Perspective Projection and
Texture Mapping
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Note: Thereis alot of material in
these slides. We will likely not work
through all of this in one class, but
what we don't get to, we’ll pick up
next week, so let’s see how it goes!



Perspective & Texture

PREVIOUSLY: ;

N )
; ‘ - I
- rasterization A
- transformations ft
TODAY:
- see Where these two ideas come

crashing together!
- revisit perspective transformations

- talk about how to map texture ontoa
primitive to get more detail

- ...and how perspective creates
challenges for texture mapping!
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Perspective Projection
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Perspective projection
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Early painting: incorrect perspective
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Evolution toward correct perspective
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Later... rejection of proper perspective projection
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S e Picasso, 1910
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In computer graphics

jve

Return of perspect
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Rejection of perspective in computer graphics
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Transformations: From Objects to the Screen
[WORLD COORDINATES] [VIEW COORDINATES] [CLIP COORDINATES]

& (1,1,1)

e
A
(-1,-1,-1)
original description all positions now expressed everything visible to the
of objects relative to camera; camera camera is mapped to unit
is sitting at origin looking cube for easy “clipping”
down -z direction l
[IMAGE COORDINATES] [NORMALIZED COORDINATES]
(w, h) (1,1)
2D primitives can .
now be drawn via « h —
rasterization % %
(0,0) (-1,-1)
coordinates stretched to match image unit cube mapped to unit
dimensions (and flipped upside-down) square via perspective divide
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Review: simple camera transform

Consider camera at (4,2,0), looking down x-axis, object given in world coordinates:

(4.2.0) 4

<

Q: What spatial transformation puts in the object in a coordinate system where
the camera is at the origin, looking down the — z axis?

B Translating object vertex positions by (-4, -2, 0) yields position relative to camera

m Rotation about y by 7z/2 gives position of object in new coordinate system where
camera’s view direction is aligned with the — z axis
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Camera looking in a different direction

Now consider a camera looking in a direction w & R

Q: What transform places in the object in a coordinate system where the
camera is at the origin and the camera is looking directly down the z axis?
m Construct vectors u, v orthogonal to w

: Y . Form a matrix with basis vectors in rows
- e.g., withy as“up vector’, letu :=y X w

m We needonemorebasis: v.=w X u 1 Ay i,
m Normalize everything: r_lv v 7
u vV \%Y B A

- V.= W .= W. W, W

|ul| V]| Wl U

R maps u to X-axis, v to y-axis, W to Z-axis
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Camera looking in a different direction

Now consider a camera looking in a direction w & R

Q: What change do we need to make so that the camera is looking down -z?
Form a matrix with basis vectors in rows

>

m Find basis mapping
m {1 to the X-axis, V to the y-axis, — W to z-axis X X
m Construct vectors u, v orthogonal to —w fo Lfy -
— e.g., with y as “up vector’, let
U:=yX(—wW)=WwWXYy
m We need one more basis:
Vi=—WXU=UXW
m Normalize everything as before

—W, —W, —W,

R maps 11 to x-axis, V to y-axis, W to — Z-axis
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View frustum

View frustum is region the camera can see:

m Top / bottom / left / right planes correspond to four sides of the image
m Near/far planes correspond to closest/furthest thing we want to draw
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Clipping

®  “Clipping” eliminates triangles not visible to the camera/ in view frustum

- Don’t waste time rasterizing primitives (e.g., triangles) you can't see!
- Discarding individual fragments is expensive (“fine granularity”)

- Makes more sense to toss out whole primitives (“coarse granularity”)
- Still need to deal with primitives that are partially clipped...

draw i \

: ; don’t draw

= in frustum
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https://paroj.github.io/gltut/

Near/Far Clipping

®m Why have near/far clipping planes?

