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Last Time: Linear Algebra
u == (ulg MZ)
m Touched on a variety of topics: ”
vectors & vector spaces vectors as functions >
norm inner product I ;
[2 norm/inner product linear maps R
span basis
Gram-Schmidt frequency decomposition 3, = Uja; + Uzap
linear systems bilinear forms :
quadratic forms matrices

m Don’t have time to cover everything!

m But there are some fantastic lectures online:
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Vector Calculus in Computer Graphics
m Today’s topic: :

m Why is vector calculus important for computer graphics?
- Basiclanguage for talking about spatial relationships, transformations, etc.

- Much of modern graphics (physically-based animation, geometry processing, etc.)
formulated in terms of partial differential equations (PDEs) that use div, curl, Laplacian...

- As we saw last time, vector-valued data is everywhere in graphics!
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Euclidean Norm

m Lasttime, developed idea of norm, which measures total size,
length, volume, intensity, etc.

m For geometric calculations, the norm we most often care
about is the

m Euclidean norm is any notion of length preserved by
rotations/translations/reflections of space.

Not true for all norms!

m Inorthonormal coordinates: (Can you think of an example?)
p) 2
‘ll‘ — M1_|_"°_|_un |u‘ |U.|/
u

Q‘
@) WARNING: This quantity does not encode geometric length unless vectors
(9)7 are encoded in an orthonormal basis. (Common source of bugs!)
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Euclidean Inner Product / Dot Product

Likewise, lots of possible inner products—intuitively,

measure some notion of “alignment.”

For geometric calculations, want to use inner product that

captures something about geometry!

For n-dimensional vectors, defined as
(u,v) := |ul|v| cos(0)

In orthonormal Cartesian coordinates,

can be represented via the

WARNING: As with Euclidean norm, no geometric meaning
unless coordinates come from an orthonormal basis.
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Cross Product

m Inner product takes two vectors and produces a scalar

m In3D, luctis a natural way to take two vectors and
get a vector, written as “ux v”

. uXxv
m Geometrically:

- magnitude equal to parallelogramarea

- direction orthogonal to both vectors
- ...but which way? \v

m Use“right hand rule”

x
uXxv Yy

(Q: Why only 3D?)




Cross Product, Determinant, and Angle

m More precise definition (that does not require hands):

uXxXyv

\/det(u,v,u X v) = |u||v|sin(0)

m Oisangle betweenuandyv
m “det”is determinant of three column vectors
m Uniquely determines coordinate formula:

Up0U3 — U307 e, €3
uXv:=| U301 — U103 U1 W
v1 (V2523

U1vz2 — U201 d(hmnemonic)

m Useful abuse of notationin2D: u X v := 110y — u»0q
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Cross Product as Quarter Rotation

m Simple but useful observation for manipulating vectors in 3D:
cross product with a unit vector N is equivalent to a quarter-
rotation in the plane with normal N:

B Q:WhatisNx(Nxu)?

m Q:Ifyou have uand N x u, how do you get a rotation by some
arbitrary angle 0?
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Matrix Representation of Dot Product

m Often convenient to express dot product via matrix product:

01

Uy |

On

n
= ) Ui0;
1=1

m By the way, what about some other inner product?
m Eg,<uv>:=2ulvi+ulv2+u2vi+3u2v2

S
S B

01
02

A

= (2uqv1 + uq107)

\%

(uZUl

up Uy |

31/122)2).

v

Q: Why is matrix representing inner product always symmetric (A™=A)?
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Matrix Representation of Cross Product

m (an also represent cross product via matrix multiplication:

0 — U3 Ur
u = (U, Uy, U3) = U = U3 0 —uy
—U- Uq 0 |
0 —usz  up vy |
uUuxv=1uv = U3 0 —uy 05 (I?ld.we get
it right?)
— Uy Uq 0 U3

m Q: Without building a new matrix, how can we express vx u?
m A:Useful to notice that vxu=-uxv(why?). Hence,

