Spatial Transformations
Spatial Transformation

- Basically any function that assigns each point a new location
- Today we’ll focus on common transformations of space (rotation, scaling, etc.) encoded by linear maps

\[f : \mathbb{R}^n \rightarrow \mathbb{R}^n \]
Transformations in Computer Graphics

- Where are linear transformations used in computer graphics?
 - All over the place!
 - Position/deform objects in space
 - Move the camera
 - Animate objects over time
 - Project 3D objects onto 2D images
 - Map 2D textures onto 3D objects
 - Project shadows of 3D objects onto other 3D objects
 - ...
The Rasterization Pipeline

- Transform/position objects in space
- Project objects onto the screen
- Sample triangle coverage
- Interpolate triangle attributes at covered samples
- Sample texture maps / evaluate shaders
- Combine samples into final image (depth, alpha, ...)

Today
Review: Linear Maps

Q: What does it mean for a map $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ to be linear?

Geometrically: it maps lines to lines, and preserves the origin

Algebraically: preserves vector space operations (addition & scaling)
Why do we care about *linear* transformations?

- Cheap to apply
- Usually pretty easy to solve for (linear systems)
- **Composition of linear transformations is linear**
 - product of **many** matrices is a **single** matrix
 - gives uniform representation of transformations
 - simplifies graphics algorithms, systems (e.g., GPUs & APIs)

\[
\begin{bmatrix}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{bmatrix}
\begin{bmatrix}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{bmatrix}
\cdots =
\begin{bmatrix}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{bmatrix}
\]

rotation *scale* *rotation* *composite transformation*
What kinds of linear transformations can we compose?
Types of Transformations

What would you call each of these types of transformations?

Q: How did you know that? (Hint: you did not inspect a formula!)

- translation
- rotation
- scaling
- shear
Invariants of Transformation

A transformation is determined by the **invariants** it preserves

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Invariants</th>
<th>Algebraic Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear</td>
<td>straight lines / origin</td>
<td>$f(ax+y) = af(x) + f(y)$, $f(0) = 0$</td>
</tr>
<tr>
<td>translation</td>
<td>differences between pairs of points</td>
<td>$f(x-y) = x-y$</td>
</tr>
<tr>
<td>scaling</td>
<td>lines through the origin / direction of vectors</td>
<td>$f(x)/</td>
</tr>
<tr>
<td>rotation</td>
<td>origin / distances between points / orientation</td>
<td>$</td>
</tr>
</tbody>
</table>

(Essentially how your brain “knows” what kind of transformation you’re looking at...)
Rotation

Rotations defined by three basic properties:

- keeps origin fixed
- preserves distances
- preserves orientation

First two properties together imply that rotations are linear.

Will have a lot more to say about rotations next lecture...
2D Rotations—Matrix Representation

Rotations preserve distances and the origin—hence, a 2D rotation by an angle θ maps each point \mathbf{x} to a point $f_\theta(\mathbf{x})$ on the circle of radius $|\mathbf{x}|$:

Where does $\mathbf{x} = (1,0)$ go if we rotate by θ (counter-clockwise)?

How about $\mathbf{x} = (0,1)$?

What about a general vector $\mathbf{x} = (x_1, x_2)$?
So, How do we represent the 2D rotation function $f_\theta(x)$ using a matrix?

$$f_\theta(x) = \begin{bmatrix} \cos \theta & -\sin(\theta) \\ \sin \theta & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
3D Rotations

- Q: In 3D, how do we rotate around the x_3-axis?
- A: Just apply the same transformation of x_1, x_2; keep x_3 fixed

\[
\begin{align*}
\text{rotate around } x_1 & \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin(\theta) \\ 0 & \sin \theta & \cos(\theta) \end{bmatrix} \\
\text{rotate around } x_2 & \quad \begin{bmatrix} \cos \theta & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos(\theta) \end{bmatrix} \\
\text{rotate around } x_3 & \quad \begin{bmatrix} \cos \theta & -\sin(\theta) & 0 \\ \sin \theta & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}
\end{align*}
\]
Rotations—Transpose as Inverse