- Some primitives (e.g., triangles) may have vertices both in front & behind eye!
(Causes headaches for rasterization, e.g., checking if fragments are behind eye)

- Also important for dealing with finite precision of depth buffer / limitations on
storing depth as floating point values

near=10"1
far=103

4 8§ 16§
||||||}|||||||{

floating point has more “resolution” near zero—hence more precise resolution of primitive-primitive intersection (MU 15-462/662



Mapping frustum to unit cube )

Before projecting to 2D, map view frustum to cube [—1,1]°:

X
X «
| Why do we do this? Z-Aar [ = left b =bhottom 71 =near
m Makes clipping much easier! r=right 1=top f=far
- just discard points outside range [-1,1
J d hi ?( b A gl. [ d] o I X] = {labanal} y1i = {_ }
- need to think about par.tla y-C |.ppe triang ?.s x, = {rbn1} |y = { 1)
m Q: How can we express this mapping as a matrix? x3 = {nt,n,1} | y3 = { 1,1}
m A:Solve AX; =y, for unknown entries of A X = Ahtm 1)1 ye = i- L1}
X5 = {{:labvfal%'i Y5 = {{:_ L :};
1 X = b, f,1 Yo —
i X7 = {nt,f1} |y = { 1,1}
X8 — {latafvl} Ys = {_ : }




Recall our basic perspective projection matrix

o O O

S O = O

—_ O O

o O O O

[ =left
r=right

0
(B

Matrix for Perspective Transform

1

b = bottom
t=top

bjects shrink
in distance

Il = near

f=far
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Review: screen transformation

m Had one last transformation in the rasterization pipeline:
transform from 2D viewing plane to pixel coordinates

m Projection will take points to [-1,1] x[-1,1] on the z=1 plane;
transform into a W x H pixel image

(0,0) w

ol

Step 1: reflect about x-axis (W,H)

Step 2: translate by (1,1)
Step 3: scale by (W/2,H/2)
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Transformations: From Objects to the Screen

[WORLD COORDINATES] [VIEW COORDINATES] [CLIP COORDINATES]

& (1,1,1)
view projection i
transform transform ==
A
(-1,-1,-1)

original description all positions now expressed everything visible to the
of objects relative to camera; camera camera is mapped to unit

is sitting at origin looking cube for easy “clipping”

down -z direction
perspective
l divide
[IMAGE COORDINATES] [NORMALIZED COORDINATES]
(w, h) (1,1)
2D primitives can now « —
be drawn via
rasterization % screen %
transform
(0,0) (1)
coordinates stretched to match image unit cube mapped to unit
dimensions (and flipped upside-down) square via perspective divide
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S0, how do we draw nice primitives?
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Coverage(x,y)

Previously discussed how to sample
coverage given the 2D position of the C
triangle’s vertices.
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Consider sampling color(x,y)

C
blue [0,0,1]

b
green [0,1,0]

A
red[1,0,0]

What is the triangle’s color at the point x ?
Standard strateqy: interpolate color values at vertices.
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Linear interpolation in 1D

Suppose we've sampled values of a function f(x) at points x;, i.e., fi := f(x;)
Q: How do we construct a function that “connects the dots” between x; and X;.1?

f(x)t
®
fit /e »
@ . ‘ ........... fl—l—l
X, Xi -

b= (x —x;)/(Xiy1 — x;) € [0,1]
f(t) = fi+t(fiy1—fi) = A= t)fi + tfira
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Linear interpolation in 2D

Suppose we've likewise sampled values of a function /() at points p, P;, Piin2D
Q: How do we “connect the dots” this time? E.a., how do we fit a plane?

f(p)
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Linear interpolation in 2D

m Want to fit a linear (really, affine) function to three values
m Any such function has three unknown coefficients a, b, and c:

F(x,y) = ax + by +c

m To interpolate, we need to find coefficients such that the
function matches the sample values at the sample points:

f(xn,yn) = fa, n € {i,j, k}
B Yields three linear equations in three unknowns. Solution?

SN

1 _ j{igyk—yji “?‘Eyi—yki “;kéyj_yi))
o (i — xiy;) + (e — xye) + (Xiye — Xeyi) _ fi(Xky]‘l— ;C].yk)kJrf]. ;iyl; _ x;yi) +kfkl(x]-yi]— xiy;) |

This is ugly. There has to be a better way to think about this...
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1D Linear Interpolation, revisited

m Let’s think about how we did linear interpolation in 1D:

f(t) = (A —=t)f; +1tf,

B (Can think of this as a linear combination of two functions:

t
m As we move closer to t=0, we approach the value of f at x;

m As we move closer to t=1, we approach the value of f at x;
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2D Linear Interpolation, revisited

m We can construct analogous functions for a triangle

m Fora given point X, measure the distance to each edge; then
divide by the height of the triangle:

IO

Interpolate by taking linear combination: f (x) = fi¢; + fip; + frdx
Q: Is this the same as the (ugly) function we found before?




