
Computer Graphics

CMU 15-462/15-662

Lecture 4:

Drawing a Triangle

(and an Intro to Sampling)

 CMU 15-462/662

TODAY: Rasterization
▪ Two major techniques for “getting stuff on the screen”

▪ Rasterization (TODAY)

- for each primitive (e.g., triangle), which pixels light up?

- extremely fast (BILLIONS of triangles per second on GPU)

- harder (but not impossible) to achieve photorealism

- perfect match for 2D vector art, fonts, quick 3D preview, …

▪ Ray tracing (LATER)

- for each pixel, which primitives are seen?

- easier to get photorealism

- generally slower

- much more later in the semester!

 CMU 15-462/662

3D Image Generation Pipeline(s)
▪ Can talk about image generation in terms of a “pipeline”:

- INPUTS — what image do we want to draw?

- STAGES — sequence of transformations from input→output

- OUTPUTS — the final image

VERTICES
A: (1, 1, 1) E: (1, 1,-1)
B: (-1, 1, 1) F: (-1, 1,-1)
C: (1,-1, 1) G: (1,-1,-1)
D: (-1,-1, 1) H: (-1,-1,-1)

EDGES
AB, CD, EF, GH,
AC, BD, EG, FH,
AE, CG, BF, DH

p=(x,y,z)

q=(u,v)

1
z

y

v

INPUT OUTPUT
PERSPECTIVE

PROJECTION

STAGE

LINE

DRAWING

STAGE

E.g., our pipeline from the first lecture:

 CMU 15-462/662

Rasterization Pipeline
▪ Modern real time image generation based on rasterization

- INPUT: 3D “primitives”—essentially all triangles!

- possibly with additional attributes (e.g., color)

- OUTPUT: bitmap image (possibly w/ depth, alpha, …)

▪ Our goal: understand the stages in between*

VERTICES
A: (1, 1, 1) E: (1, 1,-1)
B: (-1, 1, 1) F: (-1, 1,-1)
C: (1,-1, 1) G: (1,-1,-1)
D: (-1,-1, 1) H: (-1,-1,-1)

TRIANGLES
EHF, GFH, FGB, CBG,
GHC, DCH, ABD, CDB,
HED, ADE, EFA, BAF

INPUT

(TRIANGLES)

RASTERIZATION

PIPELINE

OUTPUT

(BITMAP IMAGE)

*In practice, usually executed by graphics processing unit (GPU)

 CMU 15-462/662

▪ Can draw all primitives as triangles

- even points and lines!*

▪ Why?

- can approximate any shape

- always planar, well-defined normal

- easy to interpolate data at corners

- “barycentric coordinates”

▪ Key reason: once everything is reduced to triangles, can focus on
making an extremely well-optimized pipeline for drawing them

Why triangles?

“point”
“line”

* though “diamond-exit” lines and “triangle”
lines don’t cover the same pixels without some

careful special-case handling.

 CMU 15-462/662

The Rasterization Pipeline
Rough sketch of rasterization pipeline:

▪ Reflects standard “real world” pipeline (OpenGL/Direct3D)

– the rest is just details (e.g., API calls); will discuss in recitation

z
x

y

Transform/position objects in
the world

Clip + project objects
onto the screen

(0, 0)

(w, h)

Sample triangle coverage

Interpolate triangle
attributes at covered samples

Sample texture maps /
evaluate shaders

Combine samples into final
image (depth, alpha, …)

 CMU 15-462/662

Let’s draw some triangles on the screen

Question 2: which triangle is closest to
the camera in each pixel? (“occlusion”)

Question 1: what pixels does the triangle overlap?

(“coverage”)

Pixel

 CMU 15-462/662

The visibility problem

Recall the pinhole camera…

Pinhole

Camera

(0,0)

Virtual
Sensor

(x,z)

1

x/z
z-axis

x-axis

 CMU 15-462/662

The visibility problem

Recall the pinhole camera… which we can simplify with a “virtual sensor”:

▪ Visibility problem in terms of rays:

- COVERAGE: What scene geometry is hit by a ray from a pixel through the pinhole?

- OCCLUSION: Which object is the first hit along that ray?

Pinhole

Camera

(0,0)

Virtual
Sensor

(x,z)

1

x/z

z-axis

x-axis

 CMU 15-462/662

Computing triangle coverage

Input:

projected position of triangle vertices: P0, P1, P2

Output:

set of pixels “covered” by the triangle

“Which pixels does the triangle overlap?”

 CMU 15-462/662

What does it mean for a pixel to be covered by a triangle?

Pixel

1

2

3

4

Q: Which triangles “cover” this pixel?

 CMU 15-462/662

One option: compute fraction of pixel area covered by triangle, then
color pixel according to this fraction.

