Computer Graphics (15-462/662)

Midterm Review

(Review of midterm exam from Fall 2020)



Question 1—Getting Warmed Up

Just a few assorted questions to get your brain in graphics mode!



Question 1a

(a) (6 points) In our lecture on spatial transformations, we saw that the choice of matrix decomposition
made a big difference when interpolating between two poses—for instance, separately interpolating
each component of the polar decomposition gave natural motion, whereas directly interpolating the
original transformation matrix resulted in weird artifacts. Likewise, the choice of color space will make
a big difference if we want to interpolate between color images. Consider two common color models:

e RGB—encodes the intensity of red, green, and blue emission as values in [0, 1].

e HSV—encodes hue as an angle 0 € [0,360), and both saturation/value as values in [0, 1].

Question: Suppose we want to fade between two images by linearly interpolating either RGB or HSV
values. Which choice will give a more natural fade? What artifacts might you see?

from Lecture 14: Color



Question 1a — solution

SOLUTION.

There are a lot of possible criteria for what might make a “good” color space for interpolation, but
linearly interpolating in HSV space has one big flaw: since the hue values 6 “wrap around” from 0 to
360, you can get a sudden jump in interpolated values that leads to ugly artifacts (see example below).
You might be able to design a more intelligent, nonlinear interpolation scheme that takes the shortest
path around the circle. But for linear interpolation, RGB is the more natural of the two given choices.

RGB




Question 1b

(b) (7 points) A compact way to store the connectivity of a halfedge mesh is to index the halfedges from 0
to 2E — 1 (where E is the number of edges) and implicitly assume that the twin of each even halfedge n
is n 4+ 1, and likewise, the twin of each odd halfedge n is n — 1. So for instance, 0 and 1 are twins, 2 and
3 are twins, and so on. This way, we only have to explicitly store index of the next halfedge, as done in
the table below.

Question: Does the given data describe valid manifold connectivity? If so, how many vertices, edges,
and faces does the mesh have? Is it possible to draw each face as a flat polygon in 3D, without causing
any polygons to intersect or become degenerate?
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next[i] |2 |4 |1
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A manifold polygon mesh has fans, not fins

m For polygonal surfaces just two easy conditions to check:
1. Every edge is contained in only two polygons (no “fins”)
2. The polygons containing each vertex make a single “fan”

YES YES
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Halfedge connectivity is always manifold

m Consider simplified halfedge data structure

‘ » " .. (pointer to yourself!)
m Require only “common-sense” conditions

struct Halfedge { twin->twin == this
Halfedge *next, *twin; twin != this
}; every he is someone’s “next”

m Keep following next, and you'll get faces.
m Keep following twin and you'll get edges.
m Keep following next->twin and you'll get vertices.

Q: Why, therefore, is it impossible to encode the red figures?
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Connectivity vs. Geometry

m Recall manifold conditions (fans not fins):
- every edge contained in two faces
- every vertex contained in one fan

m These conditions say nothing about vertex
positions! Just connectivity

m Hence, can have perfectly good (manifold)
connectivity, even if geometry is awful

m Infact, sometimes you can have perfectly
good manifold connectivity for which any
vertex positions give “bad” geometry!

m (an lead to confusion when debugging: mesh
looks “bad’, even though connectivity is fine

SN
Y

" same connectivity,
random vertex positions

ACA |

cube (manifold)

J

non manifold ...0r just areally

connectivity? skinny triangle?

O

from Lecture 10;: Meshes and Manifolds

Question 1b




_ Question Th — solution

The given data describes a polygon mesh with manifold connectivity, since it satisfies the basic invariants
of a halfedge mesh: every halfedge is the “next” of some other halfedge; by definition, no halfedge is its
own twin, and every halfedge is the twin of its twin. Since there are H = 6 halfedges, we know there
are E = H/2 = 3 edges. To count the number of faces, we can just count the number of cycles in the
“next” map—in particular, we have a cycle 0 — 2 — 1 — 4 — 0 and two single-halfedge cycles 3 — 3
and 5 — 5. To count the number of vertices, we need to find cycles in the “twin then next” map. One
such cycleis 0 -+ 4 — 5 — 0; anotheris 1 —+ 2 — 3 — 1 (and these two cycles include all halfedges).
Overall, then, we have 3 edges, 3 faces, and 2 vertices. One way to think about this shape is to take a
square and glue left/right edges together (along halfedges 0 and 1), then fill in the top/bottom loop
each with a face consisting of just one halfedge—conceptually, making a cylinder (see above). However,
it’s impossible to draw this shape using flat polygons in 3D since we have only two vertices—hence,
any linear interpolation of these points will just look like a single line segment.




