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Last Time: Linear Algebra
Touched on a variety of topics:

Don’t have time to cover everything!

But there are some fantastic lectures online:

3Blue1Brown — Essence of Linear Algebra
Robert Ghrist — Calculus Blue

(Let us know about others online!)
…
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Vector Calculus in Computer Graphics
Today’s topic: vector calculus.


Why is vector calculus important for computer graphics?


- Basic language for talking about spatial relationships, transformations, etc.


- Much of modern graphics (physically-based animation, geometry processing, etc.) 
formulated in terms of partial differential equations (PDEs) that use div, curl, Laplacian...


- As we saw last time, vector-valued data is everywhere in graphics!
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Euclidean Norm
Last time, developed idea of norm, which measures total size, 
length, volume, intensity, etc.

For geometric calculations, the norm we most often care 
about is the Euclidean norm

Euclidean norm is any notion of length preserved by 
rotations/translations/reflections of space.

In orthonormal coordinates:

Not true for all norms!

(Can you think of an example?)

WARNING: This quantity does not encode geometric length unless vectors 
are encoded in an orthonormal basis.  (Common source of bugs!)
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Euclidean Inner Product / Dot Product
Likewise, lots of possible inner products—intuitively, 
measure some notion of “alignment.”

For geometric calculations, want to use inner product that 
captures something about geometry!

For n-dimensional vectors, Euclidean inner product defined as

In orthonormal Cartesian coordinates, 
can be represented via the dot product

WARNING: As with Euclidean norm, no geometric meaning 
unless coordinates come from an orthonormal basis.
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Cross Product
Inner product takes two vectors and produces a scalar

In 3D, cross product is a natural way to take two vectors and 
get a vector, written as “u x v”

Geometrically:

- magnitude equal to parallelogram area

- direction orthogonal to both vectors

- …but which way?

Use “right hand rule”

(Q: Why only 3D?)
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Cross Product, Determinant, and Angle
More precise definition (that does not require hands):

θ is angle between u and v

“det” is determinant of three column vectors

Uniquely determines coordinate formula:

Useful abuse of notation in 2D:

(mnemonic)
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Cross Product as Quarter Rotation
Simple but useful observation for manipulating vectors in 3D: 
cross product with a unit vector N is equivalent to a quarter-
rotation in the plane with normal N:

Q: What is N x (N x u)?

Q: If you have u and N x u, how do you get a rotation by some 
arbitrary angle θ?
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Matrix Representation of Dot Product
Often convenient to express dot product via matrix product:

By the way, what about some other inner product?

E.g., <u,v> := 2 u1 v1 + u1 v2 + u2 v1 + 3 u2 v2

Q: Why is matrix representing inner product always symmetric (AT=A)?
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Matrix Representation of Cross Product
Can also represent cross product via matrix multiplication:

Q: Without building a new matrix, how can we express v x u?

A: Useful to notice that v x u = -u x v (why?).  Hence,

(Did we get 
it right?)
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Determinant
Q: How do you compute the determinant of a matrix?

A: Apply some algorithm somebody told me once upon a time:

Q: No!  What the heck does this number mean?!

Totally obvious… right?
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Determinant, Volume and Triple Product
Better answer: det(u,v,w) encodes (signed) volume of 
parallelepiped with edge vectors u, v, w.

Relationship known as a “triple product formula”

(Q: What happens if we reverse order of cross product?)
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Determinant of a Linear Map
Q: If a matrix A encodes a linear map f, what does det(A) mean?

(First: need to recall how a 
matrix encodes a linear map!)
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Representing Linear Maps via Matrices
Key example: suppose I have a linear map

How do I encode as a matrix?

Easy: “a” vectors become matrix columns:

Now, matrix-vector multiply recovers original map:
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Determinant of a Linear Map
Q: If a matrix A encodes a linear map f, what does det(A) mean?

A: It measures the change in volume.

Q: What does the sign of the determinant tell us, in this case?

A: It tells us whether orientation was reversed (det(A) < 0)

(Do we really need a matrix in order to talk about the determinant of a linear map?)
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Other Triple Products
Super useful for working w/ vectors in 3D.

E.g., Jacobi identity for the cross product:

Why is it true, geometrically?