Rotation will map standard basis to orthonormal basis $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$:

\[
\begin{bmatrix}
\mathbf{e}_1^T \\
\mathbf{e}_2^T \\
\mathbf{e}_3^T
\end{bmatrix}
\begin{bmatrix}
\mathbf{e}_1 \\
\mathbf{e}_2 \\
\mathbf{e}_3
\end{bmatrix}
= I
\]

Hence, $R^T R = I$, or equivalently, $R^T = R^{-1}$.
Reflections

Q: Does every matrix $Q^TQ = I$ describe a rotation?

Remember that rotations must preserve the origin, preserve distances, and preserve orientation.

Consider for instance this matrix:

$$Q = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \quad Q^TQ = \begin{bmatrix} (-1)^2 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Q: Does this matrix represent a rotation? (If not, which invariant does it fail to preserve?)

A: No! It represents a reflection across the y-axis (and hence fails to preserve orientation).
Orthogonal Transformations

- In general, transformations that preserve distances and the origin are called *orthogonal transformations*

- Represented by matrices $Q^T Q = I$
 - *Rotations* additionally preserve orientation: $\det(Q) > 0$
 - *Reflections* reverse orientation: $\det(Q) < 0$
Scaling

- Each vector \mathbf{u} gets mapped to a scalar multiple
 \[f(\mathbf{u}) = a\mathbf{u}, \quad a \in \mathbb{R} \]
- Preserves the direction of all vectors*
 \[\frac{\mathbf{u}}{|\mathbf{u}|} = \frac{a\mathbf{u}}{|a\mathbf{u}|} \]
- Q: Is scaling a linear transformation? A: Yes!

*assuming $a \neq 0$, $\mathbf{u} \neq 0$
Scaling — Matrix Representation

Q: Suppose we want to scale a vector $\mathbf{u} = (u_1, u_2, u_3)$ by a. How would we represent this operation via a matrix?

A: Just build a diagonal matrix D, with a along the diagonal:

$$
\begin{bmatrix}
 a & 0 & 0 \\
 0 & a & 0 \\
 0 & 0 & a
\end{bmatrix}
\begin{bmatrix}
 u_1 \\
 u_2 \\
 u_3
\end{bmatrix}
=
\begin{bmatrix}
 au_1 \\
 au_2 \\
 au_3
\end{bmatrix}
$$

Q: What happens if a is negative?
Negative Scaling

For $a = -1$, can think of scaling by a as a sequence of reflections.

E.g., in 2D:

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Since each reflection reverses orientation, orientation is preserved.

What about 3D?

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Now we have three reflections, and so orientation is reversed!
Nonuniform Scaling (Axis-Aligned)

- We can also scale each axis by a different amount
 \[f(u_1, u_2, u_3) = (au_1, bu_2, cu_3), \quad a, b, c \in \mathbb{R} \]

- Q: What's the matrix representation?
- A: Just put \(a, b, c \) on the diagonal:

\[
\begin{bmatrix}
 a & 0 & 0 \\
 0 & b & 0 \\
 0 & 0 & c
\end{bmatrix}
\begin{bmatrix}
 u_1 \\
 u_2 \\
 u_3
\end{bmatrix} =
\begin{bmatrix}
 au_1 \\
 bu_2 \\
 cu_3
\end{bmatrix}
\]

Ok, but what if we want to scale along some other axes?
Nonuniform Scaling

- **Idea.** We could:
 - rotate to the new axes \((R)\)
 - apply a diagonal scaling \((D)\)
 - rotate *back* to the original axes \((R^T)\)

- Notice that the overall transformation is represented by a **symmetric** matrix

\[A := R^T D R \]

Q: Do all symmetric matrices represent nonuniform scaling (for some choice of axes)?

