Spatial Transformations
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Spatial Transformation

m Basically any function that assigns each point a new location

m Today we’'ll focus on common transformations of space
(rotation, scaling, etc.) encoded by linear maps
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Transformations in Computer Graphics

nnnnnnnnnnnnn

B Where are linear transformations

used in computer graphics? = [\ o
m All over the place! My

- Position/deform objects in space
- Move the camera

- Animate objects over time
- Project 3D objects onto 2D images
- Map 2D textures onto 3D objects

- Project shadows of 3D objects onto
other 3D objects
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The Rasterization Pipeline

(W, h) ® ® ® L J a L ] ®

—] e o o/ 8 o o . e o
00 .
Transform/position Project objects onto e e e e e
objects in space the screen :
TODAY Sample triangle coverage

-

Combine saples into final Sample texture maps / Interpolate triangle
image (depth, alpha, ...) evaluate shaders attributes at covered samples
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Review: Linear Maps

Q: What does it meanforamap / : R" — R” tobe linear?

it maps lines to lines, and preserves the origin

preserves vector space operations (addition & scaling)
add first

X,y ———p Xty
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X), f(y) —henadd then add f(xfry)
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Why do we care about /inear transformations?

m Cheap to apply
B Usually pretty easy to solve for (linear systems)

- product of many matrices is a single matrix

- gives uniform representation of transformations
- simplifies graphics algorithms, systems (e.g., GPUs & APIs)

cos 6 sin@ 0O 1 [ a 0 O cos® O sin 6 ] I A11 A12 A13 ]
—sin 6 cos® O 0O b O 0 | 0 o= | Ay A Az
0 0 1 | L 0 0 c i —smnf@ O cos 6 1 i A31 A32 A33 1
rotation scale rotation composite

transformation
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What kinds of linear
transformations can we compose?
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Types of Transformations

What would you call each of these types of transformations?

Q: How did you know that? (Hint: you did not inspect a formula!)
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Invariants of Transformation

A transformation is determined by the invariants it preserves

transformation invariants algebraic description
- bt T - ty) = af(x) + f(y),
linear straight lines / origin Jlaxty
° i £(0) =0
translation differences between pairs of points f(x-y) = x-y

lines through the origin / direction

JX)/(X)| = x/|x]

scaling

of vectors
otation origin / dzstan§es be.rween points / f(x)-f(y)| = |x-y],
orientation det(f) > 0

(Essentially how your brain “knows” what kind of transformation you're looking at...)
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Rotation

Rotations defined by three basic properties:

keeps origin fixed preserves distances  preserves orientation

First two properties together imply that rotations are linear.
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2D Rotations—Matrix Representation

Rotations preserve distances and the origin—hence, a 2D rotation by an
angle & maps each point X to a point f,(X) on the circle of radius | X | :

f(x)

®X

0 | |
] ) 1 cos 6
cos(0+75)| e sin 6
: " Y -
sin(0+75) 0 o
| o /
- —sin@ \9 0
= o
- cosO

m Wheredoes X = (1,0) goif we rotate by & (counter-clockwise)?

m Howaboutx = (0,]1)?

What about a general vector X = (x;, x,)?
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2D Rotations—Matrix Representation

cos 6
sin 6

X1
X = X = X;

So, How do we represent the 2D rotation function f,(X) using a matrix?

cosf — sin(@)] [xl]

sn@  cos(@)] |*2

0 B cos @
1] J1%) = x [sin 0

—sin @
cos @

+ X

£(x) = [
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3D Rotations

m Q:In3D, how do we rotate around the x;-axis?
m A:Just apply the same transformation of x;, x,; keep x; fixed

1 0 0 cos® 0 sin(@) || cos® —sin(6) O
0 cos® —sin(6) 0O 1 O sin@® cos(0) 0
0 sin® cos(0) [| —sin@ O cos(0) 0 0 1
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Rotations—Transpose as Inverse

Rotation will map standard basis to orthonormal basis ¢, ¢,, ¢x:

(0,0,1)

(1,0,0)

Hence, R'R = I or equivalently,RT =R
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Reflections

m Q: Does every matrix O ' O = [ describe a rotation?

