
Computer Graphics 
CMU 15-462/15-662

Physically-Based 
Animation and PDEs



Modern graphics uses optimization! 

Many complex criteria/constraints 

Basic technique: numerical descent 

- pick initial guess 

- ski downhill 

- keep fingers crossed! 

Gradient descent important example of ordinary differential equation (ODE)  

Today: return to differential equations 

- saw ODEs—derivatives in time 

- now PDEs—also have derivatives in space 

- describe many natural phenomena (water, smoke, cloth, ...) 

- recent revolution in CG/visual effects
 CMU 15-462/662

Last time: Optimization



 CMU 15-462/662

Partial Differential Equations (PDEs)
ODE: Implicitly describe function in terms of its time derivatives 
PDE: Also include spatial derivatives in implicit description 
Like any implicit description, have to solve for actual function

PDE—rock lands in pondODE—rock flies through air

d2

dt2 x(t) = g
d2

dt2 h(t, x, y) = Δh(t, x, y)



 CMU 15-462/662

To make a long story short...
Solving ODE looks like “add a little velocity each time”

Solving a PDE looks like “take weighted combination of 
neighbors to get velocity (...and add a little velocity each time)”

...obviously there is a lot more to say here!



 CMU 15-462/662

Solving a PDE in Code
Don’t be intimidated—very simple code can give rise to beautiful behavior!
void simulateWaves2D() {
   const int N = 128; // grid size
   double u[N][N]; // height
   double v[N][N]; // velocity (time derivative of height)
   const double tau = 0.2; // time step size
   const double alpha = 0.985; // damping factor

   for( int frame = 0; true; frame++ ) {  // loop forever
      // drop random "stones"
      if( frame % 100 == 0 ) u[rand()%N][rand()%N] = -1;
      // update velocity
      for( int i = 0; i < N; i++ )
      for( int j = 0; j < N; j++ ) {
         int i0 = (i + N-1) % N; // left
         int i1 = (i + N+1) % N; // right
         int j0 = (j + N-1) % N; // down
         int j1 = (j + N+1) % N; // up
         v[i][j] += tau * (u[i0][j] + u[i1][j] + u[i][j0] + u[i][j1] - 4*u[i][j])
         v[i][j] *= alpha; // damping
      }
      // update height
      for( int i = 0; i < N; i++ )
      for( int j = 0; j < N; j++ ) {
         u[i][j] += tau * v[i][j];
      }
      display( u );
   }
}



 CMU 15-462/662

Liquid Simulation in Graphics

Losasso, F., Shinar, T. Selle, A. and Fedkiw, R., "Multiple Interacting Liquids"

http://physbam.stanford.edu/~fedkiw/papers/stanford2006-02.pdf


 CMU 15-462/662

Smoke Simulation in Graphics

S. Weißmann, U. Pinkall. “Filament-based smoke with vortex shedding and variational reconnection”



 CMU 15-462/662

Cloth Simulation in Graphics

Zhili Chen, Renguo Feng and Huamin Wang, “Modeling friction and air effects between cloth and deformable bodies”



 CMU 15-462/662

Elasticity in Graphics

Irving, G., Schroeder, C. and Fedkiw, R., "Volume Conserving Finite Element Simulation of Deformable Models"

http://physbam.stanford.edu/~fedkiw/papers/stanford2007-01.pdf


 CMU 15-462/662

Hair Simulation in Graphics

Danny M. Kaufman, Rasmus Tamstorf, Breannan Smith, Jean-Marie Aubry, Eitan Grinspun, 
“Adaptive Nonlinearity for Collisions in Complex Rod Assemblies”

http://www.cs.columbia.edu/~kaufman/
http://www.disneyresearch.com/people/rasmus-tamstorf/
http://breannansmith.com/
https://www.wetafx.co.nz/
http://www.cs.columbia.edu/~eitan/
http://graphics.berkeley.edu/papers/Obrien-GMA-2002-08/index.html


 CMU 15-462/662

Fracture in Graphics

James F. O'Brien, Adam Bargteil, Jessica Hodgins, “Graphical Modeling and Animation of Ductile Fracture”

http://graphics.berkeley.edu/papers/Obrien-GMA-2002-08/index.html


 CMU 15-462/662

Viscoelasticity in Graphics

Chris Wojtan, Greg Turk, “Fast Viscoelastic Behavior with Thin Features”