VXu=—1v =1'v
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Determinant

m Q:How do you compute the of a matrix?
a b ¢ |
A:=|d e f
g h 1]

m A:Apply some algorithm somebody told me once upon a time:
@ b c a @ c a _
d ? e f
gy h % |
(A) = alei — fh)+b(fg —di)+c(dh — eg)

Totally obvious... right?

det( A

m Q:No! What the heck does this number mean?!
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Determinant, Volume and Triple Product

m Better answer: det(u,v,w) encodes (signed) volume of
parallelepiped with edge vectorsu, v, w.

det(u,vyw) = (uxv)-w = (vxw)-u = (wxu)-v

m Relationship known as a “triple product formula”
m (Q: What happens if we reverse order of cross product?)
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Determinant of a Linear Map
m Q: If amatrix A encodes a linear map f, what does det(A) mean?

(First: need to recall how a
matrix encodes a linear map!)

(MU 15-462/662



Representing Linear Maps via Matrices
m Key example: suppose | have a linear map

f(“) = Uj1a1 + Upap + U3A3 \/u

m Howdolencode as a matrix?

"Hyn
d

m Easy:

A= di d?

/

vectors become matrix columns:

‘ 01 x
a3 a1,y
‘ 1 z

—
—
—

U2 x 143 x
”2,y (1 3,3/
U » A3 7

m Now, matrix-vector multiply recovers original map:

U1 01 xU1 T A xUp 7= A3 x U3
Uy — allyul T &Zzlyuz T &lglyug
Uus ai ;U1 +dap Uy + as ;U3

— U1a1+Uray+U3zas
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Determinant of a Linear Map
m Q: If amatrix A encodes a linear map f, what does det(A) mean?

det(g) = — det(f)

e

| f
0:\\/ /e |
0

f(eq) g(eq)

m A: It measures the change in volume.

m Q: What does the sign of the determinant tell us, in this case?
m A: It tells us whether orientation was reversed (det(A) < 0)

(Do we really need a matrix in order to talk about the determinant of a linear map?)
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Other Triple Products

Super useful for working w/ vectors in 3D.
E.q., for the cross product:

ux (vxw) -+
vX(wxu) —+
W X (u X V)

Why is it true, geometrically? -

There is a geometric reason, but not nearly as obvious as det:
has to do w/ fact that triangle’s altitudes meet at a point.

Yet another triple product:
ux (vxw)=v(u-w)—w(u-v)

(Can you come up with a geometric interpretation?)
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Differential Operators - Overview

m Nextup: and
m Why is this useful for computer graphics?

- Many physical/geometric Sroblems expressed in terms of
relative rates of change (ODEs, PDEs).

- These tools also provide foundation for numerical
optimization—e.q., minimize cost by following the
gradient of some objective.
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Derivative as Slope

£

Consider a functionf(x):R — R
What does its derivative f' mean?

One interpretation “rise over run”
Corresponds to standard definition:

£(xo) 1= lim f(xo+¢) — f(xo)

e—0 E

f(x)
Careful! What if slope is different !
when we walk in opposite direction?

£+ (x0) = lim f(x0 +¢) — f(xo)

e—0 &

F(x0) 1= lim 1 0} = F (X0 = &)

e—0 &

atx0if f+=f1-,
Many functions in graphics are NOT differentiable!
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Derivative as Best Linear Approximation

m Any smooth function f(x) can be expressed as a Taylor series:

constant linear quadratic

F) = £(xo) + f(x0) (x = x0) + E5L (o) + -

/ quadratic

~
~ -~

m Replacing complicated functions with a linear (and
sometimes quadratic) approximation is a powerful trick
in graphics algorithms—we’ll see many examples.
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Derivative as Best Linear Approximation
m Intuitively, same idea applies for functions of multiple variables:

f //\
G
\\f




How do we think about derivatives for a
function that has multiple variables?