*Recall that for a rotation, the inverse equals the transpose: \(R^{-1} = R^T\)
Spectral Theorem

- **A: Yes!** Spectral theorem says a symmetric matrix $A = A^\top$ has
 - orthonormal eigenvectors $e_1, \ldots, e_n \in \mathbb{R}^n$
 - real eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$

- Can also write this relationship as $AR = RD$, where

 $$R = \begin{bmatrix} e_1 & \cdots & e_n \end{bmatrix} \quad D = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

- Equivalently, $A = RDR^\top$

- Hence, every symmetric matrix performs a non-uniform scaling along some set of orthogonal axes.

- If A is positive definite ($\lambda_i > 0$), this scaling is positive.
Shear

- A shear displaces each point \(x \) in a direction \(u \) according to its distance along a fixed vector \(v \):

\[
f_{u,v}(x) = x + \langle v, x \rangle u
\]

- **Q:** Is this transformation **linear**?
- **A:** Yes—for instance, can represent it via a matrix

\[
A_{u,v} = I + uv^\top
\]

Example.

\[
\begin{align*}
u &= (\cos(t),0,0) \\
v &= (0,1,0)
\end{align*}
\]

\[
A_{u,v} = \begin{bmatrix}
1 & \cos(t) & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
Composite Transformations

From these basic transformations (rotation, reflection, scaling, shear...) we can now build up composite transformations via matrix multiplication:

\[A(t) = R_x(t)R_y(t)S(t) \]
How do we decompose a linear transformation into pieces?

(rotations, reflections, scaling, ...)
Decomposition of Linear Transformations

- In general, no unique way to write a given linear transformation as a composition of basic transformations!
- However, there are many useful decompositions:
 - singular value decomposition (good for signal processing)
 - LU factorization (good for solving linear systems)
 - polar decomposition (good for spatial transformations)
 - ...

- Consider for instance this linear transformation:

\[
A = \begin{bmatrix}
0.34 & -0.11 & -0.89 \\
-0.65 & 0.52 & -0.70 \\
0.25 & 0.23 & -0.69
\end{bmatrix}
\]
Polar & Singular Value Decomposition

For example, polar decomposition decomposes any matrix A into orthogonal matrix Q and symmetric positive-semidefinite matrix P:

$$A = QP$$

Q: What do each of the parts mean geometrically?

- rotation/reflection
- nonnegative, nonuniform scaling

Since P is symmetric, can take this further via the spectral decomposition $P = VDV^T$ (V orthogonal, D diagonal):

$$A = QV D V^T = UDV^T$$

Result UDV^T is called the singular value decomposition
Interpolating Transformations

- How are these decompositions useful for graphics?
- Consider interpolating between two linear transformations A_0, A_1 of some initial model

Goal: animate transition with some nice continuous motion
Interpolating Transformations—Linear

One idea: just take a linear combination of the two matrices, weighted by the current time \(t \in [0, 1] \)

\[
A(t) = (1 - t)A_0 + tA_1
\]

Hits the right start/endpoints… but looks awful in between!
Interpolating Transformations—Polar

Better idea: *separately* interpolate components of polar decomposition.

\[A_0 = Q_0P_0, \quad A_1 = Q_1P_1 \]

- **scaling**
 \[P(t) = (1 - t)P_0 + tP_1 \]

- **rotation**
 \[\widetilde{Q}(t) = (1 - t)Q_0 + tQ_1 \]
 \[\widetilde{Q}(t) = Q(t)X(t) \]

- **final interpolation**
 \[A(t) = Q(t)P(t) \]

...looks better!

See: Shoemake & Duff, “Matrix Animation and Polar Decomposition”
Example: Linear Blend Skinning

- Naïve linear interpolation also causes artifacts when blending between transformations on a character (“candy wrapper effect”)
- Lots of research on alternative ways to blend transformations...

