Perspective Projection and Texture Mapping

Computer Graphics
CMU 15-462/15-662

Note: There is a lot of material in these slides. We will likely not work through all of this in one class, but what we don't get to, we'll pick up next week, so let's see how it goes!

Perspective \& Texture

- PREVIOUSLY:
- rasterization
(how to turn primitives into pixels)
- transformations
(how to manipulate primitives in space)
- TODAY:
- see where these two ideas come crashing together!
- revisit perspective transformations
- talk about how to map texture onto a primitive to get more detail
- ...and how perspective creates challenges for texture mapping!

Perspective Projection

Perspective projection

distant objects appear smaller

parallel lines

converge at thehorizon

Early painting: incorrect perspective

Evolution toward correct perspective

Later. . . rejection of proper perspective projection

Return of perspective in computer graphics

Rejection of perspective in computer graphics

Transformations: From Objects to the Screen

[WORLD COORDINATES]

original description of objects
[VIEW COORDINATES]

all positions now expressed relative to camera; camera is sitting at origin looking down -z direction
[IMAGE COORDINATES]
(w, h)
2 primitives can now be drawn via rasterization

$-1,-1,-1)$
[NORMALIZED COORDINATES]
everything visible to the camera is mapped to unit cube for easy "clipping"

unit cube mapped to unit square via perspective divide

Review: simple camera transform

Consider camera at $(4,2,0)$, looking down x-axis, object given in world coordinates:

Q: What spatial transformation puts in the object in a coordinate system where the camera is at the origin, looking down the $-z$ axis?

- Translating object vertex positions by $(-4,-2,0)$ yields position relative to camera
- Rotation about y by $\pi / 2$ gives position of object in new coordinate system where camera's view direction is aligned with the $-z$ axis

Camera looking in a different direction

Now consider a camera looking in a direction $\mathbf{w} \in \mathbb{R}^{3}$

- Construct vectors \mathbf{u}, \mathbf{v} orthogonal to \mathbf{w}
- e.g., with y as "up vector", let u $:=\mathbf{y} \times \mathbf{w}$

Form a matrix with basis vectors in rows

- We need one more basis: $\mathbf{v}:=\mathbf{w} \times \mathbf{u}$
- Normalize everything:

$$
\hat{\mathbf{u}}:=\frac{\mathbf{u}}{\|\mathbf{u}\|} \quad \hat{\mathbf{v}}:=\frac{\mathbf{v}}{\|\mathbf{v}\|} \quad \hat{\mathbf{w}}:=\frac{\mathbf{w}}{\|\mathbf{w}\|}
$$

$$
R=\left[\begin{array}{ccc}
\hat{u}_{x} & \hat{u}_{y} & \hat{u}_{z} \\
\hat{v}_{x} & \hat{v}_{y} & \hat{v}_{z} \\
\hat{w}_{x} & \hat{w}_{y} & \hat{w}_{z}
\end{array}\right]
$$

R maps $\hat{\mathbf{u}}$ to \mathbf{x}-axis, $\hat{\mathbf{v}}$ to \mathbf{y}-axis, $\hat{\mathbf{w}}$ to \mathbf{z}-axis

Camera looking in a different direction

Now consider a camera looking in a direction $\mathbf{w} \in \mathbb{R}^{3}$

- Find basis mapping

Form a matrix with basis vectors in rows

- $\hat{\mathbf{u}}$ to the \mathbf{x}-axis, $\hat{\mathbf{v}}$ to the \mathbf{y}-axis, $-\hat{\mathbf{w}}$ to z -axis
- Construct vectors \mathbf{u}, \mathbf{v} orthogonal to - \mathbf{W}
- e.g., with y as "up vector", let

$$
\mathbf{u}:=\mathbf{y} \times(-\mathbf{w})=\mathbf{w} \times \mathbf{y}
$$

$$
R=\left[\begin{array}{ccc}
\hat{u}_{x} & \hat{u}_{y} & \hat{u}_{z} \\
\hat{v}_{x} & \hat{v}_{y} & \hat{v}_{z} \\
-\hat{w}_{x} & -\hat{w}_{y} & -\hat{w}_{z}
\end{array}\right]
$$

- We need one more basis:
$\mathbf{v}:=-\mathbf{w} \times \mathbf{u}=\mathbf{u} \times \mathbf{w}$
R maps $\hat{\mathbf{u}}$ to \mathbf{x}-axis, $\hat{\mathbf{v}}$ to \mathbf{y}-axis, $\hat{\mathbf{w}}$ to $-\mathbf{Z}$-axis
- Normalize everything as before

View frustum

View frustum is region the camera can see:

- Top / bottom / left / right planes correspond to four sides of the image
- Near / far planes correspond to closest/furthest thing we want to draw

Clipping

■ "Clipping" eliminates triangles not visible to the camera / in view frustum

- Don't waste time rasterizing primitives (e.g., triangles) you can't see!
- Discarding individual fragments is expensive ("fine granularity")
- Makes more sense to toss out whole primitives ("coarse granularity")
- Still need to deal with primitives that are partially clipped...