(7 points) Suppose you're given a triangle mesh where you know the vertex positions p, the vertex Qu estion 1 C
normals n, and the connectivity. If you imagine this data was sampled from a smooth surface, then

there’s really no reason you have to interpolate it using straight line segments and flat triangles (as
depicted below, left). For instance, you could draw a wireframe of the mesh using Bézier curves where
(i) the curve for each edge ij interpolates the positions p;, p; € R’ at the two endpoints and where (ii)
the tangents of all curves meeting at a common vertex 1 lie in the plane perpendicular to the normal n;

at this vertex (as depicted below, right).

Question: What's the lowest-degree Bézier curve you can use to interpolate the point and normal
data as described above? Do the given constraints uniquely determine the interpolating curve? If not,
what might you do to pin down a unique solution? (There are many possible answers for the final

question—we just want you to think creatively!)




Question 1c

Bezier Curves — tangent continuity

) . m To get“seamless” curves, need points and tangents to line up:
Bezier Curves (Explicit) :

P2
m ABezier curveis a curve expressed in the Bernstein basis: M NO O N .
| (\ D\j NO O :
ppo P

n __ control points
¥(s) ==Y  Bunx(s)pi YES
k=0

P1

0k, but how?
Each curve is cubic: u3po + 3u2(1-u)p1 + 3u(1-u)2pz + (1-u)3ps
Want endpoints of each segment to meet

m Forn=1, just getaline segment!

m Forn=3, get “cubic Bézier":

Po
m Important features: 7(8)\,

; : Want tangents at endpoints to meet
1. interpolates endpoints 9 P

Q: How many constraints vs. degrees of freedom?

2. tangent to end segments o S . -
Q: Could you do this with quadratic Bézier? Linear Bézier?

3. contained in convex hull (nice for rasterization)

P3¢
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Question 1¢— solution

Each curve must interpolate two endpoints, each of which has three scalar components (x, v, z), yielding
six constraints. At each endpoint i, it must also satisfy the scalar condition (t;, n;) = 0, giving two
additional constraints for a total of eight constraints. A linear Bézier curve has only two control points,
or six scalar degrees of freedom, which is not enough to interpolate the given data—which we can also
see geometrically: in general, several line segments meeting at a point will not have a common tangent.
However, a quadratic Bézier curve has three control points, or nine scalar degrees of freedom, which is
more than enough. The final degree of freedom could be pinned down by, e.g., minimizing the second
derivative of the curve subject to the given linear constraints on the endpoints”.

“This problem, by the way, amounts to minimizing a quadratic form subject to linear constraints, which itself can be solved via
a linear system!




Question 2—Cubing the Sphere




Question 2

Often in this class we've presented rasterization and ray tracing as two “competing” ways to draw images
on the screen. The reality is that these techniques are getting combined more and more to achieve the best
of both worlds: beautiful effects at lightning speed. One nice example is drawing a very large number of
spheres, which might be used to, say, nicely display vertices in a mesh editor, or render high-quality points
in a point cloud (among many other things!).

The traditional way to draw a sphere using the rasterization pipeline is to tessellate
it into a bunch of triangles (as shown at right), then rasterize these triangles as usual.
An alternative route, which we’ll explore here, is to rasterize a bounding box around
the sphere (as illustrated above). For each pixel in the bounding box, we then trace
a ray from the eye through the pixel center x, and see if and where this ray intersects
the sphere. The intersection information is then used to update the color and depth
buffers. In essence, rather draw the color and depth of the triangle itself, we treat the
triangle as a “portal” that looks into a box where the sphere lives. We’ll build up this
procedure one small piece at a time.
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Real-world implementation in http://polyscope.run/


http://polyscope.run/

Question 2a

(5 points) Build a matrix that will transform a cube with vertices (£1, 41, £1) to the bounding box for
a sphere with center ¢ € R® and radius r > 0. You should assume that this matrix will be applied to
the homogeneous coordinates for the eight vertices. Matrices are indexed as A[1] [ j], where 1 is the
row index, and j is the column index, and Matrix4x4: : Zero gives the matrix of all zeros.