 CMU 15-462/662

Snow Simulation in Graphics

Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, Andrew Selle, “A Material Point Method For Snow Simulation”



Definition of a PDE
Want to solve for a function of time and space

time space

u(t, x)

Function given implicitly in terms of derivatives:

any combination of time derivatives·u, ··u, d3u
dt3 , d4u

dt4 , …

plus any combination of space derivatives
∂u
∂x1

, ∂u
∂x2

, ∂2u
∂x1∂x2

, ∂m+nu
∂xm

i ∂xn
j
, …

Example:

(Burgers’ equation)

·u + uu′ = αu′ ′ 

du
dt

∂u
∂x

∂2u
∂x2



 CMU 15-462/662

Anatomy of a PDE
Linear vs. nonlinear: how are derivatives combined?

Order: how many derivatives in space & time?

(Burgers’ equation)

(diffusion equation)

nonlinear!

(Burgers’ equation)

(wave equation)

1st order in time 2nd order in space

2nd order in space2nd order in time

Rule of thumb: nonlinear / higher order ⇒ HARDER TO SOLVE!



Model Equations
Fundamental behavior of many important PDEs is well-
captured by three model linear equations:

LAPLACE EQUATION (“ELLIPTIC”)

HEAT EQUATION (“PARABOLIC”)

WAVE EQUATION (“HYPERBOLIC”)

E A S I E R

INTERMEDIATE

ADVANCED

[ NONLINEAR + HYPERBOLIC + HIGH-ORDER ]
EXPERTS ONLY

“what’s the smoothest function 
interpolating the given boundary data”

“how does an initial distribution 
of heat spread out over time?”

“if you throw a rock into a pond, how 
does the wavefront evolve over time?”

“Laplacian” (more later!)
Solve numerically?



 CMU 15-462/662

Elliptic PDEs / Laplace Equation
“What’s the smoothest function interpolating the given 
boundary data?”

Conceptually: each value is at the average of its “neighbors” 
Roughly speaking, why is it easier to solve? 
Very robust to errors: just keep averaging with neighbors!

Image from Solomon, Crane, Vouga, “Laplace-Beltrami: The Swiss Army Knife of Geometry Processing”



 CMU 15-462/662

Parabolic PDEs / Heat Equation
“How does an initial distribution of heat spread out over time?”

After a long time, solution is same as Laplace equation! 
Models damping / viscosity in many physical systems



 CMU 15-462/662

Hyperbolic PDEs / Wave Equation
“If you throw a rock into a pond, how does the wavefront 
evolve over time?”

Errors made at the beginning will persist for a long time! (hard)



 CMU 15-462/662

PDEs give an implicit description of solution. 

How do we compute solutions explicitly?



 CMU 15-462/662

Numerical Solution of PDEs—Overview
Like ODEs, most PDEs are difficult/impossible to solve 
analytically—especially if we want to incorporate data! 

Must instead use numerical time integration 

Basic strategy: 

–pick a time discretization (forward Euler, backward Euler...) 

–pick a spatial discretization (TODAY) 

–as with ODEs, perform time-stepping to advance solution  

Historically, very expensive—only for “hero shots” in movies 

Computers are ever faster... 

More & more use of PDEs 

- games, interactive tools, ...



 CMU 15-462/662

Real Time PDE-Based Simulation (Fire)



 CMU 15-462/662

Real Time PDE-Based Simulation (Water)

Nuttapong Chentanez, Matthias Müller, “Real-time Eulerian water simulation using a restricted tall cell grid” (2011)

http://dl.acm.org/author_page.cfm?id=81314493444&coll=DL&dl=ACM&trk=0&cfid=560149825&cftoken=78272179
http://dl.acm.org/author_page.cfm?id=81100615490&coll=DL&dl=ACM&trk=0&cfid=560149825&cftoken=78272179


 CMU 15-462/662

Lagrangian vs. Eulerian
Two basic ways to discretize space: Lagrangian & Eulerian 
E.g., suppose we want to encode the motion of a fluid

LAGRANGIAN

track position & velocity 
of moving particles

EULERIAN

track velocity (or flux) 
at fixed grid locations



 CMU 15-462/662

Lagrangian vs. Eulerian—Trade-Offs
Lagrangian 

- conceptually easy (like polygon soup!) 

