ATANTNN
% Wl ‘}.\}'*\‘ N

foreground alpha background color
~—— Ayl B S LN XL o — 0 v/

" i
P m, , 4 W
\ ’ B

! o
b .
-. . X o v
2
f
G

(MU 15-462/662

No fringing

CMU 15-462/662

CMU 15-462/662

Is happen?)

(...why does th

Inging

Fr

Over operator:

Composites image B with opacity r; over image A with opacity o,

Informally, captures behavior of “tinted glass”

Notice: “over” is not commutative
A over B #= B over A

B OverA A overB

Koala over NY(
Porter & Duff "Compositing Digital Images” (1984) CMU 15-462/662

Over operator: non-premultiplied alpha

Composite image B with opacity o, overimage A with opacity o,

A first attempt:
B A
A — (Al”’ Ag9 Ab)
b = (B,, B,, By) BoverA

Composite color:

C=azB+ (1 —ap)a,A

Composite alpha:

(MU 15-462/662

Over operator: premultiplied alpha

Composite image B with opacity o, overimage A with opacity o,

Premultiplied alpha—multiply color by o, then composite: A

B
A, — (OCAA,,, OCAAg, aAAb, aA)

B' = (azB,, aBBg, agB), ap) B over A
C'=B+ (1 —agA’

Notice premultiplied alpha composites alpha just like how it composites rgb.

(Non-premultiplied alpha composites alpha differently than rgb.)

“Un-premultiply” to get final color:

(C,, C,, Cyy ac) => (C,lac, C,lac, Cylac)

Q: Does this division remind you of anything?

(MU 15-462/662

Compositing with & without premultiplied o

Suppose we upsample an image w/ an o channel, then composite it onto a background:

image B
original original premultiplied
alpha color color

upsampled alpha upsampled color upsampled
premultlplled color

Q: Why do we get the
“green fringe” when
we don't premultiply?

new background A BoverA BoverA
(ay = 1) non-premultiplied premultiplied

(MU 15-462/662

Similar problem with non-premultiplied o

Consider pre-filtering (downsampling) a texture with an alpha matte

desired downsampled result

Y.
H*II B

input color input filtered color filtered composited over white
premultlplled premultlplled filtered color filtered composited over white

color CMU 15-462/662

More problems: applying “over” repeatedly

Composite image C with opacity o - over B with opacity a5 overimage A with opacity o,

Premultiplied alpha is closed under composition;

non-premultiplied alpha is not! 2 A
Example: composite 50% bright red over 50% bright red C
(where “brightred” = (1,0,0), anda = 0.5)
C over B over A
non-premultiplied premultiplied
S(1,0,0) + (1-.5).5(1,0,0) (.5,0,0,.5)+(1-.5)(.5,0,0,.5)
ii too dark! (-75,0,0-75)
(0.75,0,0) l}
bright red (1,(),0)
S+ (1-.5).5=.75

o=0.75

(MU 15-462/662

Summary: advantages of premultiplied alpha

m Compositing operation treats all channels the same (color and)

m Fewer arithmetic operations for “over” operation than with non-
premultiplied representation

B (losed under composition (repeated “over” operations)

m Better representation for filtering (upsampling/downsampling)
images with alpha channel

m Fits naturally into rasterization pipeline (homogeneous
coordinates)

(MU 15-462/662

Strategy for drawing semi-transparent primitives

Assuming all primitives are semi-transparent, and color values are encoded
with premultiplied alpha, here’s a strategy for rasterizing an image:

over(cl, c2)

{

return cl.rgba + (l-cl.a) * c2.rgba;

}

update color buffer(x, y, sample color, sample depth)

1
if (pass depth test(sample depth, zbuffer([x][y])

{

color[x][y] = over(sample color, color[x][Y]):;

}
}

Q: What is the assumption made by this implementation?
Triangles must be rendered in back to front order!

(MU 15-462/662

Putting it all together
What if we have a mixture of opaque and transparent triangles?

Step 1: render opaque primitives (in any order) using depth-buffered occlusion
If pass depth test, triangle overwrites value in color buffer at sample

Step 2: disable depth buffer update, render semi-transparent surfaces in back-to-front order.
If pass depth test, triangle is composited OVER contents of color buffer at sample

(MU 15-462/662

End-to-end rasterization pipeline

(MU 15-462/662

Goal: turn inputs into an image!

Inputs:

positions

}i

Object-to-camera-space transform /' €
Perspective projection transform P &

Size of outputimage (W, H)

v0x,
vlx,
V2X,
v3X,
vidx,
vb5Xx,

= {
vO0y,
vly,
v2y,
v3y,
vdy,
VY,

v0z,
vlx,
v2z,
v3X,
vdz,
vhx

texcoords ={

}i

vOu,
viu,
vau,
v3u,
vau,
vhu,

vOv,
viv,
vV,
v3v,
vav,
vhv

HQ4X4

HQ4X4

Let’s review!

R e

e R T Pt s o T mog P
= nErs

S 5 G gt s = ey : I

e U B ot o s i g T e G o s, = e

e e P T
val g -_._‘L_L,___’._J o]l e Y ‘;w“r_‘r;“l 2

T 03 B e e b

At this point we have all the tools we need to make an image...