3D Transformations in Homogeneous Coordinates

m Not much changes in three (or more) dimensions: just append one
“homogeneous coordinate” to the first three

m Matrix representations of 3D linear transformations just get an
additional identity row/column; translation is again a shear
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Question 2a — solution

Matrix4x4 bboxTransform( Vee3 c, // sphere center
double r ) { // sphere radius
Matrix4x4 A = Matrixdx4::’2ero; // initialize to zero

// apply a uniform scaling along the diagonal
A[O][0] = A[1][1] = A[2][2] = r;

// use the rightmost column to apply a translation

A[O] [3] = c.x;
A[1][3] = c.y;
A[2][3] = c.z;
A[3][3] = 1.0;

return A;




Question 2b

(6 points) Implement a method that performs barycentric interpolation of three given vertex coordinates
in world coordinates, assuming we are given the barycentric coordinates b of a point in the 2D
projection of the triangle.

Barycentric Coordinates

®  No matter how you compute them, the values of the three functions
¢{(X), p{(X), ¢, (x) for a given point are called barycentric coordinates

Perspective Correct Interpolation

m (an be used to interpolate any attribute associated with vertices. " Goal: interpolate some attribute ¢ at vertices
(color*, texture coordinates, etc.) m Basicrecipe:
® |mportantly, these same three values fall out of the half-plane tests - Compute depth z at each vertex

used for triangle rasterization! (Why?) ; - Evaluate Z:=1/zand P := ¢p/z at each vertex

B Hence, get them for “free” during rasterization

- Interpolate Z and P using standard (2D) barycentric coords

- At each fragment, divide interpolated P by interpolated Z

color(x) = color(x;)¢; + color(x;)¢; + color(xi )i to get final value

]

from Lecture 7: Perspective Projection and Texture Mapping For a derivation, see Low, “Perspective-Correct Interpolation” RS




Question 2b — solution

Vec3 interpolateWorldPosition (
Vec3 p0, Veec3 pl, Vecec3 p2, // vertex world coordinates
Vec3 b ) // barycentric coordinates of sample point

// since the triangle was projected into the
// 2D plane, we have to use perspective—-correct interpolation
double 70 = 1/p0.z;

double 71 = 1/pl.z;

double 72 = 1/p2.2z;

Vec3 PO p0/p0.z;

Vec3 Pl = pl/pl.z;

Vec3 P2 = p2/p2.z;

Vec3 Z = b[0]*Z0 + b[1l]*Z1 + b[2]*Z2;

Vec3 P = b[0]*P0 + b[1l]*P1 + b[2]*P2;

return P/7Z;




Question 2c¢

(b points) Implement a routine that intersects a ray o + td with a sphere of radius r > 0 centered
at ¢ € IR°. This routine assumes that the ray direction d has unit magnitude, and should return the
smallest positive t where the ray hits the sphere; if there is no such intersection, it should return -1.

t —

Intersecting a ray with an implicit surface

Recall implicit surfaces: all points x such that f(x) =0
Q: How do we find points where a ray pierces this surface?
Well, we know all points along the ray: r(t) = o0 + td

Idea: replace “x” with “r” in 1st equation, and solve for t

Example: unit sphere
f(x) = |x[* — 1
= f(r(t)) = lo+td|* — 1

d|*t?* +2(o-d)t+]o]*—1=0
S i e

a

b C

—0-d -

-0 dP? —JoP + 1

quadratic formula:

bV —

$ —
2a

d
”

