3D Rotations and Complex
Representations

Computer Graphics
(MU 15-462/15-662

Rotationsin 3D

m What s a rotation, intuitively?
m How do you know a rotation when you see it?
- length/distance is preserved (no stretching/shearing)
- orientation is preserved (e.g., text remains readable)
- originis preserved (otherwise it’s a rotation + translation)

(MU 15-462/662

3D Rotations—Degrees of Freedom

m How many numbers do we need to specify a rotation in 3D?

m Forinstance, we could use rotations around X, Y, Z. But do we
need all three?

m Well, to rotate Pittsburgh to another city (say, Sao Paulo), we
have to specify two numbers: latitude & longitude:

m Do we really need both
latitude and longitude? Or will
one suffice?

m s that the only rotation from
Pittsburgh to Sao Paulo? (How
mar:}l more numbers do we
need?)

NO: We can keep Sao Paulo
fixed as we rotate the globe.

Hence, we MUST have three degrees of freedom.

CMU 15-462/662

Commutativity of Rotations—2D

m In 2D, order of rotations doesn’t matter:

rotate by 40° rotate by 20°

rotate by 20° rotate by 40°

Same result! (“2D rotations commute”)

CMU 15-462/662

Commutativity of Rotations—3D
m Whataboutin 3D?
m Tryitat home—grab a water bottle!

- Rotate 90° around Y, then 90° around Z,
then 90° around X

- Rotate 90° around Z, then 90° around Y,
then 90° around X

- (Was there any difference?)

-

CONCLUSION: bad things can happétif we're not
careful about the order in which we apply rotations!

CMU 15-462/662

Representing Rotations—2D

m First things first: how do we get a rotation matrix in 2D?

(Don’t just requrgitate the formula!)

n Suprose | have a function S(0) that for a given angle 6 gives

me

he point (x,y) around a circle (CCW).

- Right now, | do not care how this function is expressed!*

What's e1 rotated by 0? &é; = S(6)
What's e2 rotated by 0? &, = S(60 + 1/2)
How about u := ae{ + be, ?

u:=aS(0)+ bSO+ t/2)
What then must the matrix look like?

 S(0) S(0+m/2) | =

- cos(6)
~ sin(6)

cos(0+m/2)

sin(+ 7/2)

*L.e., | don’t yet care about sines and cosines and so forth.

CMU 15-462/662

Representing Rotations in 3D—Euler Angles

m How do we express rotations in 3D?

m Oneidea: we know how to do 2D rotations.

m Why not simply apply rotations around the three axes? (X,Y,Z)
m Scheme is called Euler angles Yy

B

“Gimbal Lock” 43 Qy

CMU 15-462/662

Gimbal Lock

m When using Euler angles 6,, 6y, 6;, may reach a configuration
where there is no way to rotate around one of the three axes!

m Recall rotation matrices around three axes:

1 0 0 cosf, O sin6, - cosf, —sinf, 0
R, =1 0 cosf, —sinb, Ry = 0 1 0 R, = | sinf, «cos6, O
0 sinfy cosby - —sinf, 0 cost, 0 0 1

m Product of these matrices represents rotation by Euler angles:

cos 0y, cos 0, — cos 0y, sin 0, sin 6,
RxRyR; = cos 0, sinfy sin 6, + costysinb, cosby cos, —sinb, sinb, sinf, — cos b, sin b,
- —cos by cosb;sinb, +sinbysinf; cosb;sinby + cosbOysinb, sinf, cosbycosb,

m Consider special case 6, =m/2 (so, cos 6,=0, sin 6,=1):

0 0 1
— cosf,sinf, + cosf,sinf, cosOB,cosh, —sinb,sinb, O
- —cosbycosb; +sinbysinf, cosb,sinby + cosbysind, 0 |

CMU 15-462/662

Gimbal Lock, continued
m Simplifying matrix from previous slide, we get

_ -
no matter how we adjust 6,, 0, | , . 0
can only rotate in one plane! | '\ | Y U

.

Q: Wha ds‘matrix do?

m We are now “locked” into a single axis of rotation
m Nota great design for airplane controls!

g

>

N
|

(MU 15-462/662

Rotation from Axis/Angle

m Alternatively, there is a general expression for a matrix that
performs a rotation around a given axis u by a given angle 0:

"~ cosO+uy(1—cosh) uyuy (1 —cosf) —u,sin uyuz (1 —cosf)+ u,sin6"
Uyly (1 —cos) + u;sin 0 cos 8 + ui (1 —cos0) Uyl (1 —cos0) — uysind
Uzly (1 —cos@) —uysing uyuy, (1 —cost) + uysinf cosf 4+ u? (1 —cosf)

Just memorize this matrix! :-)

...we'll see a much easier way, later on.