B Remember that rotations must preserve the origin, preserve
distances, and preserve orientation

B (Consider for instance this matrix:

-1 0 T B

Q: Does this matrix represent a rotation?
(If not, which invariant does it fail to preserve?)
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Orthogonal Transformations

® |n general, transformations that preserve distances and the
origin are called orthogonal transformations

m Represented by matrices Q'O = |
- additionally preserve orientation: det(Q) > 0
- reverse orientation: det(Q) < O

rotation reflection
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Scaling

m  Each vector u gets mapped to a scalar multiple
- flu)=au, ae€l

B Preserves the direction of all vectors*
u au

ju|  |au]
m (:lIsscaling a linear transformation? A: Yes!

f(bu) = abu = bau = bf(u)
fa+v) =
utv alu+v) =

au + av = / u
fa) + f(v) /u
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Scaling — Matrix Representation

Q: Suppose we want to scale a vectoru = (1, U,, uy) bya .
How would we represent this operation via a matrix?

A: Just build a diagonal matrix D, with a along the diagonal:

a 0 0O U1 au
O a 0O U, | = | au
0O O a U3 aus

D u au

Q: What happens if a is negative?

(MU 15-462/662



Negative Scaling

Fora = — 1, can think of scaling by a as sequence of reflections.
E.g., in 2D:
- —1 O___—l 0| 1 0
0 -1 | | 0 1][0 -1
Since each reflection reverses orientation, orientation is preserved.
What about 3D?
-1 0 0
0 -1 0 |=
0 0 —1

SO =
S = O
—_ O O
| |

—1 0 0] [ 1
0 1 0 0 —
0 0 L ||O

S = O
— O O
| l

Now we have three reflections, and so orientation is reversed!

(MU 15-462/662



Nonuniform Scaling (Axis-Aligned)

m We can also scale each axis by a different amount
- f(uy, uy, uz) = (auy, bu,, cuy), a,b,c € R
m (Q: What's the matrix representation? U,

m A:Justputa, b, c on the diagonal:

a 0 O U1 au
O b O u,» | = | bur
0 0 ¢ || us o cuz

Ok, but what if we want to scale along some other axes?
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Nonuniform Scaling

B |dea.We could:
- rotate to the new axes (R)

- apply a diagonal scaling (D)

- rotate back* to the original axes (R ')

m Notice that the overall transformation is
represented by a symmetric matrix

Q: Do all symmetric matrices represent
nonuniform scaling (for some choice of axes)?

*Recall that for a rotation, the inverse equals the transpose: R L= RT CMU 15-462/662



Spectral Theorem

m A:Yes! Spectral theorem says a symmetricmatrix A = A ' has

- orthonormal eigenvectors e, ...,e, € R"

Ae. — ﬂ.e.
- real eigenvalues 4, ..., 4, € R R

m (Can also write this relationshipas AR = RD, where
A
R:[ ey v ey } D =

m Equivalently, A = RDR'

m If A is positive definite (1, > 0), this scaling is positive.
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Shear

m Ashear displaces each point X in a direction u according to its
distance along a fixed vector v:

Juv(X) = X+ (V,x)u

m Q:ls this transformation linear?
m A:Yes—forinstance, can represent it via a matrix

Ayy=I1+uv'

u
Example.

u = (cos(7),0,0) 1
v=(0,1,0) 4. _—1o
0

u,v —
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Composite Transformations

From these basic transformations (rotation, reflection, scaling, shear...)
we can now build up composite transformations via matrix multiplication:

R (1) S(1)

AW = ROROSO
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How do we decompose a linear
transformation into pieces?
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Decomposition of Linear Transformations

B |ngeneral, no unique way to write a given linear transformation
as a composition of basic transformations!