Why two solutions?
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Question 2c — solution

double intersectSphere( Veec3 c,

double r, // radius
Vec3 o, // ray origin
Veec3 d ) // ray direction (unit)
{
double a = dot(o,d) xdot (o,d) - o.norm2() + 1;
1f( a < 0 ) return -1;
double tl1l = —-dot(o,d) + sqgrt (a);
double tZ2 = —-dot(o,d) - sgrt(a);
if( tl > 0 && tl1 < t2 ) return til;

if( t2 > 0 )
return -1;

return t2;

// center




(6 points) OK, let’s put it all together. To draw a super high-quality sphere, we will rasterize its
bounding box, which has been diced into triangles. Your job is just to implement an “unusual” triangle
rasterization routine drawBBoxTriangle that shades each pixel of the triangle according to the
closest sphere-ray intersection (as discussed at the beginning). For each pixel covered by the triangle,
your routine should figure out the location x € IR of this pixel in world coordinates. It should then
trace a ray from the eye through x to see if it hits the sphere. If the hit point is the closest thing seen
so far, your routine should shade the pixel using the color of the sphere, rather than the color of the

bounding box. It should also update the depth butffer so that subsequent objects are properly occluded
by the sphere.

Question 2d



Implementation notes: You can (and should!) call the routines from the earlier parts of this question—and
can assume these routines work correctly, independent of what answers you gave above. You may also
assume you have two other basic routines (with inputs illustrated above):

Question 2d

e Vec2 pixelCenter( i, j, w, h ) — returns the location of pixel (i,j) for an image of
width w X h.

® Vec3 baryCoords( p, pl, p2, p3 ) — returns the barycentric coordinates of a point p
within a triangle with vertices p1, p2, p3-

For the main routine drawBBoxTriangle, the three input vectors xg, x1,x2 € R3 give the world
coordinates of the triangle vertices, after the camera transformation but before being transformed into
clip space. (Hence, you can assume that the camera is sitting at the origin, looking down the —z-axis.)
The inputs ug, u;, up € R? give the same three coordinates projected into the 2D image plane, and
transformed into final 2D image coordinates [0, w] X [0, h]. The depth and color buffers have size
wxh and store a single value per pixel (hence, color isjust a greyscale value rather than an RGB color).
You do not need to worry about efficiency: it is ok to test every pixel in the image to see if it’s covered
by the triangle.

pixelCenter baryCoords



Question 2d — solution

void drawBBoxTriangle( Veec3 x0, Veec3 x1, Vec3 x2, // world coordinates
Vec2 u0, Vec2 ul, Vec2 u2, // projected coordinates
Vec3 ¢, double r, // sphere center/radius
double sphereColor,
doublex depth, doublex color, // buffers
int w, int h ) // buffer width/height
{
for( int 1 = 0; 1 < w; 1++ )
for( int 7 = 0; 73 < h; J++ )
{
// grab the pixel center and its barycentric
// coordinates relative to the triangle
Vec2 ¢ = pixelCenter( i, j, w, h, I0, I1 );
Vec3 b = baryCoords( ¢, u0O, ul, u2 );
// 1f any of the barycentric coordinates are
// negative, then this pixel falls outside the
// triangle and we can stop
if( b[0] < 0 || b[1l] < 0 || b[2] < 0 ) break;
// otherwise, interpolate the world-space position
Vec3 x = interpolateWorldPosition( x0, x1, x2, b );




// intersect a ray from the eye to the world-space
// position with the given sphere

Vec3 u = x.unit () ;

double t = intersectSphere( ¢, r, e, u );

// 1f we missed the sphere, don't modify color or depth
if( t < 0 ) break;

// otherwise, compute the hit point location
Vec3 p = e + txu;

// 1f the hit point is the closest

// thing we've seen so far, replace the current
// color/depth with values from the sphere

if( p.z < depth[i][3] )

{

sphereColor; // update color
p.z; // update depth

color[i1+wx*7]]
depth[i1+wx*x]]

}

// otherwise, leave the color/depth alone

Question 2d — solution




Question 2e

(6 points) Suppose you want to rasterize a scene that combines your beautiful, pixel-perfect spheres
with ordinary triangles. Will everything work out if you just rasterize triangles in the usual way? For
instance, will you correctly resolve depth for spheres that intersect triangles? Why or why not?