There is a geometric reason, but not nearly as obvious as det: 
has to do w/ fact that triangle’s altitudes meet at a point.

Yet another triple product: Lagrange’s identity

(Can you come up with a geometric interpretation?)
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Differential Operators - Overview
Next up: differential operators and vector fields.

Why is this useful for computer graphics?

- Many physical/geometric problems expressed in terms of 

relative rates of change (ODEs, PDEs).

- These tools also provide foundation for numerical 

optimization—e.g., minimize cost by following the 
gradient of some objective.

 

 
 

 

*
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Derivative as Slope
Consider a function f(x): R → R

What does its derivative f’ mean?

One interpretation “rise over run”

Corresponds to standard definition:

Careful! What if slope is different 
when we walk in opposite direction?

Differentiable at x0 if f+ = f -.
Many functions in graphics are NOT differentiable!
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Derivative as Best Linear Approximation
Any smooth function f(x) can be expressed as a Taylor series:

Replacing complicated functions with a linear (and 
sometimes quadratic) approximation is a powerful trick 
in graphics algorithms—we’ll see many examples.

constant

constant

linear

linear

quadratic

quadratic
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Derivative as Best Linear Approximation
Intuitively, same idea applies for functions of multiple variables:
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How do we think about derivatives for a 
function that has multiple variables?
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Directional Derivative
One way: suppose we have a function f(x1,x2)

- Take a “slice” through the function along some line

- Then just apply the usual derivative!

- Called the directional derivative

take a small 
step along u
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Gradient
Given a multivariable function            , gradient                    assigns 
a vector at each point:

(Ok, but which vectors, exactly?)

“nabla”
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Gradient in Coordinates
Most familiar definition: list of partial derivatives

I.e., imagine that all but one of the coordinates are just 
constant values, and take the usual derivative

Two potential problems:

– Role of inner product is not clear (more later!)

– No way to differentiate functions of functions F(f) since 

we don’t have a finite list of coordinates x1, …, xn

Still, extremely common way to calculate the gradient…
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Example: Gradient in Coordinates
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Gradient as Best Linear Approximation
Another way to think about it: at each point x0, gradient is the 
vector                       that leads to the best possible approximation

Starting at x0, this term gets:


•bigger if we move in the 
direction of the gradient,


•smaller if we move in the 
opposite direction, and


•doesn’t change if we move 
orthogonal to gradient.
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The gradient takes you uphill…
Another way to think about it: direction of “steepest ascent”

I.e., what direction should we travel to increase value of 
function as quickly as possible?

This viewpoint leads to algorithms for optimization, commonly 
used in graphics.

 

 
 

 

*
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Gradient and Directional Derivative
At each point x, gradient is unique vector                    such that

for all u.  In other words, such that taking the inner product w/

this vector gives you the directional derivative in any direction u.

Can’t happen if function is not differentiable!

(Notice: gradient also depends on choice of inner product...)
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Example: Gradient of Dot Product
Consider the dot product expressed in terms of matrices:

What is gradient of  f  with respect to u?

One way: write it out in coordinates:

In other words:

Not so different from                              !

(equals zero unless i = k)
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Gradients of Matrix-Valued Expressions
EXTREMELY useful in graphics to be able to differentiate 
expressions involving matrices

Ultimately, expressions look much like ordinary derivatives

At least once in your life, work these out meticulously in 
coordinates (to convince yourself they’re true).

Then… forget about coordinates altogether!

Excellent resource: Petersen & Pedersen, “The Matrix Cookbook”
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Advanced*: L2 Gradient
Consider a function of a function                     

What is the gradient of F with respect to f?

Can’t take partial derivatives anymore!


Instead, look for function ∇F such that for all functions u,

What is directional derivative of a function of a function??

Don’t freak out—just return to good old-fashioned limit:

This strategy becomes much clearer w/ a concrete example...
*as in, NOT on the test!  (But perhaps somewhere in the test of life…)
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Advanced Visual Example: L2 Gradient
Consider function                                              for f,g: [0,1]→R

I claim the gradient is:

Does this make sense intuitively?  How can we increase inner 
product with g as quickly as possible?

- inner product measures how well functions are “aligned”

- g is definitely function best-aligned with g!