Directional Derivative

m One way: suppose we have a function f(x1,x2)
- Take a“slice” through the function along some line

- Then just apply the usual derivative!
- (alled the

take a small
step along u

€
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/’nabla”

f(x),gradient V f(x) assigns

Gradient

m Given a multivariable function
a vector at each point

Vf(x)

f
m (Ok, but which vectors, exactly?)
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Gradient in Coordinates

m Most familiar definition: list of partial derivatives

m l.e., imagine that all but one of the coordinates are just
constant values, and take the usual derivative

Of /3x1 ]
Vf = '

3 /9x,

m Two potential problems:
— Role of inner product is not clear (more later!)

— No way to differentiate functions of functions F(f) since
we don't have a finite list of coordinates x;, ..., Xa

m Still, extremely common way to calculate the gradient...
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Example: Gradient in Coordinates
f(x) := x1 + x5

xZ: ZX1_|_O

|
H
|
kY

axl BX1

Jdf 0 .2 0 .2
% %xl | xz O‘|‘2X2

— 2X

Vf(x)
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Gradient as Best Linear Approximation

Another way to think about it: at each point x0, gradient is the
vector V f (x( ) that leads to the best possible approximation

f(x) = f(xo) +(Vf(x0),x = o)

Starting at xo, this term gets:

ebigger if we move in the
direction of the gradient,

esmaller if we move in the
opposite direction, and

edoesn’t change if we move
orthogonal to gradient.
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The gradient takes you uphill...

m Another way to think about it: direction of “steepest ascent”

m |.e., what dlrectuin should we travel to increase value of
function as quickly as possible?

m This viewpoint leads to algorithms for optimization, commonly
used in graphics.
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Gradient and Directional Derivative
At each point x, gradient is unique vector V f (x) such that

(Vf(x),u) = Duf(x)

for all u. In other words, such that taking the inner product w/
this vector gives you the directional derivative in any direction u.

Can’t happen if function is not differentiable!

(Notice: gradient also depends on choice of inner product...)
(MU 15-462/662



Example: Gradient of Dot Product

m Consider the dot product expressed in terms of matrices:
f = u'v

m Whatis gradient of / with respect to u?

m One way: write it out in coordinates:

n
T, § : ey
U VvV — U;0j (equals zero unless i = k)
1=1

n n /
0 L 0 -
iy Z; U;j0; = Z; M(“ivi) — Uk

In other words:

01
= Vuf = | ... Va(u'v) =v

Un Not so different from - (xy) = y!
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Gradients of Matrix-Valued Expressions
m EXTREMELY useful in graphics to be able to differentiate

expressions involving matrices

m Ultimately, expressions look much like ordinary derivatives

For any two vectors x,y € R"” and symmetric matrix A € R"*":

MATRIX DERIVATIVE LLOOKS LIKE
Vi(xly) =y Lxy =y
Vx(xTx) = 2X %xz = 2x
Vx(xTAy) = Ay %axy = ay
Vx(x! Ax) = 2Ax 4 0x? = 2ax

R
MR

Excellent resource: Petersen & Pedersen, “The Matrix Cookbook”

m Atleast once in your life, work these out meticulously in
coordinates (to convince yourself they're true).

m Then... forget about coordinates altogether!
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Advanced®: L2 Gradient

m Consider a function of a function F( /)

m Whatis the gradient of F with respect to f?
m (an't take partial derivatives anymore!

m Instead, look for function VF such that for all functions u,

m Whatis directional derivative of a function of a function??
m Don't freak out—;just return to good old-fashioned limit:

DuF(f):limF(f eu)—F(f)

e—() €

m This strategy hecomes much clearer w/ a concrete example...

*as in, NOT on the test! (But perhaps somewhere in the test of life...) CMU 15-462/662



Advanced Visual Example: L2 Gradient

B (Consider function F(f) := ((f,g)) forf,g:[0,1]—R

| claim the gradientis: VF = ¢

m Does this make sense intuitively? How can we increase inner

product with g as quickly as possible?