Question 2e — solution

Yes, everything will work out fine. Since depth is resolved on a pixel-by-pixel basis, it doesn’t matter
where these depth values are coming from—the rasterizer will always draw the color of the closest
object (wWhether sphere or triangle). That’s the beauty of depth buffering!

Depth + Intersection

Q: Does depth-buffer algorithm handle interpenetrating surfaces?
A: Of course!

Occlusion test is based on depth of triangles at a given sample point.
Relative depth of triangles may be different at different sample points.

Green triangle in
front of yellow ~—
triangle

Yellow triangle in
front of green

triangle ® ® ® ® @

from Lecture 8: Depth and Transparency

(MU 15-462/662




Question 2f

(6 points) A completely different strategy is to just use instancing to draw a bunch of copies of a triangle
mesh of a sphere (using standard triangle rasterization). What are some pros and cons of instancing
relative to the mixed ray tracing/rasterization scheme we’ve devised above?

Instancing

m  What if we want many copies of
the same object in a scene?

Instancing—Example

m Rather than have many copies
of the geometry, scene graph,
etc., can just put a “pointer”
node in our scene graph

m Like any other node, can specify
a different transformation on
each incoming edge
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from Lecture 5: Spatial Transformations



Question 2f — solution

For one thing, instancing doesn’t help improve the quality of each sphere: if we use a small number
of triangles, we’ll have very jagged edges. We still have to do a lot of work to draw each sphere
(transforming the vertices, projecting them into 2D, rasterizing the triangle, etc.).”

“Expert viewpoint: on the other hand, if we rasterize instanced triangles then we get more predictable depth values (which are
bounded by the depth values at vertices). This can help with techniques like “Z-culling,” which can preemptively discard, say, a
4x4 block of pixels by bounding its max/min depth values before per-pixel rasterization takes place.




Question 29

(6 points) Finally, the other obvious strategy is to just ray trace everything, i.e., shoot a ray through every
pixel, that gets tested against every sphere (possibly using some kind of spatial data structure). What
advantage(s) does our hybrid “bounding box” strategy provide—assuming an efficient implementation
that does not test every pixel for every triangle? What advantage(s) does pure ray tracing provide?
(Hint: consider situations where you have either a very small or very large number of spheres.)

Basic rasterization vs. ray casting

B Rasterization:

- Proceeds in triangle order
- Store depth buffer (random access to regular structure of fixed size)
- Don't have to store entire scene in memory, naturally supports unbounded size scenes

m Ray casting:
- Proceeds in screen sample order

- Don't have to store closest depth so far for the entire screen (just current ray)

- Natural order for rendering transparent surfaces (process surfaces in the order the
are encountered along the ray: front-to-back or back-to-front)

- Must store entire scene
- Performance more strongly depends on distribution of primitives in scene

m High-performance implementations embody similar techniques:

- Hierarchies of rays/samples
- Hierarchies of geometry
- Deferred shading

(MU 15-462/662




For a very small number of spheres, the hybrid strategy may be more efficient, since it only has to
consider the region of the screen where spheres appear. This region can be efficiently determined via
ordinary triangle rasterization. In a sense, the rasterization process lets us rapidly determine where we
need to focus computational effort. The story changes if we have (say) millions of spheres, covering
most of the screen. Here, it’s beneficial to use pure ray tracing since we can stop tracing the ray as soon
as we find the first hit. Hence, we may only need to touch a tiny fraction of the total spheres in our
scene—we never even have to load some of the spheres into memory. In contrast, the rasterization
strategy must go through every single sphere one by one. In the worst case, rasterization also results in
massive overdraw: suppose for instance we get unlucky and the spheres are sent down the pipeline in
roughly back-to-front order. Then we’re spending a lot of time rasterizing things we never actually see.
In this sense, rasterization is “linear” whereas ray tracing is “logarithmic.”
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Question 2g — solution
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Question 3—>Step into the Shadow



