
Computer Graphics
CMU 15-462/15-662

Perspective Projection and
Texture Mapping

 CMU 15-462/662

Note: There is a lot of material in
these slides. We will likely not work
through all of this in one class, but
what we don’t get to, we’ll pick up
next week, so let’s see how it goes!

 CMU 15-462/662

Perspective & Texture
▪ PREVIOUSLY:

- rasterization
(how to turn primitives into pixels)

- transformations
(how to manipulate primitives in space)

▪ TODAY:
- see where these two ideas come

crashing together!
- revisit perspective transformations
- talk about how to map texture onto a

primitive to get more detail
- …and how perspective creates

challenges for texture mapping!

 CMU 15-462/662

Perspective Projection

 CMU 15-462/662

Perspective projection

distant objects
appear smaller

parallel lines
converge at
the horizon

 CMU 15-462/662

Early painting: incorrect perspective

Carolingian painting, 8-9th century

Evolution toward correct perspective

Masaccio, c.1427

Brunelleschi, c. 1428Lorenzetti, c. 1344

 CMU 15-462/662

Later… rejection of proper perspective projection

Picasso, 1910

 CMU 15-462/662

Return of perspective in computer graphics

 CMU 15-462/662

Rejection of perspective in computer graphics

 CMU 15-462/662

Transformations: From Objects to the Screen

original description
of objects

[WORLD COORDINATES]

all positions now expressed
relative to camera; camera
is sitting at origin looking

down -z direction

z
x

y

[VIEW COORDINATES]

(-1,-1,-1)

everything visible to the
camera is mapped to unit

cube for easy “clipping”

(1,1,1)

[CLIP COORDINATES]

(0, 0)

(w, h)

coordinates stretched to match image
dimensions (and flipped upside-down)

[IMAGE COORDINATES]

(-1,-1)

(1,1)

unit cube mapped to unit
square via perspective divide

[NORMALIZED COORDINATES]

2D primitives can
now be drawn via

rasterization

 CMU 15-462/662

Review: simple camera transform
Consider camera at , looking down -axis, object given in world coordinates:(4,2,0) x

Q: What spatial transformation puts in the object in a coordinate system where
the camera is at the origin, looking down the axis?−z

y

z

x

(4,2,0)

▪ Translating object vertex positions by (-4, -2, 0) yields position relative to camera
▪ Rotation about by gives position of object in new coordinate system where

camera’s view direction is aligned with the axis
y π/2

−z

Construct vectors , orthogonal to
– e.g., with as “up vector”, let
We need one more basis:
Normalize everything:

u v w
y u := y × w

v := w × u

û := u
∥u∥ v̂ := v

∥v∥ ŵ := w
∥w∥

 CMU 15-462/662

Camera looking in a different direction
Now consider a camera looking in a direction w ∈ ℝ3

Q: What transform places in the object in a coordinate system where the
camera is at the origin and the camera is looking directly down the z axis?

y

z

x

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

4

Form a matrix with basis vectors in rows

 maps to -axis, to -axis, to -axis R û x v̂ y ŵ z

R =
̂ux ̂uy ̂uz

̂vx ̂vy ̂vz

ŵx ŵy ŵz

Find basis mapping
 to the -axis, to the -axis, to -axis

Construct vectors , orthogonal to
– e.g., with as “up vector”, let

We need one more basis:

Normalize everything as before

û x v̂ y −ŵ z
u v −w

y
u := y × (−w) = w × y

v := − w × u = u × w

 CMU 15-462/662

Camera looking in a different direction
Now consider a camera looking in a direction w ∈ ℝ3

Q: What change do we need to make so that the camera is looking down -z?

y

z

x

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

4

Form a matrix with basis vectors in rows

 maps to -axis, to -axis, to -axis R û x v̂ y ŵ −z

R =
̂ux ̂uy ̂uz

̂vx ̂vy ̂vz

̂−wx ̂−wy ̂−wz

 CMU 15-462/662

View frustum

“pinhole”
(0,0,0)

z

x

y

-nearz
-farz

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

View frustum is region the camera can see:

Top / bottom / left / right planes correspond to four sides of the image
Near / far planes correspond to closest/furthest thing we want to draw

 CMU 15-462/662

Clipping
▪ “Clipping” eliminates triangles not visible to the camera / in view frustum

- Don’t waste time rasterizing primitives (e.g., triangles) you can’t see!