- so to increase inner product, add a little bit of g to f

(Can you work this 
solution out formally?)
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Advanced Example: L2 Gradient
Consider function                                         for arguments f: [0,1]→R

At each “point” f0, we want function ∇F such that for all 
functions u

Expanding 1st term in numerator, we get

Hence, limit becomes

The only solution to                                                                     for all u is

not much different from                                 !
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Key idea:

Once you get the hang of taking the gradient 

of ordinary functions, it’s (superficially) not 
much harder for more exotic objects like 

matrices, functions of functions, …
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Vector Fields
Gradient was our first example of a vector field

In general, a vector field assigns a vector to each point in space

E.g., can think of a 2-vector field in the plane as a map

For example, we saw a gradient field

(for the function f(x,y) = x2 + y2)
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Q: How do we measure the change in a 
vector field?
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Y

Divergence and Curl
Two basic derivatives for vector fields:

div X

X

curl Y

“How much is field shrinking/expanding?” “How much is field spinning?”



 CMU 15-462/662

Divergence
Also commonly written as 

Suggests a coordinate definition for divergence


Think of ∇ as a “vector of derivatives”

Think of X as a “vector of functions”

Then divergence is
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Divergence - Example
Consider the vector field

Divergence is then
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Curl
Also commonly written as 

Suggests a coordinate definition for curl


This time, think of ∇ as a vector of just three derivatives:

Think of X as vector of three functions:

Then curl is

(2D “curl”:                                                                                       )



 CMU 15-462/662

Curl - Example
Consider the vector field

(2D) Curl is then



 CMU 15-462/662

Notice anything about the relationship 
between curl and divergence?



 CMU 15-462/662

Divergence vs. Curl (2D)
Divergence of X is the same as curl of 90-degree rotation of X:

Playing these kinds of games w/ vector fields plays an 
important role in algorithms (e.g., fluid simulation)

(Q: Can you come up with an analogous relationship in 3D?)
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Example: Fluids w/ Stream Function

Ando et al, “A Stream Function Solver for Liquid Simulations” (SIGGRAPH 2015)
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Laplacian
One more operator we haven’t seen yet: the Laplacian

Unbelievably important object in graphics, showing up across 
geometry, rendering, simulation, imaging

- basis for Fourier transform / frequency decomposition

- used to define model PDEs (Laplace, heat, wave equations)

- encodes rich information about geometry
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Laplacian—Visual Intuition

f

Df

Likewise, Laplacian measures “curvature” of a function.

“concave”

“convex”

Q: For ordinary function f(x),

what does 2nd derivative tell us?

For further interpretations of the Laplacian, see https://youtu.be/oEq9ROl9Umk
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Laplacian—Many Definitions
Maps a scalar function to another scalar function (linearly!)


Usually* denoted by       


Many starting points for Laplacian:


- divergence of gradient


- sum of 2nd partial derivatives


- gradient of Dirichlet energy


- by analogy: graph Laplacian


- variation of surface area


- trace of Hessian …

“Delta”

*Or by          , but we’ll reserve this symbol for the Hessian
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Laplacian—Example
Let’s use coordinate definition:

Consider the function

We have

and

Hence,

Interesting!  Does this always happen?
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Hessian
Our final differential operator—Hessian will help us locally 
approximate complicated functions by a few simple terms

Recall our Taylor series

How do we do this for 
multivariable functions?

Already talked about best 
linear approximation, using 
gradient:

Hessian gives us next, 
“quadratic” term.
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Hessian in Coordinates
Typically denote Hessian by symbol 


Just as gradient was “vector that gives us partial derivatives 
of the function,” Hessian is “operator that gives us partial 
derivatives of the gradient”:

∇2

For a function f(x): Rn → R, can be more explicit:

Q: Why is this matrix 
always symmetric?
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Taylor Series for Multivariable Functions
Using Hessian, can now write 2nd-order approximation of any 
smooth, multivariable function f(x) around some point x0:

Can write this in matrix form as

constant linear quadratic

Will see later on how this approximation is very useful for optimization!
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Next time: Rasterization
Next time, we’ll talk about how to draw triangles

A lot more interesting (and difficult!) than it might seem…

Leads to a deep understanding of modern graphics hardware