(MU 15-462/662

Step 1:

Transform triangle vertices into camera space

(MU 15-462/662

Step 2:

Apply perspective projection transform to transform triangle vertices
into normalized coordinate space

X Pinhole

Camera

X6

Camera-space positions: 3D Normalized space positions

(MU 15-462/662

Step 3: clipping

B Discard triangles that lie complete outside the unit cube (culling)
- They are off screen, don't bother processing them further

® (lip triangles that extend beyond the unit cube to the cube
- (possibly generating new triangles)

Triangles before dipping Triangles after clipping
(MU 15-462/662

Step 4: transform to screen coordinates

Perform homogeneous divide, transform vertex xy positions from
normalized coordinates into screen coordinates (based on screen w,h)

(w, h)

(0,0)

(MU 15-462/662

Step 5: setup triangle (triangle preprocessing)

Before rasterizing triangle, can compute a bunch
of data that will be used by all fragments, e.q.,

- triangle edge equations
- triangle attribute equations

. efc.

(MU 15-462/662

sample coverage

Step 6

Evaluate attributes z, u, v at all covered samples

(MU 15-462/662

Step 6: compute triangle color at sample point

e.g., sample texture map *

O O O O O
u(x,y), v(x,y)
O O o O O

*Not the only way to get a color! Later we'll talk about more general models of materials... CMU 15-462/662

Step 7: perform depth test (if enabled)

Also update depth value at covered samples (if necessary)

®
FAIL

@
FAIL

o
FAIL
o
FAIL
o
FAIL
o
FAIL

PASS

o o
PASS PASS

PASS PASS

o o o
PASS PASS PASS

e 0
PASS PASS PASS
PASS PASS PASS

(MU 15-462/662

Step 8: update color buffer* (if depth test passed)

OpenGL/Direct3D graphics pipeline

Our rasterization pipeline doesn’t look much different from “real” pipelines used in
modern APIs / graphics hardware os
°1 . .
l— °4 |nput: vertices in 3D space
°2
Operations on /ETtEXhrocessing
vertices preroesmroeseoaseeee ;
Vertex stream : ° : o . . .
l : © o : Verticesin positioned in 3D normalized
Operations on o coordinate space
primitives o
(triangles, lines, etc.) "Mt St’eaml Al
Fragment Generation Triangles projected to 2D screen
(Rasterlzatlon) : '
Operations on Fragment stream -----------------------
fragments %:. Fragments (one fragment per covered sample)
HragmentiErocessing
Shaded fragment streaml % ? Shaded fragments
Operations on Screen sample operations
(depth and color) |E—
screen samples 5
Output: image (pixels)

* Several stages of the modern OpenGL pipeline are omitted CMU 15-462/662

Goal: render very high complexity 3D scenes

— 100’s of thousands to millions of triangles in a scene
— Complex vertex and fragment shader computations
— High resolution screen outputs (~10Mpixel + supersampling)
— 30-120 fps

co D . i J
Unreal Engine Kite Demo (Epic Games 2015) CMU 15-462/662

Graphics pipeline implementation: GPUs

Specialized processors for executing graphics pipeline computations

discrete GPU card

\ \
.N\-

'''''

mr e

| ‘—.“Tr—t \ o 3
. l?-_ . #_ b

e = -

: Bi- System | -
+» Core Agent & |

w

Processor & 3 3 ; ; :
Graphics - T ,.,| It -y - byt ¢ including | 5
B . , .- DML, Display| =

‘ : - - and Misc. /0] *

integrated GPU: part of modern CPU die

GPU: heterogeneous, multi-core processor

still enormous amount of fixed-
function compute over here

———————————

Modern GPUs offer ~35 TFLOPs of performance for
generic vertex/fragment programs (“compute”)

This part (mostly) not used by CUDA/OpenCL; raw
graphics horsepower still greater than compute!

. . . .
Scheduler / Work Distributor

Tessellate Tessellate
Tessellate Tessellate

_ GPU
Clip/Cull Clip/Culi
Rasterize Rasterize Memory
Clip/Cull Clip/Culi
Rasterize Rasterize

CMU 15-462/662

- make stages programmable

- replace fixed function vertex, fragment processing
- add geometry, tessellation shaders
- generic“compute” shaders (whole other story...)

- more flexible scheduling of stages

Memory Resources
(Buffer, Texture, Constant Buffer)

Modern Rasterization Pipeline

B Trend toward more generic (but still highly parallel!) computation

Input-Assembler

(DirectX 12 Pipeline)

Tessellation Stages |

Tessellator

Geometry Shader

Stream Output

Rasterizer

Output-Merger

(MU 15-462/662

Ray Tracing in Graphics Pipeline

m More recently: specialized pipeline for ray tracing

[Ray Genera tion J

https://devblogs.nvidia.com/introduction-nvidia-rtx-directx-ray-tracing/

(MU 15-462/662

GPU Ray Tracing Demo (“Marbles at Night”)

-y

e

What else do we need to know to generate
Images like these?

GEOMETRY

How do we describe
complex shapes (so far
just triangles...)

RENDERING

How does light interact & -
w/ materials to produce w
color?

ANIMATION

How do we describe the
way things move?

(“Moana’; Disney 2016)

(MU 15-462/662

Course roadmap

Introduction

Drawing a triangle (by sampling)
Rasterization Transforms and coordinate spaces

Perspective projection and texture sampling

Today: putting it all together: end-to-end
rasterization pipeline

‘Geometry

Next time!

Materials and Lighting

(MU 15-462/662