10%

35%

60%

85%

15%

Intuition: if triangle covers 10%
of pixel, then pixel should be
10% red.

 CMU 15-462/662

Coverage gets tricky when considering occlusion

Two regions of triangle 1 contribute to pixel.
One of these regions is not even convex.

1
2 2

1

2

1

Interpenetration of triangles: even trickier

Pixel covered by triangle 1, other
half covered by triangle 2

 CMU 15-462/662

Coverage via sampling
▪ Real scenes are complicated!

- occlusion, transparency, …

- will talk about this more in a future lecture!

▪ Computing exact coverage is not practical

▪ Instead: view coverage as a sampling problem

- don’t compute exact/analytical answer

- instead, test a collection of sample points

- with enough points & smart choice of

sample locations, can start to get a good
estimate

▪ First, let’s talk about sampling in general…

 CMU 15-462/662

Sampling 101: Sampling a 1D signal

x

f(x)

 CMU 15-462/662

Sampling = taking measurements of a signal

x1x0 x2 x3 x4

f(x0)
f(x1) f(x2) f(x3)

f(x4)

f(x)

Below: 5 measurements (“samples”) of f(x)

 CMU 15-462/662

Audio file: stores samples of a 1D signal

time

amplitude

(most consumer audio is sampled 44,100 times per second, i.e., at 44.1 KHz)

 CMU 15-462/662

Reconstruction: given a set of samples, how might
we attempt to reconstruct the original signal ?f(x)

x1x0 x2 x3 x4

f(x0)
f(x1) f(x2)

f(x3)

f(x4)

 CMU 15-462/662

Piecewise constant approximation

x1

f(x)

x0 x2 x3 x4

̂f(x)

 = value of sample closest to ̂f(x) x

 CMU 15-462/662

Piecewise linear approximation

x1x0 x2 x3 x4

f(x)

̂f(x)

 = linear interpolation between values of two closest samples to ̂f(x) x

 CMU 15-462/662

How can we represent the signal more accurately?

x1x0 x2 x3 x4 x5 x6 x7 x8

Sample signal more densely
(increase sampling rate)

 CMU 15-462/662

Reconstruction from denser sampling

= reconstruction via linear interpolation
= reconstruction via nearest

x1x0 x2 x3 x4 x5 x6 x7 x8

 CMU 15-462/662

2D Sampling & Reconstruction
▪ Basic story doesn’t change much for images:

- sample values measure image (i.e., signal) at sample points

- apply interpolation/reconstruction filter to approximate image

original piecewise constant

(“nearest neighbor”)

piecewise bi-linear

 CMU 15-462/662

Sampling 101: Summary
▪ Sampling = measurement of a signal

- Encode signal as discrete set of samples

- In principle, represent values at specific points (though hard to measure in reality!)

▪ Reconstruction = generating signal from a discrete set of samples

- Construct a function that interpolates or approximates function values

- E.g., piecewise constant/“nearest neighbor”, or piecewise linear

- Many more possibilities! For all kinds of signals (audio, images, geometry…)

[Image credit: Wikipedia]

 CMU 15-462/662

For rasterization, what function are we sampling?

coverage(x, y) := {1, triangle contains point (x, y)
0, otherwise

1
0

 CMU 15-462/662

Simple rasterization: just sample the coverage function

Pixel (x,y)

1

2

3

4

Example:

Here I chose the coverage
sample point to be at a
point corresponding to the
pixel center.

= triangle covers sample

= triangle does not cover sample

(x+0.5, y+0.5)

 CMU 15-462/662

Edge cases (literally)

Is this sample point covered by triangle 1? or triangle 2? or both?

1

2

 CMU 15-462/662

Breaking Ties*
▪ When edge falls directly on a screen sample point, the sample is classified as within

triangle if the edge is a “top edge” or “left edge”

- Top edge: horizontal edge that is above all other edges

- Left edge: an edge that is not exactly horizontal and is on the left side of the

triangle. (triangle can have one or two left edges)

*These are the rules used in OpenGL/Direct3D, i.e., in modern GPUs. Source: Direct3D Programming Guide, Microsoft

 CMU 15-462/662

Results of sampling triangle coverage

 CMU 15-462/662

I have a sampled signal, now I want to display it
on a screen

 CMU 15-462/662

Pixels on a screen

LCD display
pixel on my
laptop

Each image sample sent to the display is
converted into a little square of light of
the appropriate color:

(a pixel = picture element)

* Thinking of each LCD pixel as emitting a square of uniform
intensity light of a single color is a bit of an approximation to
how real displays work, but it will do for now.

 CMU 15-462/662

So if we send the display this:

 CMU 15-462/662

We see this when we look at the screen�
(assuming a screen pixel emits a square of perfectly uniform intensity of light)

 CMU 15-462/662

But the real coverage signal looked like this!