- resolution/domain not limited by grid 

- good particle distribution can be tough 

- finding neighbors can be expensive 
Eulerian 

- fast, regular computation 

- easy to represent, e.g., smooth surfaces 

- simulation “trapped” in grid 

- grid causes “numerical diffusion” (blur) 

- need to understand PDEs (but you will!)



 CMU 15-462/662

Mixing Lagrangian & Eulerian
Of course, no reason you have to choose just one! 
Many modern methods mix Lagrangian & Eulerian: 
- PIC/FLIP, particle level sets, mesh-based surface tracking, 

Voronoi-based, arbitrary Lagrangian-Eulerian (ALE), ... 
Pick the right tool for the job!

Maya Bifrost



Aside: Which Quantity Do We Solve For?
Many PDEs have mathematically equivalent formulations in 
terms of different quantities 
E.g., incompressible fluids: 
- velocity—how fast is each particle moving? 
- vorticity—how fast is fluid “spinning” at each point? 
Computationally, can make a big difference 
Pick the right tool for the job!



 CMU 15-462/662

Ok, but we’re getting way ahead of ourselves. 
How do we solve easy PDEs?



 CMU 15-462/662

Numerical PDEs—Basic Strategy
Pick PDE formulation 
- Which quantity do we want to solve for? 
- E.g., velocity or vorticity? 
Pick spatial discretization 
- How do we approximate derivatives in space? 
Pick time discretization 
- How do we approximate derivatives in time? 
- When do we evaluate forces? 
- Forward Euler, backward Euler, symplectic Euler, ... 
Finally, we have an update rule 
Repeatedly solve to generate an animation

Richard Courant



 CMU 15-462/662

The Laplace Operator
All of our model equations used the Laplace operator 
Different conventions for symbol:

same symbol used for “change”
same symbol used for Hessian!

Unbelievably important object showing up everywhere across physics, 
geometry, signal processing, ... 
Ok, but what does it mean? 
Differential operator: eats a function, spits out its “2nd derivative” 

What does that mean for a function ? 

–divergence of gradient 
–sum of second derivatives 
–deviation from local average 
–…

u : ℝn → ℝ div grad

For more intuition about the Laplacian: https://youtu.be/oEq9ROl9Umk



 CMU 15-462/662

Discretizing the First Derivative
To solve any PDE, need to approximate spatial derivatives (e.g., Laplacian) 
Suppose we know a function  only at regular intervals u(x) h

u′ (x) = lim
ε→0

f(x + ε) − f(x)
ε

Can hence get an approximation using known values:

u′ (xi) ≈
ui+1 − ui

h
Approximation gets better for finer grid (smaller )h

Q: How can we approximate the first derivative of ? 
A: Recall definition of a derivative in terms of limits:

u



 CMU 15-462/662

Discretizing the Second Derivative
Q: How can we get an approximation of the second derivative? 
A: One idea*: approximate the first derivative of the 
approximate first derivative!

u′ ′ (xi) ≈ u′ i − u′ i−1

h
≈

( ui+1 − ui

h ) − ( ui − ui−1

h )
h

=

ui+1 − 2ui + ui−1

h2

In general, this approach of approximating derivatives with 
differences is the “finite difference” approach to PDEs 

Not the only way! But works well on regular grids.
*Can show this is also a reasonable thing to do, using Taylor series



 CMU 15-462/662

Discretizing the Laplacian
How do we approximate the Laplacian? 
Depends on discretization (Eulerian, Lagrangian, grid, mesh, ...) 
Two extremely common ways in graphics:

GRID TRIANGLE MESH
(actually, this 
becomes that)

Also not too hard on point clouds, polygon meshes, ...



4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1

h2
= 0

 CMU 15-462/662

Numerically Solving the Laplace Equation
Want to solve  

Plug in one of our discretizations, e.g.,

Δu = 0

If  is a solution, then each value must be the average of the 
neighboring values (  is a “harmonic function”) 

How do we solve this? 
One idea: keep averaging with neighbors! (“Jacobi method”) 
Correct, but slow. Much better to use modern linear solver

u
u

⟺ ui,j = 1
4 (ui−1,j + ui+1,j + ui,j−1 + ui,j+1)



 CMU 15-462/662

Aside: PDEs and Linear Equations
How can we turn our Laplace equation into a linear solve? 
Have a bunch of equations of the form

   
On a 4x4 grid, assign each cell  a unique index 1, …, 16 
Can then write equations as a 16x16 matrix equation*

4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1 = 0
ui,j

*assuming neighbors wrap around left/right and top/bottom

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Compute solution by calling sparse linear solver (SuiteSparse, Eigen, …) 
Q: By the way, what’s wrong with our problem setup here? :-)



 CMU 15-462/662

Boundary Conditions for Discrete Laplace
What values do we use to compute averages near the boundary?

