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Linear Algebra in Computer Graphics
Today’s topic: linear algebra. 
Why is linear algebra important for computer graphics? 
- Effective bridge between geometry, physics, etc., and 

computation. 
- In many areas of graphics, once you can express the 

solution to a problem in terms of linear algebra, you’re 
essentially done: now ask the computer to solve Ax=b. 

- Fast numerical linear algebra has really made modern 
computer graphics possible (image processing, physically-
based animation, geometry processing...)



 CMU 15-462/662

Vector Space—Formal Definition
Linear algebra is the study of vector spaces and linear maps 
between them—here’s the formal definition*:

Where do these rules come from? 
In mathematics (and in life) you should never simply accept a 
set of rules handed to you by an authority… 
Let’s try to understand where these “rules” come from.

*this will NOT be on the test!
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Vectors - Intuition
First things first: what is a vector? 
Intuitively, a vector is a little arrow:

A vector.

In computer graphics, we work with many types of data that 
may not look like little arrows (polynomials, images, 
radiance...).  But they still behave like vectors.  So, this little 
arrow is still often a useful mental model.
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Vectors - What Can We Measure?
What information does a vector encode? 
Fundamentally, just direction and magnitude*:

For instance, a vector in 2D can be encoded by a length and an 
angle relative to some fixed direction (“polar coordinates”). 
(Side note: are these values the same in any coordinate system?) 
How else might we encode a vector?

*Traditionally, a vector does not include a “basepoint”; a vector with a basepoint is sometimes called a tangent vector.
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Vector in Cartesian Coordinates
Can also measure components of a vector with respect to 
some chosen coordinate system:

WARNING: Can’t directly compare coordinates in different 
systems!  (Also shouldn’t compare (r,θ) to (x,y).)

René Descartes, Est. 1596
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What Can We Do with a Vector?
Two basic operations.  First, we can add them “end to end”:

What if we walk along v first, then u? 
Actually, it doesn’t seem to matter: u+v = v+u 
Language: vector addition is “commutative” or “abelian”

Niels Henrik Abel
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2.5u
2u

What Else Can We Do with a Vector?
Other basic operation?  Scaling:

u

In general, can multiply any vector u by a number or “scalar” a 
to get a new vector au. 
Multiplication behaves the way we would expect, based on 
the geometric behavior of scaling “little arrows.”  E.g., 

a(bu) = (ab)u
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Interaction of Addition & Scaling
What if we try to add two scaled vectors?  Or scale two vectors 
that have been added together?

Interesting—seems we get the same result either way:
a( u + v ) = au + av
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Vector Space—Formal Definition
If we keep playing around vectors, eventually we come up 
with a complete set of “rules” that vectors seem to obey:

These rules did not “fall out of the sky!”  Each one comes from 
the geometric behavior of “little arrows.” (Can you draw a 
picture for each one?) 
Any collection of objects satisfying all of this properties is a 
vector space (even if they don’t look like little arrows!)
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Euclidean Vector Space
Most common example: Euclidean n-dimensional space 
Typically denoted by          , meaning “n real numbers” 
E.g., (1.23, 4.56, π/2) is a point in  
Why such a common example? 
- Looks a lot like the space we live in! 
- That’s what we can easily encode on a computer (a list of 
floating-point numbers).
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Functions as Vectors
Another very important example of vector spaces in computer 
graphics are spaces of functions. 
Why?  Because many of the objects we want to work with in 
graphics are functions!  (Images, radiance from a light source, 
surfaces, modal vibrations, ...)

These are all vectors! :-)
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Functions as Vectors
Do functions exhibit the same behavior as “little arrows?” 
Well, we can certainly add two functions:

We can also scale a function:
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Functions as Vectors
What about the rest of these properties?

Try it out at home! 
E.g., the “zero vector” is the function equal to zero for all x. 
Short answer: yes, functions are vectors! (Even if they don’t 
look like “little arrows”.)



Vectors in Coordinates
So far, we’ve only drawn our vector operations via pictures. 
How do we actually compute with vectors? 
Return to our coordinate representation:

*Side note: does it make sense to add vectors encoded as (r,θ)?
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Ok, so we came up with some 
rule for adding pairs of numbers. 