- inner product measures how well functions are “aligned”

- g is definitely function best-aligned with g!

- so to increase inner product, add a little bit of g to f

) +eg(x) f(x)
VS VAV SAVAVS

(Can you work this
solution out formally?)

x)
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Advanced Example: L2 Gradient
m (Consider function F(f) := ||f||* forarguments f:[0,1]—R

At each “point” f0, we want function VF such that for all

functions u

(VE(fo), u) = lim L0 T €)= FUfo)

e—() €

Expanding 1st term in numerator, we get
[ fo +eull” = [|fol|* + €| ul|* + 2&(( fo, u))

Hence, limit becomes

lim (e |u]|* + 2((fo, u))) = 2((fo, u)
The only solutionto ((V F(fo), u)) = 2((fo, u)) foralluis

VE(fo) = 2fo

. d .2 _ :
«—— ot much different from TXT = 2x!
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Key idea:
Once you get the hang of taking the gradient
of ordinary functions, it's (superficially) not
much harder for more exotic objects like
matrices, functions of functions, ...




Vector Fields

m Gradient was our first example of a
m In general, a vector field assigns a vector to each point in space
m E.g., can think of a 2-vector field in the plane as a map

X : R? — R?

m For example, we saw a gradient field AL SAAA
\1ff///////4/4;;;
A A I Y I A
Vixy) = (2x,2y) B
o O A A A A A
(for the function f(x,y) = x2 + y2) S A
Yy ¥ 4 4 s s P
¥ ¥ ¥ 4 A A ..
¥ ¥ ¥ ¥ 4 A
¥ ¥ ¥ A A A A A
/////'/}/////l
///////////%¢¢
////////////¢¢¢

(MU 15-462/662



Q: How do we measure the changein a
vector field?
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Divergence and Curl

m Two basic derivatives for vector fields:

“How much is field shrinking/expanding?” “How much is field spinning?”

...........

Ve &~ Vs - ~— ~ AN ~ N N

div X curl Y
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Divergence

Also commonly writtenas V - X

Suggests a coordinate definition for divergence

Think of V as a “vector of derivatives”
_ 0 0
V= (2 5)

Think of X as a “vector of functions”
X(u) = (Xq(u),..., Xy(u))

Then divergence s

n
V.- X Zzzaxi/aui
1=1

......

11111111
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Divergence - Example

m Consider the vectorfield X (u,v) := (cos(u),sin(v))

m Divergence s then

V- X = % cos(u) —sin(u) + cos(v).

y 4
;*[4_‘,<_/‘\_>\
\\‘“\\/

/;//;;: \ «\<_ \;
IR 77 AR
X

\
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Curl

m Also commonly writtenas V x X

m Suggests a coordinate definition for curl

m This time, think of V as a vector of just three derivatives:
_ J J 0
V = (52 3057 305
m Think of X as vector of three functions:
X(u) = (X1(u), X5(u), X3(u))
m Thencurlis
8X3 /auz — E)Xz /81/[3

V X X :=| 90X7/0uz —dX3/0du;
0X>/0uy — 0Xq/0us
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Curl - Example

m Consider the vectorfield X (u,v) := (—sin(v), cos(u))

m (2D) Curlis then

0
00U

(—sin(v)) = —sin(u) + cos(v).
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Notice anything about the relationship
between curl and divergence?