LBS: candy-wrapper artifact

Rumman & Fratarcangeli (2015)
“Position-based Skinning for Soft Articulated Characters”

Jacobson, Deng, Kavan, & Lewis (2014)
“Skinning: Real-time Shape Deformation”
So far we’ve ignored a basic transformation—translations

A translation simply adds an offset \(\mathbf{u} \) to the given point \(\mathbf{x} \):

\[
f_{\mathbf{u}}(\mathbf{x}) = \mathbf{x} + \mathbf{u}
\]

Q: Is this transformation **linear**? (Certainly seems to move us along a line…)

Let’s carefully check the definition…

additivity

\[
f_{\mathbf{u}}(\mathbf{x} + \mathbf{y}) = \mathbf{x} + \mathbf{y} + \mathbf{u}
\]

\[
f_{\mathbf{u}}(\mathbf{x}) + f_{\mathbf{u}}(\mathbf{y}) = \mathbf{x} + \mathbf{y} + 2\mathbf{u}
\]

homogeneity

\[
f_{\mathbf{u}}(a\mathbf{x}) = a\mathbf{x} + \mathbf{u}
\]

\[
a f_{\mathbf{u}}(\mathbf{x}) = a\mathbf{x} + a\mathbf{u}
\]

A: No! Translation is **affine**, *not* linear!
Composition of Transformations

- Recall we can compose linear transformations via matrix multiplication:
 \[A_3(A_2(A_1x))) = (A_3A_2A_1)x \]

- It’s easy enough to compose translations—just add vectors:
 \[f_{u_3}(f_{u_2}(f_{u_1}(x))) = f_{u_1+u_2+u_3}(x) \]

- What if we want to intermingle translations and linear transformations (rotation, scale, shear, etc.)?
 \[A_2(A_1x + b_1) + b_2 = (A_2A_1)x + (A_2b_1 + b_2) \]

- Now we have to keep track of a matrix \textit{and} a vector

- Moreover, we’ll see (later) that this encoding won’t work for other important cases, such as perspective transformations

But there is a better way…
Strange idea:
Maybe translations turn into linear transformations if we go into the 4th dimension...!
Homogeneous Coordinates

- Came from efforts to study perspective
- Introduced by Möbius as a natural way of assigning coordinates to lines
- Show up naturally in a surprising large number of places in computer graphics:
 - 3D transformations
 - perspective projection
 - quadric error simplification
 - premultiplied alpha
 - shadow mapping
 - projective texture mapping
 - discrete conformal geometry
 - hyperbolic geometry
 - clipping
 - directional lights
 - …

Probably worth understanding!
Homogeneous Coordinates—Basic Idea

- Consider any 2D plane that does not pass through the origin \(o \) in 3D
- Every line through the origin in 3D corresponds to a point in the 2D plane
 - Just find the point \(p \) where the line \(L \) pierces the plane

Hence, any point \(\hat{p} \) on the line \(L \) can be used to represent the point \(p \).

Q: What does this story remind you of?
Review: Perspective projection

- Hopefully it reminds you of our “pinhole camera”
- Objects along the same line project to the same point

If you have an image of a single dot, can’t know where it is! Only which line it belongs to.
Homogeneous Coordinates (2D)

- More explicitly, consider a point \(p = (x, y) \), and the plane \(z = 1 \) in 3D.

- Any three numbers \(\hat{p} = (a, b, c) \) such that \((a/c, b/c) = (x, y) \) are **homogeneous coordinates** for \(p \).
 - E.g., \((x, y, 1)\)
 - In general: \((cx, cy, c)\) for \(c \neq 0\)

- Hence, two points \(\hat{p}, \hat{q} \in \mathbb{R}^3 \setminus \{O\} \) describe the same point in 2D (and line in 3D) if \(\hat{p} = \lambda \hat{q} \) for some \(\lambda \neq 0 \).

Great... but how does this help us with transformations?
Translation in Homogeneous Coordinates

Let’s think about what happens to our homogeneous coordinates \hat{p} if we apply a translation to our 2D coordinates p.