https://gkjohnson.github.io/threejs-sandbox/shadow-volumes/index.html

Question 3

o X

shadow volume

----- shadow contour

Up until now, we’ve said that ray tracing is typically needed to render effects like reflections and shadows.
But actually, there’s a clever way to render exact shadows for a point light source using just a rasterizer.
The basic idea is to explicitly construct a polygon mesh called the “shadow volume,” corresponding to the
shadowed region of space (see above). These polygons are then rasterized as usual—but with a twist: rather
than rasterize directly into the image buffer, we rasterize them into a so-called stencil buffer. This buffer does
not keep track of color values, but instead counts the number of shadow polygons that cover each pixel. More
accurately: this number is incremented (+1) for shadow polygons that face the camera, and decremented (-1)

for shadow polygons that face away from the camera. The stencil buffer can then be used in a final pass to
shade only those pixels where the closest primitive is outside the shadow volume.




Question 3a

(5 points) In a conventional rasterization pipeline?, what is the fundamental reason why we can’t just
directly evaluate whether a pixel is in/out of shadow during the triangle rasterization stage?




Question 2g — solution

The rasterization pipeline processes one triangle at a time, so there’s no way to know which other

triangles might be occluding a given point.

The Rasterization Pipeline
Rough sketch of rasterization pipeline:

i —

I L : 1%
/ ;/ ‘n- \ ".\
4 ;1,"&\\ _jﬁ

Iv\n:\} I:/ 00000000

(0,0)
Transform/position objects in Project objects onto
the world the screen

Sample triangle coverage

- A

Interpolate triangle
attributes at covered samples

Sample texture maps /
evaluate shaders

Combine samples into final
image (depth, alpha, ...)

m Reflects standard “real world” pipeline (OpenGL/Direct3D)
— therest is just details (e.g., API calls); will discuss in recitation
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TODAY: Rasterization

m Two major techniques for “getting stuff on the screen”
m Rasterization (TODAY)

- foreach primitive (e.qg., triangle), which pixels light up?

- extremely fast (BILLIONS of triangles per second on GPU)

- harder (but not impossible) to achieve photorealism

- perfect match for 2D vector art, fonts, quick 3D preview, ...
m Ray tracing (LATER)

- for each pixel, which primitives are seen?

- easier to get photorealism
- generally slower

- much more later in the semester!




Question 3b

(5 points) Consider a triangle mesh that is manifold and has no boundary, and a point light source at
a point x € R>. The shadow contour is the set of edges on the boundary between the shadowed and
non-shadowed region. More precisely, an edge ij is part of the shadow contour if x is in front of one of
the two triangles containing ij, and behind the other.

Give an explicit mathematical expression (not code) that evaluates to true if ij is part of the shadow
contour, and false otherwise. Your expression should use the light position x € R?, the two edge
endpoints p;, p; € IR>, and the two normal vectors n;,nj; € IR> on either side of an edge ij. If you like,
you may use logical operations (AND, OR, etc.) in your expression, but there is a nice way to write the

answer without such expressions.




Question 3b — solution

One possible expression is

(njj, x — p;)(nj;, x — p;) <O0.
Each inner product effectively tests whether the light source is in front of one of the two triangles’
planes, by seeing if the vector toward the light is pointing toward (positive) or away from (negative) the

normal. If the light is on the same side of both of the triangles, this product will be positive; otherwise
only one of the terms will be negative and the product will be negative.

(n,x —p) >0 (n,x —p) <0
X




Question 3c & solution

(5 points) Using your expression from the previous part, write some pseudocode to decide if the
given edge is on the shadow contour. You may assume a basic halfedge data structure®, which
provides methods like face->normal () and vertex->position (), but you must explicitly call
these methods (rather than assuming that quantities like p;, n;;, efc., are already given). You may also
assume basic vector operations (cross product, dot product, etc.). Note: you will not be penalized if
your expression from the previous part is wrong, as long as the rest of your code is right.

bool onContour( Edge e, // edge to be tested
Vec3 x // location of point 1ight )

{
Halfedge i1ij = e->halfedge();

Halfedge jl = 1j—>twin();

Vec3 nij = ij->face () ->normal ();
Vec3 njl1 = ji—->face () —>normal () ;
Vec3 pi = 1j->vertex()—>position|();
Vec3 pj] = jJji—>vertex()-—>position();

return dot( nij, x-pi1 ) * dot( nji, x-pi1i ) < 0.;