Divergence vs. Curl (2D)

m Divergence of X is the same as curl of 90-degree rotation of X:

e \ 7 ~a

N7 SN NS
Sy

WY AN
EE\\}}{S‘Q%%A \\Eib\f\k* ,’/ﬁ/? 7 5‘%{%\\\\3/ /%
e T S . =
N

g

N2 7 N *\*\\’\// //’*\\i\\ =
\\:\\w/ // a 2\\\\3\;’?‘}4/ :\\}\\f’

W TS

X X+ V- -X=V x X+

_ Playin? these kinds of games w/ vector fields plays an
important role in algorithms (e.g., fluid simulation)

m (Q: Can you come up with an analogous relationship in 3D?)
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Example: Fluids w/ Stream Function

Single-phase
Pressure solver

Our method

n%nHu*—Vx‘I’HZ Ap =V -u
u=VxvY u=u —Vp

Ando et al, “A Stream Function Solver for Liquid Simulations” (SIGGRAPH 2015) MU 15-462/662



Laplacian

m One more operator we haven't seen yet: the

m Unbelievably important object in graphics, showing up across
geometry, rendering, simulation, imaging

- basis for Fourier transform / frequency decomposition
- used to define model PDEs (Laplace, heat, wave equations)

- encodes rich information about geometry
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Laplacian—Visual Intuition

Q: For ordinary function f(x), fo1

what does 2nd derivative tell us? ,

¢A
A

Likewise, Laplacian measures “curvature” of a function.

(MU 15-462/662



Laplacian—Many Definitions

m Maps a scalar function to another scalar function (linearly!)
m Usually* denoted by A «~— pqjta”
m Many starting points for Laplacian:
- divergence of gradient Af := V - Vf = div(gradf)
- sum of 2nd partial derivatives Af := Y | 9*f/0x?
- gradient of Dirichletenergy Af := —V (5||Vf||*)
- by analogy: graph Laplacian 1

- variation of surface area 1-4]1

- trace of Hessian ...

Mjj — Wig1,j — Wi-1,j — Wil — Uij—1 1

h2

2 7 : y
*Orby \/ < but we'll reserve this symbol for the Hessian (MU 15-462/662



Laplacian—Example

m We have

82 82 82 .
Bx% Bx% ( ) .

—3-% sin(3x7) = —9cos(3x7).

0

0X
and :
9 f = —9sin(3xy)
0x5 2)
Hence,

Af = —9(cos(3x1) + sin(3xy))

— 9f €——— |[nteresting! Does this always happen?

m Let’s use coordinate definition: Af := Y, 0°f/dx*
m Consider the function f(x1, x,) := cos(3x1) + sin(3x»)
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Hessian

f(x)

Our final differential operator— will help us locally
approximate complicated functions by a few simple terms
Recall our Taylor series £(x) = f(xo) + f(x0) (x — x0) + T £ (xg) 4 - -
How do we do this for F)
multivariable functions? | |

\\\\\\\\\\\\\\ \\\ gfjo
Already talked about best :
Ilnea! apprOX|mat|0n, I.ISIng f(;CO) -------------
gradientt. 7 e

) + (Vf(x0),x —Xo)

Hessian gives us next,
“quadratic” term.
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Hessian in Coordinates

® Typically denote Hessian by symbol V>
m Just as gradient was “vector that gives us partial derivatives

of the function,” Hessian is “operator that gives us partial
derivatives of the gradient”:

(V2f)u:= Du(Vf)

B For a function f(x): R» — R, can be more explicit:

°f . 9
2 P10 OX10%n Q: Why is this matrix
Vv f o= : . . always symmetric?
?f .. %

ax;QaXi axnaxn
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Taylor Series for Multivariable Functions

m Using Hessian, can now write 2nd-order approximation of any
smooth, multivariable function f(x) around some point xo:

constant linear quadratic
f(x) = f(xo0) + (Vf(x0),x = x0) + (V*f(x0)(x — x0), X — x0) /2
e N’ N——
celR beclR” AcRMx7

m Can write this in matrix form as
flu)~tu'Au+b'utc, u:=x—x

Will see later on how this approximation is very useful for optimization! MU 15.462/662



Next time: Rasterization

m Next time, we'll talk about how to draw triangles
m Alot more interesting (and difficult!) than it might seem...
m Leads to a deep understanding of modern graphics hardware
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