 CMU 15-462/662

Aliasing

 CMU 15-462/662

Sampling & Reconstruction
continuous signal

(original)
continuous signal

(approximate)

sample reconstruct

digital information

Goal: reproduce original signal as accurately as possible.

 CMU 15-462/662

1D signal can be expressed as a
superposition of frequencies

f1(x) = sin(𝜋x)

f2(x) = sin(2𝜋x)

f4(x) = sin(4𝜋x)

f(x) = f1(x) + 0.75 f2(x) + 0.5 f4(x)

 CMU 15-462/662

E.g., audio spectrum analyzer shows the
amplitude of each frequency

Intensity of

low-frequencies (bass)

Image credit: ONYX Apps

Intensity of

high frequencies

 CMU 15-462/662

Aliasing in Audio
Get a constant tone by playing a sinusoid of frequency ω:

Q: What happens if we increase ω over time?
ω(t) = 6000 t

Why did that happen?

 CMU 15-462/662

Undersampling high-frequency signals results in aliasing

Low-frequency signal: sampled
adequately for accurate
reconstruction

f1(x)

f2(x)

f3(x)

f4(x)

f5(x)

x

High-frequency signal is
insufficiently sampled:
reconstruction appears to be
from a low frequency signal

“Aliasing”: high frequencies in the original signal masquerade as
low frequencies after reconstruction (due to undersampling)

 CMU 15-462/662

Images can also be decomposed into “frequencies”

SpectrumSpatial domain result

 CMU 15-462/662

Low frequencies only (smooth gradients)

Spectrum (after low-pass filter)

All frequencies above cutoff have 0 magnitude

Spatial domain result

 CMU 15-462/662

Mid-range frequencies

Spatial domain result Spectrum (after band-pass filter)

 CMU 15-462/662

Mid-range frequencies

Spatial domain result Spectrum (after band-pass filter)

 CMU 15-462/662

High frequencies (edges)

Spatial domain result
(strongest edges)

Spectrum (after high-pass filter)

All frequencies below threshold

have 0 magnitude

 CMU 15-462/662

An image as a sum of its frequency components

+ + +

=

 CMU 15-462/662

Spatial aliasing: the function sin(x2 + y2)

(0,0)

Rings in center-left:

Actual signal (low
frequency oscillation)

Right:

aliasing from
undersampling high
frequency oscillation
makes it appear that
rings are low-frequency
(they’re not!)

Middle: ring
frequency
approaches limit of
what we can
represent w/
individual pixels

Figure credit: Pat Hanrahan and Bryce Summers

x

y

 CMU 15-462/662

Temporal aliasing: wagon wheel effect

Camera’s frame rate (temporal sampling rate) is too low for rapidly spinning wheel.

 CMU 15-462/662

Nyquist-Shannon theorem
▪ Consider a band-limited signal: has no frequencies above some threshold

- 1D example: low-pass filtered audio signal

- 2D example: blurred image example from a few slides ago

ω0

▪ The signal can be perfectly reconstructed if sampled with period T = 1 / 2ω0

▪ …and if interpolation is performed using a “sinc filter”

– ideal filter with no frequencies above cutoff (infinite extent!)

sinc(x) = 1
πx sin(πx)

 CMU 15-462/662

▪ Signals are often not band-limited in computer graphics.
Why?

Challenges of sampling in computer graphics

Hint:

▪ Also, infinite extent of “ideal” reconstruction filter (sinc) is
impractical for efficient implementations. Why?

 CMU 15-462/662

Aliasing artifacts in images
▪ Imperfect sampling + imperfect reconstruction

leads to image artifacts

- “Jaggies” in a static image

- “Roping” or “shimmering” of images when animated

- Moiré patterns in high-frequency areas of images

 CMU 15-462/662

How can we reduce aliasing?
▪ No matter what we do, aliasing is a fact of life: any

sampled representation eventually fails to capture
frequencies that are too high.

▪ But we can still do our best to try to match sampling
and reconstruction so that the signal we reproduce
looks as much as possible like the signal we acquire

▪ For instance, if we think of a pixel as a “little square”
of light, then we want the total light emitted to be
the same as the total light in that pixel

- I.e., we want to integrate the signal over the pixel

(“box filter”)

Let’s (approximately) integrate the signal coverage (x,y) by sampling…

 CMU 15-462/662

Initial coverage sampling rate (1 sample per pixel)

 CMU 15-462/662

Increase frequency of sampling coverage signal

 CMU 15-462/662

Supersampling

 CMU 15-462/662

Resampling

Coarsely sampled signalReconstructed signal

(lacks high frequencies)

Dense sampling of
reconstructed signal

Converting from one discrete sampled representation to another

Original signal

(high frequency edge)

 CMU 15-462/662

Resample to display’s pixel resolution�
(Because a screen displays one sample value per screen pixel...)