Question 3d

(5 points) For each edge ij on the shadow contour, we have to build a polygon that forms one “side” of
the shadow volume*. This polygon is formed by the two endpoints p; and p ; of the edge, which are
extended along rays from the light source x to points q;, q; at infinity. Write a routine that computes
the shadow polygon for a given edge, yielding four points in homogeneous coordinates. If you find it
convenient, you can assume that Vec4 has a constructor that takes a Vec3 and a scalar as input (e.g.,
Vec4d u( v, 1 ),whereuisaVec3). Asin part (c), you should assume a standard halfedge data

structure, and must explicitly access any data you need to perform the computation.

o X p]
Pi




void shadowPolygon ( Edge e,

{
Pl
P
gi
dJ
}

// contour edge

Vee3 x, // light position
Vecd& pi, Vecds& pj,
Vecd& qgi, Vecds& gj )

Vecd ( e—>halfedge () —>vertex () —>position(), 1.
Vecd ( e—>halfedge () —>twin () —->vertex () —->position (),

pl1 — Vecd( x, 1. );
p] — Vecd( x, 1. );

) ;

// endpoints along edge
// endpoints at infinity

1.

Question 3d — solution
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p; +s(q; — pi)

Points vs. Vectors in Homogeneous Coordinates

m Ingeneral:

- A point has a nonzero homogeneous coordinate (¢ = 1)

- Avector has a zero homogeneous coordinate (¢ = 0)

m Butwait... what division by c mean when it’s equal to zero?
m Well consider what happensasc — O...

(x,y)/1 (x,v)/0.5 (x,v)/0.25 (x,y)/0.001

M BN ) HallaYaaVl, T N al e 4 . ¢ '8 al - a¥e a2 h K"
a' U - | 2SS (ad JUIIILS

(In practice: still need to check for divide by zero!)
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Question 3e & solution

(b points) What challenge might you run into when trying to build a shadow volume for a polygon
mesh that is manifold but does not have triangular faces?

In a general polygon mesh, polygons may not be planar. For instance, the four vertices of a quadrilateral
may not all lie in a common plane. Hence, normals no longer have a clear definition; likewise, it’s not
clear anymore that the shadow contour will be along edges. (For instance, if we view a nonplanar quad
as a bilinear patch, then the dot product of the normal with the light direction may change sign on the

interior of the patch.)

n




Question 3f

(5 points) For the shadow volume strategy to work, we need to make sure not to draw shadow polygons
that are occluded by scene objects, and we need to make sure not to shade pixels that should be in
shadow (i.e., pixels where the final stencil buffer value is greater than zero). So, the general strategy is
to rasterize the scene in multiple “passes.” Each pass might render a different set of objects, and uses
data from one buffer to decide what data should get written into another buffer.

Describe—in words, not code—any sequence of rasterization passes that will correctly draw shadowed
pixels as black and lit pixels as white. The only three buffers you should consider are a depth buffer which
keeps track of the closest primitive seen so far, a stencil buffer which counts the number of primitives
drawn into each pixel (incrementing for camera-facing polygons, and decrementing otherwise), and a
color buffer which stores the final color values (in this case just black or white). The only two sets of
primitives you can rasterize are the scene primitives describing the objects in the scene, and the shadow
primitives which are the polygons describing the shadow volume. All pixels that are neither lit nor in

shadow should be given a background color (like grey).




Question 3f — solution

One of many possible solutions is to first clear the color buffer to the background color. Then render
the scene primitives into the depth buffer, and into the color buffer as black. Then render the shadow
primitives, but only increment/decrement the stencil buffer if a pixel passes the depth test. This way,
you count how many times you enter/exit a shadow volume before seeing the closest object. Finally,
render the scene primitives again, but this time only write to the color buffer if the depth is equal to the

value already in the depth buffer, and the stencil buffer has a value of zero.