Q: What kind of transformation does this look like?
Translation in Homogeneous Coordinates

- But wait a minute—shear is a **linear** transformation!
- Can this be right? Let’s check in coordinates…
- Suppose we translate a point \(\mathbf{p} = (p_1, p_2) \) by a vector \(\mathbf{u} = (u_1, u_2) \) to get \(\mathbf{p}' = (p_1 + u_1, p_2 + u_2) \)
- The homogeneous coordinates \(\hat{\mathbf{p}} = (cp_1, cp_2, c) \) then become \(\hat{\mathbf{p}}' = (cp_1 + cu_1, cp_2 + cu_2, c) \)
- Notice that we’re shifting \(\hat{\mathbf{p}} \) by an amount \(cu \) that’s proportional to the distance \(c \) along the third axis—a shear

Using homogeneous coordinates, we can represent an **affine** transformation in 2D as a **linear** transformation in 3D
Homogeneous Translation—Matrix Representation

- To write as a matrix, recall that a shear in the direction $\mathbf{u} = (u_1, u_2)$ according to the distance along a direction \mathbf{v} is
 $$f_{\mathbf{u},\mathbf{v}}(\mathbf{x}) = \mathbf{x} + \langle \mathbf{v}, \mathbf{x} \rangle \mathbf{u}$$

- In matrix form:
 $$f_{\mathbf{u},\mathbf{v}}(\mathbf{x}) = (I + \mathbf{uv}^\top) \mathbf{x}$$

- In our case, $\mathbf{v} = (0, 0, 1)$ and so we get a matrix

$$\begin{bmatrix} 1 & 0 & u_1 \\ 0 & 1 & u_2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c \rho_1 \\ c \rho_2 \\ c \end{bmatrix} = \begin{bmatrix} c(p_1 + u_1) \\ c(p_2 + u_2) \\ c \end{bmatrix} \Rightarrow \begin{bmatrix} p_1 + u_1 \\ p_2 + u_2 \end{bmatrix}$$
Other 2D Transformations in Homogeneous Coordinates

Original shape in 2D can be viewed as many copies, uniformly scaled by x_3

2D scale ↔ scale x_1 and x_2; preserve x_3
(Q: what happens to 2D shape if you scale x_1, x_2, and x_3 uniformly?)

Now easy to compose all these transformations
3D Transformations in Homogeneous Coordinates

- Not much changes in three (or more) dimensions: just append one “homogeneous coordinate” to the first three.

- Matrix representations of 3D linear transformations just get an additional identity row/column; translation is again a shear.

- **Point in 3D**

- rotation (x, y, z) around y by θ

$$
\begin{bmatrix}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
$$

- shear (x, y) by z in (s, t) direction

$$
\begin{bmatrix}
1 & 0 & s & 0 \\
0 & 1 & t & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
$$

- scale x, y, z by a, b, c

$$
\begin{bmatrix}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
$$

- translate (x, y, z) by (u, v, w)

$$
\begin{bmatrix}
1 & 0 & 0 & u \\
0 & 1 & 0 & v \\
0 & 0 & 1 & w \\
0 & 0 & 0 & 1
\end{bmatrix}
$$
Points vs. Vectors

- Homogeneous coordinates have another useful feature: distinguish between points and vectors.

- Consider for instance a triangle with:
 - vertices $a, b, c \in \mathbb{R}^3$
 - normal vector $n \in \mathbb{R}^3$

- Suppose we transform the triangle by appending "1" to a, b, c, n and multiplying by this matrix:

\[
\begin{bmatrix}
cos \theta & 0 & sin \theta & u \\
0 & 1 & 0 & v \\
-sin \theta & 0 & cos \theta & w \\
0 & 0 & cos \theta & w \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Normal is not orthogonal to triangle! (What went wrong?)
Points vs. Vectors (continued)

- Let’s think about what happens when we multiply the normal vector \mathbf{n} by our matrix:

\[
\begin{bmatrix}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\mathbf{n}_1 \\
\mathbf{n}_2 \\
\mathbf{n}_3 \\
1
\end{bmatrix}
\]

- But when we rotate/translate a triangle, its normal should just rotate!*

- Solution? Just set homogeneous coordinate to zero!