 CMU 15-462/662

Resample to display’s pixel rate (box filter)

 CMU 15-462/662

Resample to display’s pixel rate (box filter)

 CMU 15-462/662

Displayed result (note anti-aliased edges)

100% 0%

50%

50%

100%

25%100%

 CMU 15-462/662

Recall: the real coverage signal was this

 CMU 15-462/662

Single Sample vs. Supersampling

single sampling 2x2 supersampling

 CMU 15-462/662

Single Sample vs. Supersampling

single sampling 4x4 supersampling

 CMU 15-462/662

Single Sample vs. Supersampling

single sampling 32x32 supersampling

 CMU 15-462/662

Checkerboard — Exact Solution
In very special cases we can compute the exact coverage:

Such cases are extremely rare—want solutions
that will work in the general case!

See: Inigo Quilez, “Filtering the Checkerboard Pattern” & Apodaca et al, “Advanced Renderman” (p. 273)

 CMU 15-462/662

How do we actually evaluate

coverage(x,y) for a triangle?

 CMU 15-462/662

Point-in-triangle test

P0

P1

P2Q: How do we check if a given
point q is inside a triangle?

A: Check if it’s contained in
three half planes associated
with the edges. q

 CMU 15-462/662

Point-in-triangle test

P0

P1

P2Q: How do we check if a given
point q is inside a triangle?

A: Check if it’s contained in
three half planes associated
with the edges. q

 CMU 15-462/662

Point-in-triangle test

P0

P1

P2Q: How do we check if a given
point q is inside a triangle?

A: Check if it’s contained in
three half planes associated
with the edges. q

 CMU 15-462/662

Point-in-triangle test

P0

P1

P2Q: How do we check if a given
point q is inside a triangle?

A: Check if it’s contained in
three half planes associated
with the edges. q

 CMU 15-462/662

Point-in-triangle test

P0

P1

P2Q: How do we check if a given
point q is inside a triangle?

A: Check if it’s contained in
three half planes associated
with the edges.

Half plane test is then an
exercise in linear algebra/
vector calculus:

GIVEN: points Pi, Pj along an edge, and a query point q
FIND: whether q is to the “left” or “right” of the line from Pi to Pj

q

(Careful to consider triangle coverage edge rules…)

 CMU 15-462/662

Traditional approach: incremental traversal

P0

P1

P2Since half-plane check looks
very similar for different
points, can save arithmetic
by clever “incremental”
schemes.

Incremental approach also
visits pixels in an order that
improves memory
coherence: backtrack, zig-
zag, Hilbert/Morton curves,
…

 CMU 15-462/662

Modern approach: parallel coverage tests

P0

P1

P2

Q: What’s a case where the naïve parallel approach is still very inefficient?

• Incremental traversal is very serial;
modern hardware is highly parallel

• Alternative: test all samples in triangle
“bounding box” in parallel

• Wide parallel execution overcomes cost of
extra tests (most triangles cover many
samples, especially when super-sampling)

• All tests share some “setup” calculations

• Modern graphics processing unit (GPU) has
special-purpose hardware for efficiently
performing point-in-triangle tests

 CMU 15-462/662

Naïve approach can be (very) wasteful…

 CMU 15-462/662

Hybrid approach: tiled triangle traversal

Idea: work “coarse to fine”:

- First, check if large blocks
intersect the triangle

- If not, skip this block entirely
(“early out”)

- If the block is contained inside
the triangle, know all samples
are covered (“early in”)

- Otherwise, test individual
sample points in the block, in
parallel

early
out

early
in

This how real graphics hardware works!

 CMU 15-462/662

Can we do even better for this example?

 CMU 15-462/662

Hierarchical strategies in computer graphics

Q: Better way to find finest blocks? A: Maybe: incremental traversal!

 CMU 15-462/662

Summary
• Can frame many graphics problems in terms of sampling and reconstruction

- sampling: turn a continuous signal into digital information

- reconstruction: turn digital information into a continuous signal

- aliasing occurs when the reconstructed signal presents a false sense of

what the original signal looked like

• Can frame rasterization as sampling problem

- sample coverage function into pixel grid

- reconstruct by emitting a “little square” of light for each pixel

- aliasing manifests as jagged edges, shimmering artifacts, …

- reduce aliasing via supersampling

• Triangle rasterization is basic building block for graphics pipeline

- amounts to three half-plane tests

- atomic operation—make it fast!

- several strategies: incremental, parallel, blockwise, hierarchical…

 CMU 15-462/662

Next time: 3D Transformations