How can we check that it faithfully encodes 
geometric behavior of “little arrows?”
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From Geometry to Algebra
Just check that it agrees with our list of rules that we know 
(from reasoning geometrically) “little arrows” must obey:

For instance, for any two vectors u := (u1,u2) and  v := (v1,v2) we 
have
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Turning geometric observations into algebraic 
rules is convenient for symbolic manipulation & 

numerical computation. 

But you should never blindly accept 
a rule given by authority. 

Always ask: where does this rule come from?  
What does it mean geometrically? 

(Can you draw a picture?)
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Scaling Vectors in Coordinates
We’d also like to be able to scale vectors using coordinates. 
Any ideas?

(From here, check the rest of the properties...)
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Computing the Midpoint
As we start to combine vector operations, we build up 
operations needed for computer graphics. 
E.g., how would I compute the midpoint m of a = (3,4) 
and b=(7,2)?
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Measuring Vectors
Earlier we asked, “what information does a vector encode?” 
(A: Orientation and magnitude.) 
How do we actually measure these quantities?
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Norm of a Vector
Let’s start with magnitude—for a given vector v, we want to 
assign it a number |v| called its length or magnitude or norm. 
Intuitively, the norm should capture how “big” the vector is.

sm
all norm

large norm

small 
norm

large 
norm

small norm

large norm
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Natural Properties of Length—Positivity
What properties might you expect the norm (or length) of a 
vector to satisfy? 
For one thing, it probably shouldn’t be negative!

And probably it should be zero only for the zero vector:
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Natural Properties of Length, Continued
Also, if we scale a vector by a factor c, its norm (i.e., length) 
really should scale by the same amount:

Finally, we know that the shortest path between two points is 
always along a straight line:

(This final property is sometimes called the “pentagon 
inequality,” since the diagram looks like a pentagon.)
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Norm—Formal Definition
A norm is any function that assigns a number to each vector 
and satisfies the following properties for all vectors u, v, and 
all scalars a:

But you don’t have to take my word for it—for each rule, 
you now have a concrete geometric picture explaining 
why this “rule” is there.
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Euclidean Norm in Cartesian Coordinates
A standard norm is the so-called Euclidean norm of n-vectors:

Example:

Q: Does this formula satisfy all the 
natural, geometric properties of a norm?  
(Answer in the slide comments!)
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L2 Norm of Functions
Less familiar idea, but same basic intuition: the so-called L2 
norm measures the total magnitude of a function. 
Consider real-valued functions on the unit interval [0,1] 
whose square has a well-defined integral.  The L2 norm is 
defined as:

small L2 normlarge L2 norm

Not too different from the Euclidean norm: we just replaced 
a sum with an integral (which is kind of like a sum...).

Q: Careful—does the 
formula above exactly 
satisfy all our desired 
properties for a norm?
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L2 Norm of Functions—Example
Consider the function f(x) := x√3, 
defined over the unit interval [0,1]. 
Q: What is its L2 norm? 
A:

For clarity we will use || • || for the norm of a 
function, and | • | for the norm of a vector in Rn.

P.S. Most integrals in graphics are not calculated this way (at 
least not for more challenging functions, or functions described 

by data).  Later on we’ll talk a lot about numerical integration.
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Inner Product—Motivation
What else can we measure?  In addition to magnitude, we said 
that vectors have orientation.  Just as norm measured length,  
inner product measures how well vectors “line up.”