\square $=$ in frustum

Near/Far Clipping

- Why have near/far clipping planes?
- Some primitives (e.g., triangles) may have vertices both in front \& behind eye! (Causes headaches for rasterization, e.g., checking if fragments are behind eye)
- Also important for dealing with finite precision of depth buffer / limitations on storing depth as floating point values

Mapping frustum to unit cube

Before projecting to 2D, map view frustum to cube $[-1,1]^{3}$:

- Why do we do this?
- Makes clipping much easier! - just discard points outside range [-1,1] - need to think about partially-clipped triangles
- Q: How can we express this mapping as a matrix?
- A: Solve $A \mathbf{x}_{i}=\mathbf{y}_{i}$ for unknown entries of A

$$
\begin{array}{lll}
l=\text { left } & b=\text { bottom } & n=\text { near } \\
r=\text { right } & t=\text { top } & f=\text { far }
\end{array}
$$

$$
\begin{aligned}
& \mathbf{x}_{1}=\{l, b, n, 1\} \\
& \mathbf{x}_{2}=\{r, b, n, 1\} \\
& \mathbf{x}_{3}=\{r, t, n, 1\} \\
& \mathbf{x}_{4}=\{l, t, n, 1\} \\
& \mathbf{x}_{5}=\{l, b, f, 1\} \\
& \mathbf{x}_{6}=\{r, b, f, 1\} \\
& \mathbf{x}_{7}=\{r, t, f, 1\} \\
& \mathbf{x}_{8}=\{l, t, f, 1\}
\end{aligned} \begin{aligned}
& \mathbf{y}_{1}=\{-1,-1,1,1\} \\
& \mathbf{y}_{2}=\left\{\begin{array}{l}
\mathbf{y}_{3}=\{1,-1,1,1\} \\
\mathbf{y}_{4}=\{-1,1,1,1, \\
\mathbf{y}_{5}=\{-1,-1,-1,1\} \\
\mathbf{y}_{6}=\{1,-1,-1,1\} \\
\mathbf{y}_{7}=\{1,1,-1,1\} \\
\mathbf{y}_{8}=\{-1,1,-1,1\}
\end{array}\right. \\
& \hline
\end{aligned}
$$

Matrix for Perspective Transform

Recall our basic perspective projection matrix

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z \\
z
\end{array}\right] \longmapsto\left[\begin{array}{c}
x / z \\
y / z \\
1 \\
1
\end{array}\right] \text { in distance }
$$

Full perspective matrix takes geometry of view frustum into account:

$$
\left[\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Review: screen transformation

- Had one last transformation in the rasterization pipeline: transform from 2D viewing plane to pixel coordinates
- Projection will take points to $[-1,1] \times[-1,1]$ on the $z=1$ plane; transform into a W x H pixel image

Transformations: From Objects to the Screen

[WORLD COORDINATES]

original description of objects
[VIEW COORDINATES]

all positions now expressed relative to camera; camera is sitting at origin looking down $-z$ direction
 dow-zdrection

2D primitives can now be drawn via rasterization
[IMAGE COORDINATES]

[CLIP COORDINATES]

everything visible to the camera is mapped to unit cube for easy "clipping"

[NORMALIZED COORDINATES]

unit cube mapped to unit square via perspective divide

So, how do we draw nice primitives?

Coverage(x, y)

Previously discussed how to sample coverage given the 2D position of the triangle's vertices.

Consider sampling color(\mathbf{x}, y)

What is the triangle's color at the point x ?
Standard strategy: interpolate color values at vertices.

Linear interpolation in 1D

Suppose we've sampled values of a function $f(x)$ at points $x_{i}, i . e ., f_{i}:=f\left(x_{i}\right)$
Q: How do we construct a function that "connects the dots" between x_{i} and x_{i+1} ?

$$
\begin{aligned}
& t:=\left(x-x_{i}\right) /\left(x_{i+1}-x_{i}\right) \in[0,1] \\
& \hat{f}(t)=f_{i}+t\left(f_{i+1}-f_{i}\right)=(1-t) f_{i}+t f_{i+1}
\end{aligned}
$$

Linear interpolation in 2D

Suppose we've likewise sampled values of a function $f(\mathbf{p})$ at points $\mathbf{p}_{i}, \mathbf{p}_{j}, \mathbf{p}_{k}$ in 2D Q: How do we "connect the dots" this time? E.q., how do we fit a plane?