A: We get to choose—this is the data we want to interpolate!

Two basic boundary conditions: 
1. Dirichlet—boundary data always set to fixed values 
2. Neumann—specify derivative (difference) across boundary 
Also mixed (Robin) boundary conditions (and more, in general)



 CMU 15-462/662

Dirichlet Boundary Conditions
Let’s go back to smooth setting, function on real line 
Dirichlet means “prescribe values” 
E.g., , ϕ(0) = a ϕ(1) = b

Many possible functions “in between”!



 CMU 15-462/662

Neumann Boundary Conditions
Neumann means “prescribe derivatives” 
E.g., ,  ϕ′ (0) = u ϕ′ (1) = v

Again, many possible functions!



 CMU 15-462/662

Both Neumann & Dirichlet
Or: prescribe some values, some derivatives 
E.g., , ϕ′ (0) = u ϕ(1) = b

Q: What about , ?  Does that work? 

Q: What about , ? (Robin)

ϕ′ (1) = v ϕ(1) = b
ϕ′ (0) + ϕ(0) = p ϕ′ (1) + ϕ(1) = q



 CMU 15-462/662

1D Laplace w/ Dirichlet BCs
1D Laplace:  

Solutions:  

Q: Can we always satisfy given Dirichlet boundary conditions?

∂2ϕ/∂x2 = 0
ϕ(x) = cx + d

Yes: a line can interpolate any two points.



1D Laplace w/ Neumann BCs
What about Neumann BCs? 
Q: Can we prescribe the derivative at both ends?

No!  A line has only one slope. 
In general, solution to a PDE may not exist for given BCs.



 CMU 15-462/662

2D Laplace w/ Dirichlet BCs
2D Laplace:  

Q: Can satisfy any Dirichlet BCs? (given data along boundary)

Δϕ = 0

Yes: Laplace is long-time solution to heat flow 
Data is “heat” at boundary.  Then just let it flow...



2D Laplace w/ Neumann BCs
What about Neumann BCs for ? 

Neumann BCs prescribe derivative in normal direction:  

Q: Can it always be done?  (Wasn’t possible in 1D...) 
In 2D, we have the divergence theorem:

Δϕ = 0
n ⋅ ∇ϕ

Should be called, “what goes in must 
come out theorem!” 
Can’t have a solution unless the net flux 
through the boundary is zero.

Numerical libraries will not always tell you if there’s a problem! 
Trust, but verify (e.g., after solving , compute )Ax = b ∥b − Ax∥



 CMU 15-462/662

Solving the Heat Equation
Back to our three model equations, want to solve heat eqn.

Just saw how to discretize Laplacian 
Also know how to do time (forward Euler, backward Euler, ...) 
E.g., forward Euler:

Q: On a grid, what’s our overall update now at ui,j?

Not hard to implement!  Loop over grid, add up some neighbors.



 CMU 15-462/662

Solving the Wave Equation
Finally, wave equation:

Not much different; now have 2nd derivative in time 
By now we’ve learned two different techniques: 
- Convert to two 1st order (in time) equations: 

- Or, use centered difference (like Laplace) in time:

Plus all our choices about how to discretize Laplacian. 
So many choices! And many, many (many) more we didn’t discuss.



 CMU 15-462/662

Wave Equation on a Grid, Triangle Mesh

Fish credit: Alec Jacobson (http://www.alecjacobson.com/weblog/?p=4363)

http://www.alecjacobson.com/weblog/?p=4363


Fun with wave-like equations…

Technique: low-res thin shell simulation (via “position-based dynamics”) + Loop subdivision

author: David Lihttps://www.adultswim.com/etcetera/elastic-man/



 CMU 15-462/662

Wait, what about all that other cool stuff? 
(Fluids, hair, cloth, …)



 CMU 15-462/662

Want to Know More?
There are some good books: 
And papers:

http://www.physicsbasedanimation.com/

Also, what did the folks who wrote these books & papers read?

http://www.physicsbasedanimation.com/