- Discarding individual fragments is expensive (“fine granularity”)

- Makes more sense to toss out whole primitives (“coarse granularity”)

- Still need to deal with primitives that are partially clipped…

image credit: Jason L. McKesson (https://paroj.github.io/gltut/)

don’t draw

draw

= in frustum

https://paroj.github.io/gltut/

 CMU 15-462/662

Near/Far Clipping

floating point has more “resolution” near zero—hence more precise resolution of primitive-primitive intersection

near = 10-1

far = 103

“Z-fighting”

near = 10-5

far = 105

▪ Why have near/far clipping planes?

- Some primitives (e.g., triangles) may have vertices both in front & behind eye!
(Causes headaches for rasterization, e.g., checking if fragments are behind eye)

- Also important for dealing with finite precision of depth buffer / limitations on
storing depth as floating point values

Mapping frustum to unit cube

z

x

y

-nearz
-farz

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

Before projecting to 2D, map view frustum to cube :[−1,1]3

z

x

y

(-1,-1,-1)

(1,1,1)

Why do we do this?
Makes clipping much easier!
- just discard points outside range [-1,1]
- need to think about partially-clipped triangles
Q: How can we express this mapping as a matrix?
A: Solve for unknown entries of Axi = yi A

 = leftl
 = rightr

 = bottomb
 = topt

 = nearn
 = farf

(orthographic projection)

translate
to origin

scale to
size 2

 CMU 15-462/662

Matrix for Perspective Transform
Recall our basic perspective projection matrix

objects shrink
in distance

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

Full perspective matrix takes geometry of view frustum into account:

For a derivation: http://www.songho.ca/opengl/gl_projectionmatrix.html

 = leftl
 = rightr

 = bottomb
 = topt

 = nearn
 = farf

 CMU 15-462/662

Review: screen transformation
Had one last transformation in the rasterization pipeline:
transform from 2D viewing plane to pixel coordinates

Projection will take points to [-1,1] x [-1,1] on the z = 1 plane;
transform into a W x H pixel image

Lecture 3 Math

x

f(x)(0,0)

(1,1)

“normalized device coordinates”

(-1,-1)

Lecture 3 Math

x

f(x)

W

H (W,H)

(0,0)
image space

Step 2: translate by (1,1)
Step 3: scale by (W/2,H/2)

Step 1: reflect about x-axis

 CMU 15-462/662

Transformations: From Objects to the Screen

original description
of objects

[WORLD COORDINATES]

2D primitives can now
be drawn via
rasterization

(-1,1)

(1,1)

unit cube mapped to unit
square via perspective divide

[NORMALIZED COORDINATES]

perspective
divide

everything visible to the
camera is mapped to unit

cube for easy “clipping”

(-1,-1,-1)

(1,1,1)

[CLIP COORDINATES]

projection
transform

all positions now expressed
relative to camera; camera
is sitting at origin looking

down -z direction

z
x

y

[VIEW COORDINATES]

view
transform

(0, 0)

(w, h)

coordinates stretched to match image
dimensions (and flipped upside-down)

[IMAGE COORDINATES]

screen
transform

 CMU 15-462/662

So, how do we draw nice primitives?

 CMU 15-462/662

Coverage(x,y)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x

Previously discussed how to sample
coverage given the 2D position of the
triangle’s vertices.

x

 CMU 15-462/662

Consider sampling color(x,y)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

green [0,1,0]

blue [0,0,1]

red [1,0,0]

x

What is the triangle’s color at the point ?

Lecture 3 Math

Rotations arbitrary:

u� v �w

R�1 = RT

R =

2

4
ux vx wx

uy vy wy

uz vz wz

3

5

R�1 = RT =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

RTu =
⇥
u · u v · u w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w w ·w

⇤T
=

⇥
0 0 1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Homogeneous:

x =
⇥
xx xy 1

⇤T

wx =
⇥
wxx wxy w

⇤T

Projection:

x

x2D =
⇥
xx/xz xy/xz

⇤T

x =
⇥
xx xy xz 1

⇤

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
xx xy xz xz

⇤T

x2D-H =
⇥
xx xy xz

⇤T

x2D =
⇥
xx/xz xy/xz

⇤T

Standard strategy: interpolate color values at vertices.

 CMU 15-462/662

Linear interpolation in 1D
Suppose we’ve sampled values of a function f(x) at points xi, i.e., fi := f(xi)
Q: How do we construct a function that “connects the dots” between xi and xi+1?