B However, there are many useful decompositions:
- singular value decomposition
- LU factorization
- polar decomposition

B (Consider for instance this linear transformation:

—.65 52 =70

34 —.11 —.89

25 23 —.69
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Polar & Singular Value Decomposition

For example, polar decomposition decomposes any matrix A into
orthogonal matrix () and symmetric positive-semidefinite matrix P:

rotation/reflection  nonnegative,
nonuniform scaling

e n

Since P is symmetric, can take this further via the spectral
decomposition P = VDV (V orthogonal, D diagonal):

A = QVDVT UDVT

U rotatlon f rotation ’ /DV
axis-aligned ‘—i,

scaling
Result UD V' is called the sinqular value decomposition
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Interpolating Transformations

m How are these decompositions useful for graphics?

m (Consider interpolating between two linear transformations
A, A, of some initial model
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Interpolating Transformations—Linear

One idea: just take a linear combination of the two matrices,
weighted by the current time 7 € [0,1]

A(t) = (1 — DA + 1A,

Hits the right start/endpoints... but looks awful in between!
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Interpolating Transformations—Polar

Better idea: separately interpolate components of polar decomposition.
Ag = QoPy, A1 = Q)P

scaling rotation final interpolation

POy=(1-0Py+tP, QM) =(1-00,+1Q, A= QP
o1 = Q(X(1)

...100ks better!
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Example: Linear Blend Skinning

m Naive linear interpolation also causes artifacts when blending between
transformations on a character (“candy wrapper effect”)

B Lots of research on alternative ways to blend transformations...

LBS: candy-wrapper artifact

S -

Linear Blend Skinning our method Dual Quaternion Skinning

(MU 15-462/662



Translations

m Sofar we've ignored a basic transformation—translations

m Atranslation simply adds an offset u to the given point X:
(X)) =x+u

Q: Is this transformation linear?
(Certainly seems to move us along a line...) '

Let’s carefully check the definition...

JuX+y)=x+y+u fy(ax) = ax+u
JuX) +f(y) =x+y+2u af,(X) = ax + au

A: No! Translation is affine, not linear!
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Composition of Transformations

B Recall we can compose linear transformations via matrix multiplication:
A3 (Az (A1X) )) — (A3A2A1 )X
B [t's easy enough to compose translations—just add vectors:

fus (fup (fuy (X)) = Sy w03 (X)

m  What if we want to intermingle translations and linear
transformations (rotation, scale, shear, etc.)?

AQ(A1X—|—b1) + by, = (AzAl)X+ <A2b1 —|—b2)

B Now we have to keep track of a matrix and a vector

m  Moreover, we'll see (later) that this encoding won't work for other
important cases, such as perspective transformations
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Strange idea:
Maybe translations turn into linear
transformations if we go into the
4th dimension...!
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Homogeneous Coordinates

m  Came from efforts to study perspective

®  |ntroduced by Mobius as a natural way of
assigning coordinates to lines
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®  Show up naturally in a surprising large
number of places in computer graphics:
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- 3D transformations

- perspective projection

- quadric error simplification

- premultiplied alpha

- shadow mapping

- projective texture mapping

- discrete conformal geometry
- hyperbolic geometry

- clipping

- directional lights

e
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Probably worth understanding!
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Homogeneous Coordinates—Basic Idea

m  (Consider any 2D plane that does not pass through the origin 0 in 3D

- Just find the point p where the line L pierces the plane
L

P

Hence, any point ﬁ on the line L can be used to represent the point p.
Q: What does this story remind you of?
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Review: Perspective projection

m Hopefully it reminds you of our “pinhole camera”
m Objects along the same line project to the same point

3D object

pinhole camera

%

If you have an image of a single dot, can’t know where it is!
Only which line it belongs to.