- Translation now gets ignored; normal is orthogonal to triangle

*Recall that vectors just have direction and magnitude—they don’t have a “basepoint”!
Points vs. Vectors in Homogeneous Coordinates

- **In general:**
 - A *point* has a *nonzero* homogeneous coordinate ($c = 1$)
 - A *vector* has a *zero* homogeneous coordinate ($c = 0$)

- But wait... what division by c mean when it's equal to zero?
- Well consider what happens as $c \to 0$...

Can think of vectors as “points at infinity” (sometimes called “ideal points”)

(In practice: still need to check for divide by zero!)
Q: How can we perform perspective projection* using homogeneous coordinates?

Remember from our pinhole camera model that the basic idea was to “divide by \(z \)”

So, we can build a matrix that “copies” the \(z \) coordinate into the homogeneous coordinate

Division by the homogeneous coordinate now gives us perspective projection onto the plane \(z = 1 \)

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
=
\begin{bmatrix}
x \\
y \\
z \\
z
\end{bmatrix}
\]

\[
\Rightarrow \begin{bmatrix}
x/z \\
y/z \\
1
\end{bmatrix}
\]

*Assuming a pinhole camera at \((0,0,0)\) looking down the \(z \)-axis
Screen Transformation

- One last transformation is needed in the rasterization pipeline: transform from viewing plane to pixel coordinates.

- E.g., suppose we want to draw all points that fall inside the square $[-1,1] \times [-1,1]$ on the $z = 1$ plane, into a $W \times H$ pixel image.

"normalized device coordinates"

Q: What transformation(s) would you apply? (Careful: y is now down!)
Scene Graph

- For complex scenes (e.g., more than just a cube!) scene graph can help organize transformations

- Motivation: suppose we want to build a “cube creature” by transforming copies of the unit cube

- Difficult to specify each transformation directly

- Instead, build up transformations of “lower” parts from transformations of “upper” parts
 - E.g., first position the body
 - Then transform upper arm relative to the body
 - Then transform lower arm relative to upper arm
 - …
Scene Graph (continued)

- Scene graph stores relative transformations in directed graph
- Each edge (+root) stores a linear transformation (e.g., a 4x4 matrix)
- Composition of transformations gets applied to nodes

E.g., A_1A_0 gets applied to left upper leg; $A_2A_1A_0$ to left lower leg

- Keep transformations on a stack to reduce redundant multiplication
Scene Graph—Example

Often used to build up complex “rig”:

In general, scene graph also includes other models, lights, cameras, …
Instancing

- What if we want many copies of the same object in a scene?
- Rather than have many copies of the geometry, scene graph, etc., can just put a “pointer” node in our scene graph.
- Like any other node, can specify a different transformation on each incoming edge.
Instancing—Example
Order matters when composing transformations!

- Scale by 1/2, then translate by (3,1)
- Translate by (3,1), then scale by 1/2
How would you perform these transformations?

Remember: always more than one way to do it!
Common task: rotate about a point x

Step 1: translate by $-x$

Step 2: rotate

Step 4: translate by x

Q: What happens if we just rotate without translating first?
Drawing a Cube Creature

- Let’s put this all together: starting with our 3D cube, we want to make a 2D, perspective-correct image of a “cube creature”

- First we use our scene graph to apply 3D transformations to several copies of our cube

- Then we apply a 3D transformation to position our camera

- Then a perspective projection

- Finally we convert to image coordinates (and rasterize)

- …Easy, right? :-)

Spatial Transformations—Summary

transformation defined by its invariants

basic linear transformations
- scaling
- rotation
- reflection
- shear

basic nonlinear transformations
- translation
- perspective projection

linear when represented via homogeneous coords
homogeneous coords also distinguish points & vectors

composite transformations
- compose basic transformations to get more interesting ones
- always reduces to a single 4x4 matrix (in homogeneous coordinates)
 - simple, unified representation, efficient implementation
- order of composition matters!
- many ways to decompose a given transformation (polar, SVD, …)
- use scene graph to organize transformations
 - use instancing to eliminate redundancy
Next time: 3D Rotations