 CMU 15-462/662

Linear interpolation in 2D
Suppose we’ve likewise sampled values of a function at points in 2D

Q: How do we “connect the dots” this time? E.g., how do we fit a plane?

f(p) pi, pj, pk

pi = (xi, yi)

 CMU 15-462/662

Linear interpolation in 2D
▪ Want to fit a linear (really, affine) function to three values

▪ Any such function has three unknown coefficients a, b, and c:

▪ To interpolate, we need to find coefficients such that the
function matches the sample values at the sample points:

▪ Yields three linear equations in three unknowns. Solution?

This is ugly. There has to be a better way to think about this…

 CMU 15-462/662

1D Linear Interpolation, revisited
▪ Let’s think about how we did linear interpolation in 1D:

▪ Can think of this as a linear combination of two functions:

▪ As we move closer to t=0, we approach the value of f at xi

▪ As we move closer to t=1, we approach the value of f at xj

2D Linear Interpolation, revisited
▪ We can construct analogous functions for a triangle
▪ For a given point x, measure the distance to each edge; then

divide by the height of the triangle:

Q: Is this the same as the (ugly) function we found before?
Interpolate by taking linear combination:

 CMU 15-462/662

2D Interpolation, another way
▪ I claim we can also get the same three basis

functions as a ratio of triangle areas:

Q: Do you buy it? (Why or why not?)

Barycentric Coordinates
▪ No matter how you compute them, the values of the three functions

, , for a given point are called barycentric coordinates

▪ Can be used to interpolate any attribute associated with vertices.
(color*, texture coordinates, etc.)

▪ Importantly, these same three values fall out of the half-plane tests
used for triangle rasterization! (Why?)

▪ Hence, get them for “free” during rasterization

ϕi(x) ϕj(x) ϕk(x)

*Note: we haven’t explained yet how to encode colors as
numbers! We’ll talk about that in a later lecture…

 CMU 15-462/662

Perspective-incorrect interpolation
Due to perspective projection (homogeneous divide), barycentric interpolation of values
on a triangle with different depths is not an affine function of screen XY coordinates

screen

a0

a1

(a0 + a1)/2

Want to interpolate attribute values linearly in 3D object space, not image space.

 CMU 15-462/662

Example: perspective incorrect interpolation
Consider a quadrilateral split into two triangles:

If we compute barycentric coordinates using 2D (projected) coordinates,
leads to (derivative) discontinuity in interpolation where quad was split

 CMU 15-462/662

Perspective Correct Interpolation
▪ Goal: interpolate some attribute ɸ at vertices

▪ Basic recipe:

- Compute depth z at each vertex

- Evaluate Z := 1/z and P := ɸ/z at each vertex

- Interpolate Z and P using standard (2D) barycentric coords

- At each fragment, divide interpolated P by interpolated Z
to get final value

For a derivation, see Low, “Perspective-Correct Interpolation”

 CMU 15-462/662

Texture Mapping

 CMU 15-462/662

Many uses of texture mapping
Define variation in surface reflectance

Pattern on ball Wood grain on floor

 CMU 15-462/662

Describe surface material properties

Multiple layers of texture maps for color, logos,
scratches, etc.

 CMU 15-462/662

Normal & Displacement Mapping

Use texture value to perturb surface normal to
“fake” appearance of a bumpy surface

normal mapping

dice up surface geometry into tiny triangles &
offset positions according to texture values

 (note bumpy silhouette and shadow boundary)

displacement mapping

 CMU 15-462/662
Grace Cathedral environment map Environment map used in rendering

Represent precomputed lighting and shadows

 CMU 15-462/662

Texture coordinates
“Texture coordinates” define a mapping from
surface coordinates to points in texture domain
Often defined by linearly interpolating texture
coordinates at triangle vertices

(0.0, 0.0) (1.0, 0.0)

(1.0, 1.0)(0.0, 1.0)

(0.0, 0.5) (1.0, 0.5)(0.5, 0.5)

(0.5, 1.0)

(0.5, 0.0)

Suppose each cube face is split into eight triangles,
with texture coordinates (u,v) at each vertex

Linearly interpolating texture
coordinates & “looking up” color
in texture gives this image:

A texture on the [0,1]2 domain can
be specified by a 2048x2048 image

(location of highlighted triangle
in texture space shown in red)

example: texture this cube

 CMU 15-462/662

Visualization of texture coordinates

red

green

Associating texture coordinates with colors helps to visualize mapping(u, v)

(0,1)

(0,0) (1,0)black

 CMU 15-462/662

More complex mapping

u

v

Each vertex has a coordinate (u,v) in texture space
(Actually coming up with these coordinates is another story!)