2D Interpolation, another way

m | claim we can also get the same three basis
functions as a ratio of triangle areas:

area(x, Xj, Xi )

area(x;, X;, Xi)

Q: Do you buy it? (Why or why not?)
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Barycentric Coordinates

®  No matter how you compute them, the values of the three functions
¢{(X), P{(X), P, (x) for a given point are called barycentric coordinates

B (an be used to interpolate any attribute associated with vertices.
(color®, texture coordinates, etc.)

® [mportantly, these same three values fall out of the half-plane tests
used for triangle rasterization! (Why?)

1

®m  Hence, get them for “free” during rasterization

color(x) = color(x;)¢; + color(x;)¢; + color(xx )¢y



Perspective-incorrect interpolation

Due to perspective projection (homogeneous divide), barycentric interpolation of values
on a triangle with different depths is not an affine function of screen XY coordinates

Want to interpolate attribute values linearly in 3D object space, not image space.
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Example: perspective incorrect interpolation

Consider a quadrilateral split into two triangles:

A

Flat Affine Correct

If we compute barycentric coordinates using 2D (projected) coordinates,
leads to (derivative) discontinuity in interpolation where quad was split
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Perspective Correct Interpolation

B Goal: interpolate some attribute @ at vertices
m  Basicrecipe:

- Compute depth z at each vertex

= Evaluate Z:=1/zand P := ¢/z at each vertex

- Interpolate Z and P using standard (2D) barycentric coords

- At each fragment, divide interpolated P by interpolated Z
to get final value

[ ] [ ) ’ ’ [ ] _ [ )
For a derivation, see Low, “Perspective-Correct Interpolation”
CMU 15-462/662



Texture Mapping

.\‘
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Many uses of texture mapping

Define variation in surface reflectance

7 7} / b
Iy

\&
\ |
»

Pattern on ball Wood grain on floor
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Describe surface material properties

Multiple layers of texture maps for color, logos,
scratches, etc.

RYSE
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Normal & Displacement Mapping

normal mapping displacement mapping

dice up surface geometry into tiny triangles &
offset positions according to texture values
(note bumpy silhouette and shadow boundary)

Use texture value to perturb surface normal to
“fake” appearance of a bumpy surface
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Represent precomputed lighting and shadows

Qnginal mode With ambient ocClusion EXracied amdeery! OCCiusion map

Grace Cathedral environment map

Environment map used in rendering CMU 15-462/662



Texture coordinates

m “Texture coordinates” define a mapping from
surface coordinates to points in texture domain

m Often defined by linearly interpolating texture
coordinates at triangle vertices

Suppose each cube face is split into eight triangles, A texture on the [0,1]2 domain can Linearly interpolating texture
with texture coordinates (u,v) at each vertex be specified by a 2048x2048 image coordinates & “looking up” color
in texture gives this image:

(0.0,1.0) (0.5,1.0) (1.0,1.0)
®

(0.0, 0.5) (1.0, 0.5)

(0.0, 0.0) (0.5,0.0) © (1.0, 0.0)
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Visualization of texture coordinates

Associating texture coordinates (£, v) with colors helps to visualize mapping

(0,1) green

black (0,0) (1,0) red
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More complex mapping

Visualization of texture coordinates vV Triangle vertices in texture space

g -~ o~
- ™ i S . —

Each vertex has a coordinate (u,v) in texture space
(Actually coming up with these coordinates is another story!)
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Triangle vertices in texture space

.
> AT

t:::
ey

ey 0
) RN

Rendered result

Texture mapping adds detail

,A. A‘?AVA |

7

'y

Each triangle “copies” a piece of the image back to the surface
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Texture mapping adds detail

rendering without texture rendering with texture

Zoom

texture image
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Another example: periodic coordinates