Linear interpolation in 2D

- Want to fit a linear (really, affine) function to three values
- Any such function has three unknown coefficients \mathbf{a}, \mathbf{b}, and \mathbf{c} :

$$
\hat{f}(x, y)=a x+b y+c
$$

- To interpolate, we need to find coefficients such that the function matches the sample values at the sample points:

$$
\hat{f}\left(x_{n}, y_{n}\right)=f_{n}, n \in\{i, j, k\}
$$

■ Yields three linear equations in three unknowns. Solution?

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\frac{1}{\left(x_{j} y_{i}-x_{i} y_{j}\right)+\left(x_{k} y_{j}-x_{j} y_{k}\right)+\left(x_{i} y_{k}-x_{k} y_{i}\right)}\left[\begin{array}{c}
f_{i}\left(y_{k}-y_{j}\right)+f_{j}\left(y_{i}-y_{k}\right)+f_{k}\left(y_{j}-y_{i}\right) \\
f_{i}\left(x_{j}-x_{k}\right)+f_{j}\left(x_{k}-x_{i}\right)+f_{k}\left(x_{i}-x_{j}\right) \\
f_{i}\left(x_{k} y_{j}-x_{j} y_{k}\right)+f_{j}\left(x_{i} y_{k}-x_{k} y_{i}\right)+f_{k}\left(x_{j} y_{i}-x_{i} y_{j}\right)
\end{array}\right]
$$

This is ugly. There has to be a better way to think about this...

1D Linear Interpolation, revisited

- Let's think about how we did linear interpolation in 1D:

$$
\hat{f}(t)=(1-t) f_{i}+t f_{j}
$$

- Can think of this as a linear combination of two functions:

- As we move closer to $t=0$, we approach the value of f at x_{i}
- As we move closer to $t=1$, we approach the value of f at x_{j}

2D Linear Interpolation, revisited

- We can construct analogous functions for a triangle
- For a given point x, measure the distance to each edge; then divide by the height of the triangle:

Interpolate by taking linear combination: $\hat{f}(x)=f_{i} \phi_{i}+f_{j} \phi_{j}+f_{k} \phi_{k}$
Q: Is this the same as the (ugly) function we found before?

2D Interpolation, another way

- I claim we can also get the same three basis functions as a ratio of triangle areas:

$$
\phi_{i}(x)=\frac{\operatorname{area}\left(x, x_{j}, x_{k}\right)}{\operatorname{area}\left(x_{i}, x_{j}, x_{k}\right)}
$$

Q: Do you buy it? (Why or why not?)

Barycentric Coordinates

- No matter how you compute them, the values of the three functions $\phi_{i}(\mathbf{x}), \phi_{j}(\mathbf{x}), \phi_{k}(\mathbf{x})$ for a given point are called barycentric coordinates
- Can be used to interpolate any attribute associated with vertices. (color*, texture coordinates, etc.)
■ Importantly, these same three values fall out of the half-plane tests used for triangle rasterization! (Why?)
■ Hence, get them for "free" during rasterization

$$
\operatorname{color}(x)=\operatorname{color}\left(x_{i}\right) \phi_{i}+\operatorname{color}\left(x_{j}\right) \phi_{j}+\operatorname{color}\left(x_{k}\right) \phi_{k}
$$

Perspective-incorrect interpolation

Due to perspective projection (homogeneous divide), barycentric interpolation of values on a triangle with different depths is not an affine function of screen XY coordinates

Want to interpolate attribute values linearly in 3D object space, not image space.

Example: perspective incorrect interpolation

Consider a quadrilateral split into two triangles:

If we compute barycentric coordinates using 2D (projected) coordinates, leads to (derivative) discontinuity in interpolation where quad was split

Perspective Correct Interpolation

- Goal: interpolate some attribute ϕ at vertices
- Basic recipe:
- Compute depth z at each vertex
- Evaluate $Z:=1 / z$ and $P:=\phi / z$ at each vertex
- Interpolate Z and P using standard (2D) barycentric coords
- At each fragment, divide interpolated P by interpolated Z to get final value

Texture Mapping

Many uses of texture mapping

Define variation in surface reflectance

Describe surface material properties

Normal \& Displacement Mapping

normal mapping

Use texture value to perturb surface normal to "fake" appearance of a bumpy surface

displacement mapping

dice up surface geometry into tiny triangles \& offset positions according to texture values (note bumpy silhouette and shadow boundary)