Pass 1: render all pixels “in shadow”  Pass 2: render shadow volumes Pass 3: render “lit” pixels

ﬂ

stencil

depth o BB+ B +1-1=0




Question 3¢

(5 points) What happens if the camera is inside the shadow volume? Does your scheme correctly draw
objects that are in shadow? If so, why? If not, why not? (Note: you are not required to come up with a
procedure that produces correct shadows in this case! You merely need to be able to correctly analyze

the behavior of your algorithm in this scenario.)
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Image credit: Usta et al, “A Practical and Efficient Approach for Correct Z-Pass Stencil Shadow Volumes”




Question 3g — solution

The proposed strategy will not work correctly when the camera is inside the shadow volume, since the
count in the stencil buffer will be off: for instance, if we are sitting inside the shadow volume, looking at
an object that is also inside the shadow volume, the count will be zero even though this object should be
in shadow. There is a simple strategy (not described here) called “Z-fail” that correctly handles this case.

wrong (shadows inverted)
3 !

!
; 4l

See: Usta et al, “A Practical and Efficient Approach for Correct Z-Pass Stencil Shadow Volumes”



Question 3h

(5 points) Finally, let’s put it all together—write a routine that rasterizes a polygon from the shadow
volume, and updates the stencil buffer. Independent of how you designed your algorithm in part (f),
this routine should take the four points of the polygon as input, and update the stencil buffer only if
this polygon is closer than the closest object stored in the depth buffer. The four vertices of the polygon
are given as points P0, P1, Q0, Q1 that have already been projected into 2D image coordinates; the
third coordinate of each point gives its depth value, and all vertices are at finite locations (i.e., not
points at infinity).

Implementation notes: You may use any method from any other part of the exam—even if you did not
complete that part. As before, you may also assume that you have the methods pixelCenter and
baryCoords. All buffers have size wxh and store a single value per pixel (color isjust a greyscale
value rather than an RGB color). You do not need to worry about efficiency—to rasterize, you can just
test coverage for every pixel in the entire image.

This routine will be a bit longer /more complicated than the simple subroutines you wrote above. Some
questions to think about:

e What's the standard way to draw a quad via the rasterization pipeline?

e How do you check if a sample point is inside a triangle?

e How do you determine the depth at an arbitrary location inside a triangle?

* How do you know whether to increment or decrement the stencil buffer?

(Note: these questions are just to help you think about how to write the routine! You do not have to
answer them directly.)




Question 3h — solution

void drawShadowPolygon (
Vec3 PO, Vec3 P1l, Vec3 Q0, Veec3 Q1, // polygon vertices
doublex* depth, doublex stencil, doublex color, // buffers
int w, int h, // buffer width/height
Vec2 10, Vec2 Il ) // image bounds

// we're going to draw the quad as two triangles,
// which for convenience we'll store in an array
Vec3 tris[2][3] = {

{ PO, P1, Q1 }, // first triangle

{ PO, Q1, Q0 } // second triangle
}i

for( int i = 0; i < w; 1i++ )
for( int j = 0; j < h; J++ )
{
Vec2 c = getPixelCenter( i, j, w, h, I0, Il );

// iterate over the two triangles making up the quad
for( int k = 0; k < 2; k++ )
{
// grab a reference to the current triangle
array<Veec3,3>& P = tris[k];

// get the barycentric coordinates of the
// pixel center, relative to this triangle
Vec3 b = baryCoords( ¢, P[O0], P[1], P[2] );




// check 1if this pixel is inside this triangle
if( b1[0] > 0 && b1l[1l] > 0 && bl[2] > 0 ) {
// get the triangle's depth at (x,y) by interpolating
// the corner depths via barycentric coordinates
d = bl[0]*xT[k][0].z +
bl1[1]*T[k][1l].z +
bl[2]*xT[k][2].2 ;

// check whether the stencil polygon 1is closer
// than the closest primitive in the scene
1f( d < depth[i+wx]] ) {
// get the triangle's orientation by taking the cross
// product of two of its edge vectors
o= (P[1]-P[O0]) .xx(P[2]-P[0]).y -
(P[1]-P[O]) .yx(P[2]-P[O0]) .x ;

// increment the stencil buffer if the triangle 1is
// pointing toward us; otherwise, decrement it
1f( o > 0 ) stencil[itwx7]]++;

else stencil[it+wx]]——;

Question 3h — solution