. \ | (0,1)
Y - ' W .
: f /
\' / /, | .
r ¥ |

\
\
) /

\
, W

\ 3 » ¢ , :
: /(
.| - \o [ —
L g S

(0,0)

-

Q: Why do you think texture coordinates might repeat over the surface?
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Textured Sponza

A: Want to tile a texture many times
(rather than store a huge image!)
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Texture Sampling 101

m Basicalgorithm for texture mapping:

— for each pixel in the rasterized image:
— interpolate (u,v) coordinates across triangle
— sample (evaluate) texture at interpolated (u,V)

— set color of fragment to sampled texture value

...sadly not this easy in general!
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Recall: aliasing

Undersampling a high-frequency signal can result in aliasing
J(x)

.......
..........
.....

-----
..............
..........

£ A BARRETRTERAS L
e A
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Visualizing texture samples

Since triangles are projected from 3D to 2D, pixels in screen space
will correspond to regions of varying size & location in texture

V
Sample positions are uniformly distributed in screen space Sample positions in texture space are not uniform
(rasterizer samples triangle’s appearance at these locations) (texture function is sampled at these locations)

Irreqular sampling pattern makes it hard to avoid aliasing!
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Magnification vs. Minification

Image Texture

Minification

Magnification

m Magnification (easier):

- Example: camerais very close to scene object
- Single screen pixel maps to tiny region of texture
- (anjustinterpolate value at screen pixel center

B Minification (harder):

- Example: scene object is very far away
- Single screen pixel maps to large region of texture
- Need to compute average texture value over pixel to avoid aliasing

Figure credit: Akeley and Hanrahan CMU 15-462/662



Bilinear interpolation (magnification)

How can we “look up” a texture value at a non-integer location (2, v)?

linear

(1 —s5)fo1 +sf11
(1 =) foo +sfi0

bilinear

ne}arest
neighbor fast but ugly:

just grab value of nearest .
“texel” (texture pixel) Q: What happens if we
interpolate vertically first?

\)



Aliasing due to minification

G
g
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“Pre-filtering” texture (minification)
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Texture prefiltering — basicidea

m Texture aliasing often occurs because a
on the screen covers
of the texture

m If wejust grab the texture value at the
center of the pixel, we get aliasing (get a
“random” color that changes if the
sample moves even very slightly)

m ldeally, would use the average texture
value—hbut this is expensive to compute

m Instead, we can pre-compute the
averages (once) and just look up these
averages (many times) at run-time

But which averages should we store? Cant precompute them all!
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Prefiltered textures

_Uu,

Actual texture: 700x700 image
(only a crop is shown) Texture minification

‘F
u

Actual texture: 64x64 image

° T Oﬁ t.
Q: Are two resolutions enough? A: No... exture magnification
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MIP map (L. Williams 83)

;;;'
V )
U | I
Level 0 = 128x128 Level 1 = 64x64 Level 2 =32x32 Level 3 = 16x16
Level 4 = 8x8 Level 5 = 4x4 Level 6 = 2x2 Level 7 = 1x1

m Rough idea: store prefiltered image at “every possible scale”
m Texels at higher levels store average of texture over a region of texture space (downsampled)

m Later: look up a single pixel from MIP map of appropriate size
(MU 15-462/662



Mipmap (L. Williams 83)

L/

Williams’ original proposed

mip-map layout “Mip hierarchy”

level=d

Q: What's the storage overhead of a mipmap?

Slide credit: Akeley and Hanrahan CMU 15-462/662



Computing MIP Map Level

Even within a single triangle, may want to sample from different MIP map levels:

Screen space

Texture space

Q: Which pixel should sample from a coarser MIP map level: the blue one, or the red one?
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Computing Mip Map Level

Compute differences between texture coordinate values at neighboring samples

du av _ L = \/ max (L7, Ly2

mip-map level: d = log, L
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Visualization of mip-map level
(d clamped to nearest level)
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Sponza (bilinear resampling at level 0)
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Sponza (bilinear resampling at level 2)
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Sponza (bilinear resampling at level 4)
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Sponza (MIP mapped)

"