Visualization of texture coordinates Triangle vertices in texture space

 CMU 15-462/662

Texture mapping adds detail

u

vRendered result Triangle vertices in texture space

Each triangle “copies” a piece of the image back to the surface

 CMU 15-462/662

Texture mapping adds detail
rendering with texturerendering without texture texture image

zo
om

 CMU 15-462/662

Another example: periodic coordinates

Q: Why do you think texture coordinates might repeat over the surface?

 CMU 15-462/662

Textured Sponza

A: Want to tile a texture many times
(rather than store a huge image!)

 CMU 15-462/662

Texture Sampling 101
▪ Basic algorithm for texture mapping:

- for each pixel in the rasterized image:
- interpolate coordinates across triangle
- sample (evaluate) texture at interpolated
- set color of fragment to sampled texture value

(u, v)
(u, v)

…sadly not this easy in general!

 CMU 15-462/662

Recall: aliasing
Undersampling a high-frequency signal can result in aliasing

f(x)

x

 CMU 15-462/662

Visualizing texture samples

Sample positions are uniformly distributed in screen space
(rasterizer samples triangle’s appearance at these locations)

u

v

sample positions in screen space

1 2 3 4 5

Sample positions in texture space are not uniform
(texture function is sampled at these locations)

sample positions in texture space

1
2

3
4

5

Since triangles are projected from 3D to 2D, pixels in screen space
will correspond to regions of varying size & location in texture

Irregular sampling pattern makes it hard to avoid aliasing!

 CMU 15-462/662

Magnification vs. Minification

Figure credit: Akeley and Hanrahan

▪ Magnification (easier):
- Example: camera is very close to scene object
- Single screen pixel maps to tiny region of texture
- Can just interpolate value at screen pixel center

▪ Minification (harder):
- Example: scene object is very far away
- Single screen pixel maps to large region of texture
- Need to compute average texture value over pixel to avoid aliasing

Bilinear interpolation (magnification)
How can we “look up” a texture value at a non-integer location ?(u, v)

linear (each row)

bilinear

nearest
neighbor fast but ugly:

just grab value of nearest
“texel” (texture pixel) Q: What happens if we

interpolate vertically first?

 CMU 15-462/662

Aliasing due to minification

 CMU 15-462/662

“Pre-filtering” texture (minification)

 CMU 15-462/662

Texture prefiltering — basic idea
Texture aliasing often occurs because a
single pixel on the screen covers many
pixels of the texture

If we just grab the texture value at the
center of the pixel, we get aliasing (get a
“random” color that changes if the
sample moves even very slightly)

Ideally, would use the average texture
value—but this is expensive to compute

Instead, we can pre-compute the
averages (once) and just look up these
averages (many times) at run-time

But which averages should we store? Can’t precompute them all!

 CMU 15-462/662

Prefiltered textures

Actual texture: 64x64 image

Actual texture: 700x700 image
(only a crop is shown)

...
...

Texture minification

Texture magnificationQ: Are two resolutions enough? A: No…

 CMU 15-462/662

MIP map (L. Williams 83)

Level 2 = 32x32 Level 3 = 16x16

Level 4 = 8x8 Level 5 = 4x4

Level 1 = 64x64Level 0 = 128x128

Level 6 = 2x2 Level 7 = 1x1

Rough idea: store prefiltered image at “every possible scale”
Texels at higher levels store average of texture over a region of texture space (downsampled)
Later: look up a single pixel from MIP map of appropriate size

 CMU 15-462/662

Mipmap (L. Williams 83)

Williams’ original proposed
mip-map layout “Mip hierarchy”

level = d

u

v

Slide credit: Akeley and Hanrahan

Q: What’s the storage overhead of a mipmap?

 CMU 15-462/662

Computing MIP Map Level

Screen space Texture space

Even within a single triangle, may want to sample from different MIP map levels:

u

v

Q: Which pixel should sample from a coarser MIP map level: the blue one, or the red one?