=

2D image
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Homogeneous Coordinates (2D)

m  More explicitly, consider a pointp = (x, y),
and the planez = 1in3D

p
B Any three numbers P = (a, b, ¢) such that
(a/c,bl/c) = (x,y)are homogeneous
coordinates for p L
P

- Eg.,(x,y,1)

- Ingeneral: (cx, cy, c)forc # O

® Hence, two points P, § € R°\{ O} describe

the same pointin 2D (and linein3D)if p = Aq
forsome A #= O

(MU 15-462/662



Translation in Homogeneous Coordinates

Let’s think about what happens to our homogeneous coordinates /15
if we apply a translation to our 2D coordinates p

2D coordinates

Q: What kind of transformation does this look like? ?l
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Translation in Homogeneous Coordinates

m (Can this beright? Let’s check in coordinates...

m Suppose we translate a point p = (p,, p,) by avector
u = (uy, u,)tegetp’ = (p; + uy, pr, + )

B The homogeneous coordinates P = (cp,, cp,, ¢) then
become p’ = (cp; + cuy, cp, + cu,, ¢)

B Notice that we're shifting P by an amount cu that’s
proportional to the distance c along the third axis—a shear

Using homogeneous coordinates, we can represent an affine

transformation in 2D as a linear transformation in 3D
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Homogeneous Translation—Matrix Representation

m To write as a matrix, recall that a shear in the direction
u = (uy, u,) according to the distance along a direction v is

m In matrix form:

Juv(X) = X+ (V,x)u

foy®) = (I+uv') x

B [nourcase, v = (0,0,1) and so we get a matrix

1
0
0

0
1

0

Ui
Uz
1

CP1

cpP2
C

C(Pl -

C(Pz -
C

- uy )
)

1
46/
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Other 2D Transformations in Homogeneous Coordinates

Original shape in 2D can be viewed as 2D rotation «~ rotate around x;

many copies, uniformly scaled by x;

2D scale = scale x; and x,; preserve x;
(Q: what happens to 2D shape if you

scale x|, x,, and x; uniformly?)

A3

2D translate = shear

Now easy to compose all these transformations
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3D Transformations in Homogeneous Coordinates

m Not much changes in three (or more) dimensions: just append one
“homogeneous coordinate” to the first three

m Matrix representations of 3D linear transformations just get an
additional identity row/column; translation is again a shear

cosO O smb O I O s O
0 | 0 0 0O 1 ¢ O
" ‘—sin@OcosGO 0O 0 1 O
0 0 0 | 0O 0 O 1
y i i _
Z
L a 0 0 0 1 0 0 u’
O b 0 O O 1 0 v
0 0 ¢ O 0 0 1 w
0O 0 O 1 0 0 0 1
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Points vs. Vectors

m Homogeneous coordinates have another useful
feature: distinguish between points and vectors n

C
m Consider for instance a triangle with: /L\
3 o L

- verticesa, b, c € |

3

- normal vectorn € |

m Suppose we transform the triangle by appending
“1"to a, b, ¢, n and multiplying by this matrix:

| cos®@ O sin® u | /

0 1 0 v ﬁ
‘ —smO@ 0 cos6® w I
I 0 0 0 1 )

Normal is not orthogonal to triangle! (What went wrong?)
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Points vs. Vectors (continued)

m Let’s think about what happens when we multiply
the normal vector nn by our matrix:

cos@ 0 smO u ni
0 | 0 % 1>
—smB 0 cos@ w n3
0 0 0 Ly 1
m Butwhen we rotate/translate a
triangle, its normal should just
rotate!® - \
ni
m Solution? Just set homogeneous - %
coordinate to zero!
n3
m Translation now gets ignored; 0

normal is orthogonal to triangle

*Recall that vectors just have direction and magnitude—they don't have a “basepoint”! CMU 15-462/662




Points vs. Vectors in Homogeneous Coordinates

m Ingeneral:

- A point has a nonzero homogeneous coordinate (c = 1)

- Avector has a zero homogeneous coordinate (¢ = 0)

m  But wait... what division by c mean when it’s equal to zero?
m Well consider what happensas c — O...