-
-
- -

nicely filters™' |\
the background ..
3 3‘3"‘: — ‘.«' e 8-

I =y b e ) B :.:‘\-..
retainsdetailin

e foreground

‘_’ o ’.‘.
A~ y . --0“;/
Ty .
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Problem with basic MIP mappmg

m |fwe just use the nearest level,
can get artifacts where level
“jumps”—appearance sharply
transitions from detailed to
blurry texture

m |DEA: rather than clamping the
MIP map level to the closest
integer, use the original

(continuous) MIP map level d

m PROBLEM: we only computed a
fixed number of MIP map
levels. How do we interpolate
between levels?
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Trilinear Filtering

m  Used bilinear filtering for 2D data;
can use trilinear filtering for 3D data h

m Givenapoint (1, v, w) € [0,1]°,
and eight closest values fijk

m Justiterate linear filtering:

- weighted average along 1/

- weighted average along v

- weighted average along w

goo = (I = w)fooo + oo
810 = (1 —uw)fp1o + ufllo/ \

o1 = ( Yoor + U101 >h1 = = v)gy +v&1; /
g1 = (1 - M)f()ll T uflll

(1 = w)hy + wh
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MIP Map Lookup

B MIP map interpolation works essentially
the same way

not interpolating from 3D grid

interpolate from two MIP map levels
closesttod € R

perform bilinear interpolation
independently in each level

interpolate between two bilinear
valuesusingw = d — |d|

Starts getting expensive!

Bilinear interpolation:
four texel reads
3 linear interpolations (3 mul + 6 add)

Trilinear/MIP map interpolation:
eight texel reads
7 linear interpolations (7 mul + 14 add)

‘' o: 0 0:0:0:0:0:@
EIIIIIII-IIIIIII-IIIIIII.IIIIIII-IIIIIII-IIIIIII.IIIIIII.IIIIIII’I
. 0: 0: 0:0:0:0:0:60
}IIIIIII‘IIIIIII‘IIIIIII! IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
‘o0 0i0:i0i0:i0ie@
}IIIIIIIiIIIIIIIiIIIIIIIiIIIIIIIilllllllilllllllilllllll IIIIIIIII
' 9: 0 0:0:0:0:0:6e
E.IIIIIII‘IIIIIII‘IIIIIII; IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
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llllllll
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
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------------------------------------------------------------------

mip-map texels: level LdJ + 1
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Anisotropic Filtering

At grazing angles, samples may be stretched out by (very) different amounts along 1z and v

25 =) 75

I texture space viewed from camera
w/ perspective projection

Overblurring in
u direction

Common solution: combine
multiple MIP map samples
(even more arithmetic/bandwidth!)

isotropic Filtering anisotropic Filtering
(trilinear) CMU 15-462/662



Texture Sampling Pipeline

1.
2.

3.
4,

Compute u and v from screen sample (x, y) via barycentricinterpolation

du du dv dv

Approximate o A dy by taking differences of screen-adjacent samples

Compute mip map level d

Convert normalized [ O, 1 | texture coordinate (¢, v) to pixel locations
(U, V) € [W, H]intexture image

. Determine addresses of texels needed for filter (e.g., eight neighbors for trilinear)
. Load texels into local registers

5
6
1.
8. (...even more work for anisotropic filtering...)

Perform tri-linear interpolation according to (U, V, d)

Takeaway: high-quality texturing requires far more work than just looking up
a pixel in animage! Each sample demands significant arithmetic & bandwidth

For this reason, graphics processing units (GPUs) have dedicated, fixed-
function hardware support to perform texture sampling operations

(MU 15-462/662



Perspective & Texture Mapping—Summary

turns 3D primitives into 2D primitives that can be
rasterized

- used to manage clipping, Z-fighting
Once we have 2D primitives, can interpolate attributes across vertices using

Important example: , used to copy pieces of a 2D image
onto a 3D surface
Careful is needed to avoid aliasing

- Keyidea: what’s the average color covered by a pixel?

- For magnification, canjustdo a lookup

- For minification, use to compute averages ahead of time
- a stores averages at different levels
- blend between levels using

- At grazing angles, needed to deal w/“stretching” of
samples

- In general, no perfect solution to aliasing! Try to balance quality & efficiency
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Next Time: Depth & Transparency
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