 CMU 15-462/662

Computing Mip Map Level
Compute differences between texture coordinate values at neighboring samples

du
dx = u10 − u00

dv
dx = v10 − v00

du
dy = u01 − u00

dv
dy = v01 − v00

mip-map level: d = log2 L

L
du/dx

dv/dx

L2
x = (du

dx)
2

+ (dv
dx)

2
L2

y = (du
dy)

2
+ (dv

dy)
2

L = max(L2
x , L2

y)

(u, v)10

(u, v)01

(u, v)00

Lx

Ly

 CMU 15-462/662

Visualization of mip-map level
(clamped to nearest level)d

 CMU 15-462/662

Sponza (bilinear resampling at level 0)

 CMU 15-462/662

Sponza (bilinear resampling at level 2)

 CMU 15-462/662

Sponza (bilinear resampling at level 4)

 CMU 15-462/662

Sponza (MIP mapped)

retains detail in
the foreground

nicely filters
the background

 CMU 15-462/662

Problem with basic MIP mapping
▪ If we just use the nearest level,

can get artifacts where level
“jumps”—appearance sharply
transitions from detailed to
blurry texture

▪ IDEA: rather than clamping the
MIP map level to the closest
integer, use the original
(continuous) MIP map level

▪ PROBLEM: we only computed a
fixed number of MIP map
levels. How do we interpolate
between levels?

d

clamped d

continuous d

 CMU 15-462/662

Trilinear Filtering
▪ Used bilinear filtering for 2D data;

can use trilinear filtering for 3D data

▪ Given a point ,
and eight closest values

▪ Just iterate linear filtering:

- weighted average along

- weighted average along

- weighted average along

(u, v, w) ∈ [0,1]3

fijk

u
v
w

h0

h1

g00 = (1 − u)f000 + uf100
g10 = (1 − u)f010 + uf110
g01 = (1 − u)f001 + uf101
g11 = (1 − u)f011 + uf111

h0 = (1 − v)g00 + vg10

h1 = (1 − v)g01 + vg11

(1 − w)h0 + wh1

image adapted from: Akeley and Hanrahan

(u, v, w)

g00

g10

g01

g11

f000 f100

f110f010

f001 f101

f111f011

 CMU 15-462/662

MIP Map Lookup

mip-map texels: level ⌊d⌋ + 1

mip-map texels: level ⌊d⌋

▪ MIP map interpolation works essentially
the same way

- not interpolating from 3D grid

- interpolate from two MIP map levels
closest to

- perform bilinear interpolation
independently in each level

- interpolate between two bilinear
values using

d ∈ ℝ

w = d − ⌊d⌋

Bilinear interpolation:
four texel reads
3 linear interpolations (3 mul + 6 add)

Trilinear/MIP map interpolation:
eight texel reads
7 linear interpolations (7 mul + 14 add)

Starts getting expensive! (➟ specialized hardware)

 CMU 15-462/662

Anisotropic Filtering

L

L

isotropic Filtering
(trilinear)

anisotropic Filtering

Overblurring in
 directionu

At grazing angles, samples may be stretched out by (very) different amounts along and u v

u

v
.25

.5
.75

.5 .75.25

texture space viewed from camera
w/ perspective projection

Common solution: combine
multiple MIP map samples
(even more arithmetic/bandwidth!)

 CMU 15-462/662

Texture Sampling Pipeline
1. Compute and from screen sample via barycentric interpolation

2. Approximate , , , by taking differences of screen-adjacent samples

3. Compute mip map level
4. Convert normalized texture coordinate to pixel locations

 in texture image
5. Determine addresses of texels needed for filter (e.g., eight neighbors for trilinear)
6. Load texels into local registers
7. Perform tri-linear interpolation according to
8. (…even more work for anisotropic filtering…)

u v (x, y)
du
dx

du
dy

dv
dx

dv
dy

d
[0,1] (u, v)

(U, V) ∈ [W, H]

(U, V, d)

Takeaway: high-quality texturing requires far more work than just looking up
a pixel in an image! Each sample demands significant arithmetic & bandwidth

For this reason, graphics processing units (GPUs) have dedicated, fixed-
function hardware support to perform texture sampling operations

 CMU 15-462/662

Perspective & Texture Mapping—Summary
▪ Perspective projection turns 3D primitives into 2D primitives that can be

rasterized
- View frustum used to manage clipping, Z-fighting

▪ Once we have 2D primitives, can interpolate attributes across vertices using
barycentric coordinates

▪ Important example: texture coordinates, used to copy pieces of a 2D image
onto a 3D surface

▪ Careful texture filtering is needed to avoid aliasing
- Key idea: what’s the average color covered by a pixel?
- For magnification, can just do a bilinear lookup
- For minification, use prefiltering to compute averages ahead of time

- a MIP map stores averages at different levels
- blend between levels using trilinear filtering

- At grazing angles, anisotropic filtering needed to deal w/ “stretching” of
samples

- In general, no perfect solution to aliasing! Try to balance quality & efficiency

 CMU 15-462/662

Next Time: Depth & Transparency