CMU 15-462/662

Complex Analysis—Motivation

m Natural way to encode geometric transformations in 2D
m Simplifies code / notation / debugging / thinking
m Moderate reduction in computational cost/bandwidth/storage

m Fluency with complex analysis can lead into deeper/novel
solutions to problems...

COMPLEX
) |
Z /a+bz
| . C
1
df (JX)
C

Truly: no good reason to use 2D vectors instead of complex numbers... MU 15.462/663

DON'T: Think of these numbers as “complex.”

DO: Imagine we're simply defining additional operations (like dot
and cross).

Imaginary Unit

nonsense!

More importantly: obscures geometric meaning.

CMU 15-462/662

Imaginary Unit—Geometric Description

Imaginary unit is just a quarter-turn
in the counter-clockwise direction.

CMU 15-462/662

Complex Numbers

m Complex numbers are then just 2-vectors

m Instead of eq,e;, use
m Otherwise, behaves exactly like a real 2-dimensional space

REAL

ll1 n

and

€2

A

]RZ

€1

/ (a,0)

...except that we're also
new notion of the produc

{

“un
|

COMPLEX

to denote the two bases

ZA

/

|
a-+bi

C

1

>

oing to get a very useful
between two vectors.

CMU 15-462/662

Complex Arithmetic

m Same operations as before, plus one more:

Z Z1 '—I— Z9 Z
Z
1 1
vector scalar complex
addition multiplication multiplication

m Complex multiplication: “POLAR FORM™*:

have to he more
_ angles add 4] = (7’1; 91) careful here!
m magnitudes multiply 22 1= (r2,02) \l

7123 = (r112,61 + 03)

*Not quite how it really works, but basicidea is right. MU 15-462/662

Complex Product—Rectangular Form

m Complex product in“rectangular” coordinates (1, 1):
z1 = (a + b1)

L) = (C T dl) two quarter turns—
same as -1

712> = ac + adi + bci + bdi)=
(ac — bd) + (ad + be)t.

T f “ —+ l
/| n "3 . /4 / a bl
real part Imaginary part

Re(z12») Im(z12»)

m We used a lot of “rules” here. Can you
justify them geometrically?

m Does this product agree with our
geometric description (last slide)?

CMU 15-462/662

Complex Product—Polar Form

m Perhaps most beautiful identity in math:
e’ +1=0

m Specialization of Euler’s formula:

0 __ ' —
e’ = COS(9) =+ ZSIH(Q) Leonhard Euler
(1707-1783)

m (an use to “implement” complex product:
71 = ae’?, 2z, = be'?

712, = abe'(09)

\

(as with real exponentiation, exponents add)

Q: How does this operation differ from our earlier, “fake” polar multiplication?

CMU 15-462/662

2D Rotations: Matrices vs. Complex
m Suppose we want to rotate a vector u by an angle 6, then by

an angle @.
REAL / RECTANGULAR COMPLEX / POLAR
u=(x,v) _ | cos® —sin6 L
g A | sinf cosf U = 7’39
B__cosgb —sin¢g | a—=¢e'
~ | sing cos¢p h— pl¢
| xcosf —ysin@ -
Au= - xsinb +ycosbO abu :rel(OmQ.gb).
BAy — - (xcosf —ysinf)cosd — (xsinf +ycosh)sing
u = ' (xcost —ysin®)sing + (xsinf +ycosd)cos¢d
— - - -some trigonometry - - - =
BAg _ | Xcos(0+¢) —ysin(0+¢) |
- xsin(6 + ¢) +ycos(0 +¢)

CMU 15-462/662

Pervasive theme in graphics:

Sure, there are often many
“equivalent” :

...But why not choose the one
that makes life easiest*?

*0r most efficient, or most accurate... CMU 15-462/662

Quaternions

m TLDR: Kind of like complex numbers but for 3D rotations
m Weird situation: cant do 3D rotations w/ only 3 components!