(fairly similar)

(quite different)

(fairly similar) (quite different!)
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Inner Product—Symmetry
Will write inner product (also sometimes called the scalar 
product or dot product) using the notation <u,v> (some folks 
also write it as u•v). 
When measuring the alignment of two vectors u,v, what are 
some natural properties you might expect? 
One “obvious” property: order shouldn’t matter, since u is just 
as well-aligned with v as v is with u:

Moreover, simply re-naming the vectors should have no effect 
on how well-aligned they are!
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Inner Product—Projection & Scaling
For unit vectors |u|=|v|=1, an inner product measures the 
extent of one vector along the direction of the other:

If we scale either of the vectors, the inner product also scales:

Q: Is this property symmetric?  
I.e., is the length of v along u the 
same as the length of u along v?
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Inner Product—Positivity
Also, a vector should always be aligned with itself, which we 
can express by saying that the inner product of a vector with 
itself should be positive (or at least, non-negative):

In fact, if we continue to think of the inner product of a vector 
as the length of one vector along another then for unit-length 
vectors we must have

Q: In general, then, what must <u,u> be equal to?
A: Letting                                 , we have
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Inner Product—Formal Definition
An inner product is any function that assigns to any two vectors 
u,v a number <u,v> satisfying the following properties:

Q: Which of these properties didn’t we talk about?  Can you 
argue that they make sense geometrically?  (Discuss online!)
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Inner Product in Cartesian Coordinates
A standard inner product is the so-called Euclidean inner 
product, which operates on a pair of n-vectors:

Example:
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L2 Inner Product of Functions—Example
Just like we had a norm for functions, we can also define an 
inner product that measures how well two functions “line up”. 
E.g., for square-integrable functions on the unit interval:

Example:

small number; 
functions don’t 
“line up” much!
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Measuring Images, Other Signals?
Many ways to measure “how big” a signal is (norm) or “how 
well-aligned” two signals are (inner product). 
Choice of inner product depends on application. 
For instance, suppose we want images with “interesting stuff” 
Might try measuring norm of derivative (captures edges):

(dimmer) (brighter)LARGER SMALLER
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Linear Maps
At the beginning, said linear algebra was study of vector spaces 
and linear maps between them. 
Have a pretty good handle on vector (and inner product) spaces. 
But what’s a linear map?  And why is it useful for graphics? 
We’ll get to the 1st question in a moment.  As for the 2nd 
question, a few reasons: 

- Computationally, easy to solve systems of linear equations. 

- Basic transformations (rotation, translation, scaling) can be 
expressed as linear maps.  (Will see this in a later lecture!) 

- All maps can be approximated as linear maps over a short 
distance/short time.  (Taylor’s theorem).  This approximation 
is used all over geometry, animation, rendering, image 
processing...
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Linear Maps—Geometric Definition
What is a linear map? 
Especially in graphics, can think about them visually. 
Example:

linear map

nonlinear map

Key idea: linear maps take lines to lines*
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Linear Maps—Geometric Definition
What is a linear map? 
Especially in graphics, can think about them visually. 
Example:

linear map

nonlinear map

Key idea: linear maps take lines to lines*

*...while keeping the origin fixed.

f (x) f (0) = 0
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Linear Maps—Algebraic Definition
A map f is linear if it maps vectors to vectors, 
and if for all vectors u,v and scalars a we have

In other words: if it doesn’t matter whether we add the 
vectors and then apply the map, or apply the map and then 
add the vectors (and likewise for scaling):

add first

then apply f

apply f first

then add
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Linear Maps in Coordinates
For maps between Rm and Rn (e.g., a map from 2D to 3D), we 
can give an even more explicit definition. 
A map is linear if it can be expressed as

In other words, if it is a linear combination of a fixed set of 
vectors ai:
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Q: Is f(x) := ax + b a linear function?



 CMU 15-462/662

Linear vs. Affine Maps
No!  But it’s easy to be fooled, since the graph looks like a line:

However, it’s not a line through the origin, i.e., f(0) ≠ 0. 
Another way to see it’s not linear?  Doesn’t preserve sums:

This function is called an AFFINE function (not a LINEAR one). 
Later we’ll see an important computer graphics magic trick: 
turn affine functions (e.g., translation) into linear ones via 
homogeneous coordinates.



 CMU 15-462/662

Q: Is                                                  a linear map?

More interesting question:

(Think about it—it will be 
part of your homework!)
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Span
Q: Geometrically, what is the span of two vectors u, v?

A: The span is the set of all vectors that can be written as a 
linear combination of u and v, i.e., vectors of the form

for any two numbers a, b.

