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Use dynamics to drive motion 
Complexity from simple models 
Technique: numerical integration 
- formulate equations of motion 
- take little steps forward in time 
- general, powerful tool 
Today: numerical optimization 
- another general, powerful tool 
- basic idea: “ski downhill” to get a better solution 
- used everywhere in graphics (not just animation) 
- image processing, geometry, rendering, ...
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Last time: physically-based animation



...but wait, what about the coastline?
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What is an optimization problem?
Natural human desire: find the best solution among all 
possibilities (subject to certain constraints) 
E.g., cheapest flight, shortest route, tastiest restaurant ... 
Has been studied since antiquity, e.g., isoperimetric problem:

“The first optimization problem known in history was 
practically solved by Dido, a clever Phoenician princess, who 
left her Tyrian home and emigrated to North Africa, with all 
her property and a large retinue, because her brother 
Pygmalion murdered her rich uncle and husband Acerbas, 
and plotted to defraud her of the money which he left.  On 
landing in a bay about the middle of the north coast of 
Africa she obtained a grant from Hiarbas, the native chief of 
the district, of as much land as she could enclose with an ox-
hide.  She cut the ox-hide into an exceedingly long strip, and 
succeeded in enclosing between it and the sea a very 
valuable territory on which she build Carthage.”

—Lord Kelvin, 1893

“Obvious” solution is a circle...
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Optimization in Graphics

Sumit Jain, Yuting Ye, and C. Karen Liu, “Optimization-based Interactive Motion Synthesis”

http://www.cc.gatech.edu/graphics/projects/Sumit/homepage/projects/phoward/index.html
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Optimization in Graphics

Niloy J. Mitra, Leonidas Guibas, Mark Pauly, “Symmetrization”

http://www.cc.gatech.edu/graphics/projects/Sumit/homepage/projects/phoward/index.html
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Optimization in Graphics

Moritz Bächer, Emily Whiting, Bernd Bickel, Olga Sorkine-Hornung, 
“Spin-It: Optimizing Moment of Inertia for Spinnable Objects”

http://baecher.info/
http://www.cs.dartmouth.edu/~emily/
http://graphics.ethz.ch/~bickelb/
http://igl.ethz.ch/people/sorkine/
http://www.cc.gatech.edu/graphics/projects/Sumit/homepage/projects/phoward/index.html
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Optimization in Graphics

Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt & Takeo Igarashi, 
“Pteromys: Interactive Design and Optimization of Free-formed Free-flight Model Airplanes”
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Continuous vs. Discrete Optimization
DISCRETE: 
- domain is a discrete set (e.g., finite or integers) 
- Example: best vegetable to put in a stew 

- Basic strategy? Try them all! (exponential) 
- sometimes clever strategy (e.g., MST) 
- more often, NP-hard (e.g., TSP) 

CONTINUOUS: 
- domain is not discrete (e.g., real numbers) 
- Example: best temperature to cook an egg 
- still many (NP-)hard problems, but also large classes of 

“easy” problems (e.g., convex)

file:///Users/keenan/Desktop/soup.svg
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Optimization Problem in Standard Form
Can formulate most continuous optimization problems this way:
“objective”: how much does solution x cost?

“constraints”: what must be true about x? (“x is feasible”)

Optimal solution x* has smallest value of f0 among all feasible x 
Q: What if we want to maximize something instead? 
A: Just flip the sign of the objective! 
Q: What if we want equality constraints, rather than inequalities? 
A: Include two constraints: g(x) ≤ c and g(x) ≤ -c

often (but not always) continuous, differentiable, ...
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Local vs. Global Minima
Global minimum is absolute best among all possibilities 
Local minimum is best “among immediate neighbors”

Philosophical question: does a local minimum “solve” the problem?
Depends on the problem! (E.g., real protein folding is local minimum)
Other times, local minima can be really bad (e.g., path planning)

global minimum

local minima
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Optimization Problem, Visualized

Q: Is this an optimization problem in standard form?
Q: Where is the optimal solution?

A: Yes.
A: There are two, (0,1), (0,-1).

(0,1)

(0,-1)
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Existence & Uniqueness of Minimizers
Already saw that (global) minimizer is not unique. 
Does it always exist?  Why? 
Just consider all possibilities and take the smallest one, right?

perfectly reasonable 
optimization problem

clearly has no solution 
(can always pick smaller x)

WRONG!  Not all objectives are bounded from below. 
It’s like that old adage: “no matter how good you are, 
there will always be someone better than you.” 
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Feasibility
Ok, but suppose the objective is bounded from below. 
Then we can just take the best feasible solution, right?

Not if there aren’t any! 
Every system of equations is an optimization problem. 
But not all problems have solutions! 
(You’ll appreciate this more as you get older.)

value of objective doesn’t depend on x; 
all feasible solutions are equally good

problem now is just finding a feasible solution—
which can be really hard (or impossible!)
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Feasibility - Example
Q: Is this problem feasible?