William Rowan Hamilton
(1805-1865)

v Nt Hamllton)

. T . T TP N‘\.‘ [

— - ——

Here as he walked by:54

on the 16th of October 1843
Sir William Rowan Hamxlton
in a flash of genius discovered
the ﬁmdamental formula fo e

: \u

quatern jOn mMu Itxphcatlo 13
-

i’= j’= R*= ijR= -1 ¥
& Lut it on astone of this bx‘id

.. y
u—-—rm tx.hz.-

(MU 15-462/662

Quaternions in Coordinates

m Hamilton’s insight: in order to do 3D rotations in a way that
mimics complex numbers for 2D, actually need FOUR coords.

m Onereal, three imaginary:

/IH c— Span({1, Z/]I k})
“H”is for Hamilton! g—=da + b1 + C] +dk € H

m Quaternion product determined by e
1> =1 =k* =1k = -1
together w/ “natural” rules (distributivity,

associativity, etc.)
k
m WARNING: product no longer commutes! i
Forg,p e H, gp # pg i Ifmg[

| |
| I
| |
| |
| |
| |
I l |
| Ny /. |
| I
| |
| |
| |
| |
| |
| |

(Why might it make sense that it doesn’t commute?) - - - - _ - _ ___
(MU 15-462/662

Quaternion Product in Components

m Given two quaternions
g = a1+ by

C1]

dik

D = dy + by1 4 o] 4 dok

m (Can express their product as

qp = ayaz — biby — c1cp — dqds

——(&Zlbz —+ b1a2 —
+(a1cp — bidy -

- c1dy — dycp)1
- C1d? -+ dlbz)]

—|—(&lld2 + bycr — c1by + dlaz)k

...fortunately there is a (much) nicer expression.

CMU 15-462/662

Quaternions—Scalar + Vector Form

m [f we have four components, how do we talk about pts in 3D?

Natural idea: we have three imaginary parts—why not use
these to encode 3D vectors?

(x,1y,z) — 0+ x1+y; + zk

Alternatively, can think of a quaternion as a pair

(scalar, vector) € H
0 M

R R’
Quaternion product then has simple(r) form:
(a,u)(b,v) = (ab—u-v,av+bu+u x v)

For vectors in R3, gets even simpler:
uv=uXxXv—u-v

CMU 15-462/662

3D Transformations via Quaternions

m Main use for quaternions in graphics? Rotations.
m Consider vector x (“pure imaginary”) and unit quaternion q:

X9 ~—ou always expresses

some rotation

CMU 15-462/662

Rotation from Axis/Angle, Revisited

m Given axis u, angle 0, quaternion q representing rotation is

g
g =cos(0/2)+sin(6/2)u 1

m Much easier to remember (and manipulate) than matrix!

"~ cosO+uy(1—cosb) uyuy (1 —cosf) —u,sin uyuz (1 —cosf)+ u,sin6"
Uyly (1 —cos) + u;sin 0 cos 8 + ui (1 —cos0) Uyl (1 —cos0) — uysind
Uzly (1 —cos@) —uysing u,uy, (1 —cost) + uysint cosf 4+ u? (1 —cosf)

CMU 15-462/662

Interpolating Rotations

m Suppose we want to smoothly interpolate between two
rotations (e.g., orientations of an airplane)

m Interpolating Euler angles can yield strange-looking paths,
non-uniform rotation speed, ...

m Simple solution* w/ quaternions: “SLERP” (spherical linear
interpolation):

Slerp(qo,q1,t) = qo(qo 'q1)", t € [0,1]

*Shoemake 1985, “Animating Rotation with Quaternion Curves” CMU 15-462/662

Where else are (hyper-)complex numbers
useful in computer graphics?

Generating Coordinates for Texture Maps

Complex numbers are natural lanquage for
angle-preserving (“conformal”) maps

Preserving angles in texture well-tuned to human perception...

CMU 15-462/662

Useless-But-Beautiful Example: Fractals

m Defined in terms of iteration on (hyper)complex numbers:

(Will see exactly how this works later in class.)

CMU 15-462/662

Not Covered: Lie algebras/Lie Groups

m Another super njce/useful perspective

on rotations is via “Lie groups” and “Lie
algebras

m More than we have time to cover!

m Many benefits similar to quaternions
(easy axis/angle representation, no
gimbal lock, ...)

m %ilce for encoding angles bigger than

m Also very useful for taking averages of
rotations

m (Very)short story:

- exponential ma{)t,akes ou from
axis/angle to rotation matrix

- Ioct;ar,ithmic map takes you from
rotation matrix to axis/angle

CMU 15-462/662

Rotations and Complex Representations—Summary

m Rotations are surprisingly complicated in 3D!

m Today, looked at how complex representations
help understand/work with rotations in 3D (& 2D)

m In general, many possible representations:

- Eulerangles A
1

- axis-angle

- quaternions Z ,\9

- Lie group/algebra (not covered)
- geometricalgebra (not covered)

m There’s no “right” or “best” way—the more you
know, the more you'll be able to do!

CMU 15-462/662

Next time: Perspective & Texture Mapping

(MU 15-462/662