Represent precomputed lighting and shadows

Original model

Wth ambient occlusion

Extracted ambient occlusion map

Grace Cathedral environment map

Environment map used in rendering

Texture coordinates

- "Texture coordinates" define a mapping from surface coordinates to points in texture domain - Often defined by linearly interpolating texture coordinates at triangle vertices

Suppose each cube face is split into eight triangles, with texture coordinates (u, v) at each vertex

A texture on the $[0,1]^{2}$ domain can be specified by a 2048×2048 image

(location of highlighted triangle in texture space shown in red)

Linearly interpolating texture coordinates \& "looking up" color in texture gives this image:

Visualization of texture coordinates

Associating texture coordinates (u, v) with colors helps to visualize mapping

More complex mapping

Visualization of texture coordinates

Each vertex has a coordinate (u, v) in texture space
(Actually coming up with these coordinates is another story!)

Texture mapping adds detail

Each triangle "copies" a piece of the image back to the surface

Texture mapping adds detail

rendering without texture

rendering with texture

texture image

Another example: periodic coordinates

Q:Why do you think texture coordinates might repeat over the surface?

Textured Sponza

A: Want to tile a texture many times (rather than store a huge image!)

Texture Sampling 101

- Basic algorithm for texture mapping:
- for each pixel in the rasterized image:
- interpolate (u, v) coordinates across triangle
- sample (evaluate) texture at interpolated (u,v)
- set color of fragment to sampled texture value

...sadly not this easy in general!

Recall: aliasing

Undersampling a high-frequency signal can result in aliasing

$$
f(x) \uparrow
$$

Visualizing texture samples

Since triangles are projected from 3D to 2D, pixels in screen space will correspond to regions of varying size \& location in texture
sample positions in screen space

						0			
					0	0	0		
					0	0	0		
				0	0	0	0	0	
\mathbf{V}				0_{1}	0_{2}	0_{3}	0_{4}	0_{5}	
			0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0		
	0	0		\mathbf{u}					

Sample positions are uniformly distributed in screen space (rasterizer samples triangle's appearance at these locations)
sample positions in texture space

Sample positions in texture space are not uniform (texture function is sampled at these locations)

Magnification vs. Minification

- Magnification (easier):
- Example: camera is very close to scene object
- Single screen pixel maps to tiny region of texture
- Can just interpolate value at screen pixel center
- Minification (harder):
- Example: scene object is very far away
- Single screen pixel maps to large region of texture
- Need to compute average texture value over pixel to avoid aliasing

Bilinear interpolation (magnification)

How can we "look up" a texture value at a non-integer location (u, v) ?

$i=\left\lfloor u-\frac{1}{2}\right\rfloor$
$j=\left\lfloor v-\frac{1}{2}\right\rfloor$

$$
\begin{aligned}
s & =u-\left(i+\frac{1}{2}\right) \in[0,1] \\
t & =v-\left(j+\frac{1}{2}\right) \in[0,1]
\end{aligned}
$$

linear (each row)

bilinear

$$
\begin{aligned}
& (1-t)\left((1-s) f_{00}+s f_{10}\right) \\
& \quad+t\left((1-s) f_{01}+s f_{11}\right)
\end{aligned}
$$

Q: What happens if we interpolate vertically first?

Aliasing due to minification

"Pre-filtering" texture (minification)

Texture prefiltering — basic idea

- Texture aliasing often occurs because a single pixel on the screen covers many pixels of the texture
- If we just grab the texture value at the center of the pixel, we get aliasing (get a "random" color that changes if the sample moves even very slightly)
- Ideally, would use the average texture value-but this is expensive to compute
- Instead, we can pre-compute the averages (once) and just look up these averages (many times) at run-time
 But which averages should we store? Can't precompute them all!

Prefiltered textures

Actual texture: 700x700 image (only a crop is shown)
\square
Actual texture: 64x64 image

Texture minification

Texture magnification

MIP map (L. Williams 83)

Level $0=128 \times 128$

Level $4=8 \times 8$

Level $1=64 \times 64$

Level $5=4 \times 4$

Level 2 = 32x32

Level $3=16 \times 16$

Level $6=2 \times 2$
Level 7 = 1x1

■ Rough idea: store prefiltered image at "every possible scale"

- Texels at higher levels store average of texture over a region of texture space (downsampled)

■ Later: look up a single pixel from MIP map of appropriate size

Mipmap (L. Williams 83)

Williams' original proposed mip-map layout

"Mip hierarchy"
level $=\mathbf{d}$

Q: What's the storage overhead of a mipmap?