A: No—the two sublevel sets (points where f_i(x) ≤ 0) 
have no common points, i.e., they do not overlap.
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Existence & Uniqueness of Minimizers, cont.
Even being bounded from below is not enough:

� �

� (�)

No matter how big x is, we never achieve the lower bound (0) 
So when does a solution exist?  Two sufficient conditions: 
Extreme value theorem: continuous objective & compact domain 
Coercivity: objective goes to +∞ as we travel (far) in any direction
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Characterization of Minimizers
Ok, so we have some sense of when a minimizer might exist 
But how do we know a given point x is a minimizer?

global minimum

local minima

Checking if a point is a global minimizer is (generally) hard 
But we can certainly test if a point is a local minimum (ideas?) 
(Note: a global minimum is also a local minimum!)



...but what about this point?
find points where
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Characterization of Local Minima
Consider an objective f0: R → R.  How do you find a minimum? 
(Hint: you may have memorized this formula in high school!)

Also need to check second derivative (how?) 
Make sure it’s positive 
Ok, but what does this all mean for more general functions f0?

must also satisfy
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Optimality Conditions (Unconstrained)
In general, our objective is f0: Rn → R 
How do we test for a local minimum? 
1st derivative becomes gradient; 2nd derivative becomes Hessian

GRADIENT 
(measures “slope”) HESSIAN 

(measures “curvature”)

Optimality conditions? positive semidefinite (PSD) 
(uTAu ≥ 0 for all u)

1st order 2nd order
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Optimality Conditions (Constrained)
What if we have constraints? 
Is gradient at minimizer still zero? 
Is Hessian at minimizer still PSD? 
Not necessarily!  (See example above) 
In general, any (local or global) minimizer must at least 
satisfy the Karush–Kuhn–Tucker (KKT) conditions:

stationarity

primal feasibility

dual feasibility

complementary slackness

...we won’t work with these in this class!  
(But good to know where to look.)
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Convex Optimization
Special class of problems that are almost always “easy” to 
solve (polynomial-time!) 
Problem convex if it has a convex domain and convex objective

Why care about convex problems in graphics? 
- can make guarantees about solution (always the best) 
- doesn’t depend on initialization (strong convexity) 
- often quite efficient, but not always

convex objective

nonconvex objective
noconvex domain

convex domain
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Convex Quadratic Objectives & Linear Systems
Very important example: convex quadratic objective 
Already saw this with, e.g., quadric error simplification 
Valuable “variational” way of looking at many common equations 
Can be expressed via positive-semidefinite (PSD) matrix:

Q: 1st-order optimality condition?

Q: 2nd-order optimality condition?

positive definite positive semidefinite indefinite

just solve a linear system!

satisfied by definition
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Sadly, life is not usually that easy. 
How do we solve optimization 

problems in general?
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Descent Methods
An idea as old as the hills:
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Gradient Descent (1D)
Basic idea: follow the gradient “downhill” until it’s zero 
(Zero gradient was our 1st-order optimality condition)

Do we always end up at a (global) minimum? 
How do we compute gradient descent in practice?
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Gradient Descent Algorithm (1D)
Did you notice that gradient descent equation is an ODE? 
Q: How do we solve it numerically? 
One way: forward Euler:

Q: How do we pick the time step?
If we’re not careful, we’ll go 
zipping all over the place; won’t 
make any progress.
Basic idea: use “step control” to determine step size based on 
value of objective & derivatives. 
A careful strategy (e.g., Armijo-Wolfe) can guarantee 
convergence at least to a local minimum. 
For now we will do something simpler: make τ really small!
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Gradient Descent Algorithm (nD)
Q: How do we write gradient descent equation in general?

Q: What’s the corresponding discrete update?

Basic challenge in nD: 
- solution can “oscillate” 
- takes many, many small steps 
- very slow to converge
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Higher Order Descent
General idea: apply a coordinate transformation so that the 
local energy landscape looks more like a “round bowl” 
Gradient now points directly toward nearby minimizer 
Most basic strategy: Newton’s method:

Great for convex problems (even proofs about # of steps!) 
For nonconvex problems, need to be more careful 
In general, nonconvex optimization is a BLACK ART 
Meta-strategy: try lots of solvers, see what works! 
- quasi-Newton, trust region, L-BFGS, ...

Hessian inverse

gradient
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Example: Inverse Kinematics
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Forward Kinematics
Many systems well-described by a kinematic chain 
- collection of rigid bodies, connected by joints 
- joints have various behaviors (ball, piston, ...) 
- also have constraints (e.g., range of angles) 

- hierarchical structure (body→leg→foot) 
In animation, often called a rig 
How do we specify the configuration of a “rig”? 
- One way: artist sets each joint individually 
- Another way: ...optimization!
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Simple Kinematic Chain
Consider a simple path-like chain in 2D 
Q: How do we write p1 in terms of the root 
position p0, angles, & vectors u := ci+1-ci?

(For brevity, can use complex numbers:)

Q: How about p2?
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Simple IK Algorithm
Basic idea behind our IK algorithm: 
- write down distance between final point and “target” 
- compute gradient with respect to angles 
- apply gradient descent

Objective?

Constraints? 
- None!  The joint angle can take any value. 
- Though we could limit joint angles (for instance)
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Coming up next: PDEs in Computer Graphics

Frank Losasso, Jerry O. Talton, Nipun Kwatra, and Ron Fedkiw, “Two-Way Coupled SPH and Particle Level Set Fluid Simulation”