More generally:
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Span & Linear Maps
Just a bit of language—can connect “span” and “linear map”: 
“The image of any linear map is the span of some collection of 
vectors.”

Q: What’s the image of a function?
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Basis
Span is also closely related to the idea of a basis. 
In particular, if we have exactly n vectors e1, ..., en such that

Then we say that these vectors are a basis for Rn. 
Note: many different choices of basis! 
Q: Which of the following are bases for the 2D plane (n=2)?

(A) (B) (C) (D) (E)
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Orthonormal Basis
Most often, it is convenient to have to basis vectors that are (i) 
unit length and (ii) mutually orthogonal. 
In other words, if e1, …, en are our basis vectors then

This way, the geometric meaning of the sum u12 +…+un2 is 
maintained: it is the length of the vector u.

Common bug: projecting 
a vector onto a basis that is 
NOT orthonormal while 
continuing to use standard 
norm / inner product.
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Gram-Schmidt
Given a collection of basis vectors a1, … an, how do we find an 
orthonormal basis e1, … en,? 
Gram-Schmidt algorithm: 
- normalize the first vector (i.e., divide by its length) 
- subtract any component of the 1st vector from the 2nd one 
- normalize the 2nd one 
- repeat, removing components of first k vectors from vector k+1

*WARNING: for large number of vectors / nearly parallel vectors, not the best algorithm...
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Fourier Transform
Functions are also vectors.  Do they have an orthonormal basis? 
Yes!  This is the basic idea behind the Fourier transform. 
Simple example: functions that repeat at intervals of 2π:

Can project onto basis of sinusoids: 
– really just a linear map from one basis to another 
– fundamental building block for many graphics algorithms

lots of low- and mid-frequency oscillation

not as much high-frequency oscillation
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Frequency Decomposition of Signals
More generally, this idea of projecting a signal onto different 
“frequencies” is known as Fourier decomposition 
Can be applied to all sorts of signals; basic tool used across, 
image processing, rendering, geometry, physical simulation... 
Will have plenty more to say as course goes on!
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System of Linear Equations
A system of linear equations is exactly what it sounds like: a 
bunch of equations where left-hand side is a linear function, 
right hand side is constant.  E.g.,

Unknown values are sometimes called “degrees of 
freedom” (DOFs); equations sometimes called “constraints” 
Goal: solve for DOFs that simultaneously satisfy constraints:
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What does solving a linear system mean?
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Linear System, Visualized
Of course, a linear system can be used to represent many 
different practical tasks (simulation, processing, etc.). 
But for any linear system, there are some good mental models 
to visualize:

Find the point where 
two lines meet:

GIVEN a point b, FIND the 
point x that maps to it:
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Uniqueness, Existence of Solutions
Of course, not all linear systems can be solved!  (And even 
those that can be solved may not have a unique solution.)

NO SOLUTION 
equations disagree

MANY SOLUTIONS 
any point along the line

NO SOLUTION 
not every point can be “reached” by f
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Wait, what about matrices?!
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Matrices in Linear Algebra
Linear algebra often taught from the perspective of matrices, 
i.e., pushing around little blocks of numbers. 
But linear algebra is not fundamentally about matrices. 
As you’ve just seen, you can understand almost all the basic 
concepts without ever touching a matrix! 
Likewise, matrices can interfere with understanding / lead to 
confusion, since the same object (a block of numbers) is used 
to represent many different things (linear map, quadratic 
form, ...) in many different bases. 
Still, VERY useful! 
- symbolic manipulation 
- numerical computation

What does this thing mean/
encode/do/represent?
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Representing Linear Maps via Matrices
Key example: suppose I have a linear map

How do I encode as a matrix?

Easy: “a” vectors become matrix columns:

Now, matrix-vector multiply recovers original map:
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Don’t worry: if you love matrices, there will 
be plenty of them in your homework!
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P.S. What’s the “Pentagon inequality?”

Clearly not a pentagon… ASK QUESTIONS!
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Next time: Math (P)Review Part II
Vector calculus 
Eigenvalue problems 
Complex numbers

grad f div X

f X Y

curl Y