Computing MIP Map Level

Even within a single triangle, may want to sample from different MIP map levels:

Screen space

Texture space

Q: Which pixel should sample from a coarser MIP map level: the blue one, or the red one?

Computing Mip Map Level

Compute differences between texture coordinate values at neighboring samples

$$
\begin{array}{ll}
\frac{d u}{d x}=u_{10}-u_{00} & \frac{d v}{d x}=v_{10}-v_{00} \\
\frac{d u}{d y}=u_{01}-u_{00} & \frac{d v}{d y}=v_{01}-v_{00}
\end{array}
$$

$$
\begin{gathered}
L_{x}^{2}=\left(\frac{d u}{d x}\right)^{2}+\left(\frac{d v}{d x}\right)^{2} L_{y}^{2}=\left(\frac{d u}{d y}\right)^{2}+\left(\frac{d v}{d y}\right)^{2} \\
L=\sqrt{\max \left(L_{x}^{2}, L_{y}^{2}\right)}
\end{gathered}
$$

mip-map level: $d=\log _{2} L$

Visualization of mip-map level (d clamped to nearest level)

Sponza (bilinear resampling at level 0)

Sponza (bilinear resampling at level 2)

Sponza (bilinear resampling at level 4)

Sponza (MIP mapped)

Problem with basic MIP mapping

- If we just use the nearest level, can get artifacts where level "jumps"—appearance sharply transitions from detailed to blurry texture
- IDEA: rather than clamping the MIP map level to the closest integer, use the original (continuous) MIP map level d
- PROBLEM: we only computed a fixed number of MIP map levels. How do we interpolate between levels?

Trilinear Filtering

- Used bilinear filtering for 2D data; can use trilinear filtering for 3D data
- Given a point $(u, v, w) \in[0,1]^{3}$, and eight closest values $f_{i j k}$
- Just iterate linear filtering:
- weighted average along u
- weighted average along v

- weighted average along w

MIP Map Lookup

- MIP map interpolation works essentially the same way
- not interpolating from 3D grid
- interpolate from two MIP map levels closest to $d \in \mathbb{R}$
- perform bilinear interpolation independently in each level
- interpolate between two bilinear values using $w=d-\lfloor d\rfloor$

Starts getting expensive! ($=\rightarrow$ special lized hardware)

Bilinear interpolation:
four texel reads
3 linear interpolations (3 mul + 6 add)
Trilinear/MIP map interpolation:
eight texel reads
7 linear interpolations ($7 \mathrm{mul}+14$ add)

mip-map texels: level $\lfloor d\rfloor$

Anisotropic Filtering

At grazing angles, samples may be stretched out by (very) different amounts along u and v

Common solution: combine multiple MIP map samples (even more arithmetic/bandwidth!)

Texture Sampling Pipeline

1. Compute u and v from screen sample (x, y) via barycentric interpolation
2. Approximate $\frac{d u}{d x}, \frac{d u}{d y}, \frac{d v}{d x}, \frac{d v}{d y}$ by taking differences of screen-adjacent samples
3. Compute mip map level d
4. Convert normalized $[0,1]$ texture coordinate (u, v) to pixel locations $(U, V) \in[W, H]$ in texture image
5. Determine addresses of texels needed for filter (e.g., eight neighbors for trilinear)
6. Load texels into local registers
7. Perform tri-linear interpolation according to (U, V, d)
8. (...even more work for anisotropic filtering...)

Takeaway: high-quality texturing requires far more work than just looking up a pixel in an image! Each sample demands significant arithmetic \& bandwidth

For this reason, graphics processing units (GPUs) have dedicated, fixedfunction hardware support to perform texture sampling operations

Perspective \& Texture Mapping-Summary

- Perspective projection turns 3D primitives into 2D primitives that can be rasterized
- View frustum used to manage clipping, Z-fighting
- Once we have 2D primitives, can interpolate attributes across vertices using barycentric coordinates
- Important example: texture coordinates, used to copy pieces of a 2D image onto a 3D surface
- Careful texture filtering is needed to avoid aliasing
- Key idea: what's the average color covered by a pixel?
- For magnification, can just do a billinear lookup
- For minification, use prefillering to compute averages ahead of time
- a MIP map stores averages at different levels
- blend between levels using trillinear filtering
- At grazing angles, anisotropic fillering needed to deal w/"stretching" of samples
- In general, no perfect solution to aliasing! Try to balance quality \& efficiency

Next Time: Depth \& Transparency