(x,y)/1 (x,v)/0.5 (x,v)/0.25 (x,y)/0.001

(In practice: still need to check for divide by zero!)
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Perspective Projection in Homogeneous Coordinates

m Q:How can we perform
perspective projection™ using
homogeneous coordinates?

m Remember from our pinhole
camera model that the basicidea

was to “divide by Z”

m 50, we can build a matrix that

“copies” the z coordinate into the
homogeneous coordinate

m Division by the homogeneous
coordinate now gives us
perspective projection onto the

planez =1

/'«F({

3D object

(x,y,2) — (x/z,y/2)

1 0 0 0] x
O 1 0 O y
O 0 1 O Z

000 1 0|1

- X/z
— | y/z
1

*Assuming a pinhole camera at (0,0,0) looking down the z-axis

NN = =
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Screen Transformation (OpenGL)

m One last transformation is needed in the rasterization pipeline: transform from
viewing plane to pixel coordinates

m E.g., suppose we want to draw all points that fall inside the square [-1,1] x[-1,1] on
thez=1 plane, into a W x H pixel image

ol

(0,0)

Q: What transformation(s) would you apply?
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Screen Transformation (Vulkan, Direct3D)

m One last transformation is needed in the rasterization pipeline: transform from
viewing plane to pixel coordinates

m E.g., suppose we want to draw all points that fall inside the square [-1,1] x[-1,1] on
thez=1 plane, into a W x H pixel image with upper-left origin.

(0,0) w

ol

(W,H)

Q: What transformation(s) would you apply? (Careful: y is now down!)
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Scene Graph

('1111'1)

m For complex scenes (e.g., more than just a cube!)
scene graph can help organize transformations

(11'111)

m Motivation: suppose we want to build a “cube
creature” by transforming copies of the unit cube 7

(11'11'1)

m Difficult to specify each transformation directly —

m Instead, build up transformations of “lower”
parts from transformations of “upper” parts ( y 4

- E.qg., first position the body
—Then transform upper arm relative to the body
_V

— Then transform lower arm relative to upper arm
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Scene Graph (continued)

m Scene graph stores relative transformations in directed graph

m Each edge (+root) stores a linear transformation (e.g., a 4x4 matrix)
m Composition of transformations gets applied to nodes

head

Ap

A

left arm

right
upper leg

right
lower leg

body

right arm

left
left upper leg
upper leg
@ @ upper leg
A2

left
lower leg left

lower leg

right
lower leg

m Eg., A A,getsapplied to left upperleg; A, A, A to left lower leg

m Keep transformations on a stack to reduce redundant multiplication
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Scene Graph—Example

Often used to build up complex “rig”:

In general, scene graph also includes other models, lights, cameras, ...
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'S

Deussen et al, “Realistic modeling and rendering of plant ecosystems”

- ST e

Instancing

m  What if we want many copies of
the same object in a scene?

m Rather than have many copies
of the geometry, scene graph,
etc., can just put a “pointer”
node in our scene graph

m Like any other node, can specify
a different transformation on
each incoming edge

b - —-
o m mm=

- E o gy,
- "~

. dandelion

~ "

~
" r rmm=m="
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Instancing—Example

™.

barefaoot vix
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Order matters when composing transformations!
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How would you perform these transformations?
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Common task: rotate about a point x

X
[ o
X
Step 1: translate by —x
X X
o ®
Step 2: rotate Step 4: translate by x

Q: What happens if we just rotate without translating first?
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Drawing a Cube Creature

1,1,1)

1,11

Z

('11 11 '1)

Let’s put this all together: starting
with our 3D cube, we want to make

(11 11 '1)

(11'11 1)

a 2D, perspective-correct image of
a “cube creature”

('11'11 '1)

First we use our scene graph to
apply 3D transformations to

(11'11'1)

several copies of our cube %

Then we apply a 3D transformation
to position our camera

image

Then a perspective projection G=(u,)

Finally we convert to image
coordinates (and rasterize) =:

(1,1)

...Easy, right? :-) %%

(-1,-1) v

(0,0)

3D object

(W,H)
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Spatial Transformations—Summary
transformation defined by its invariants

basic nonlinear transformations

scaling
rotation translation
reflection perspective projection
shear

homogeneous coords also distinquish points & vectors

- compose basic transformations to get more interesting ones

- always reduces to a single 4x4 matrix (in homogeneous coordinates)
—simple, unified representation, efficient implementation

- order of composition matters!

- many ways to decompose a given transformation (polar, SVD, ...)

- use scene graph to organize transformations
- use instancing to eliminate redundancy
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Next time: 3D Rotations
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