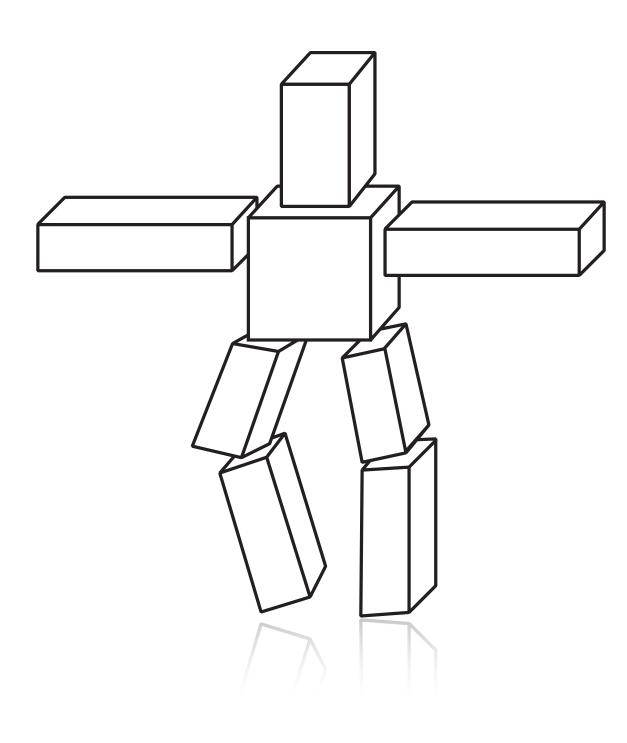
Introduction to Animation

Computer Graphics CMU 15-462/15-662

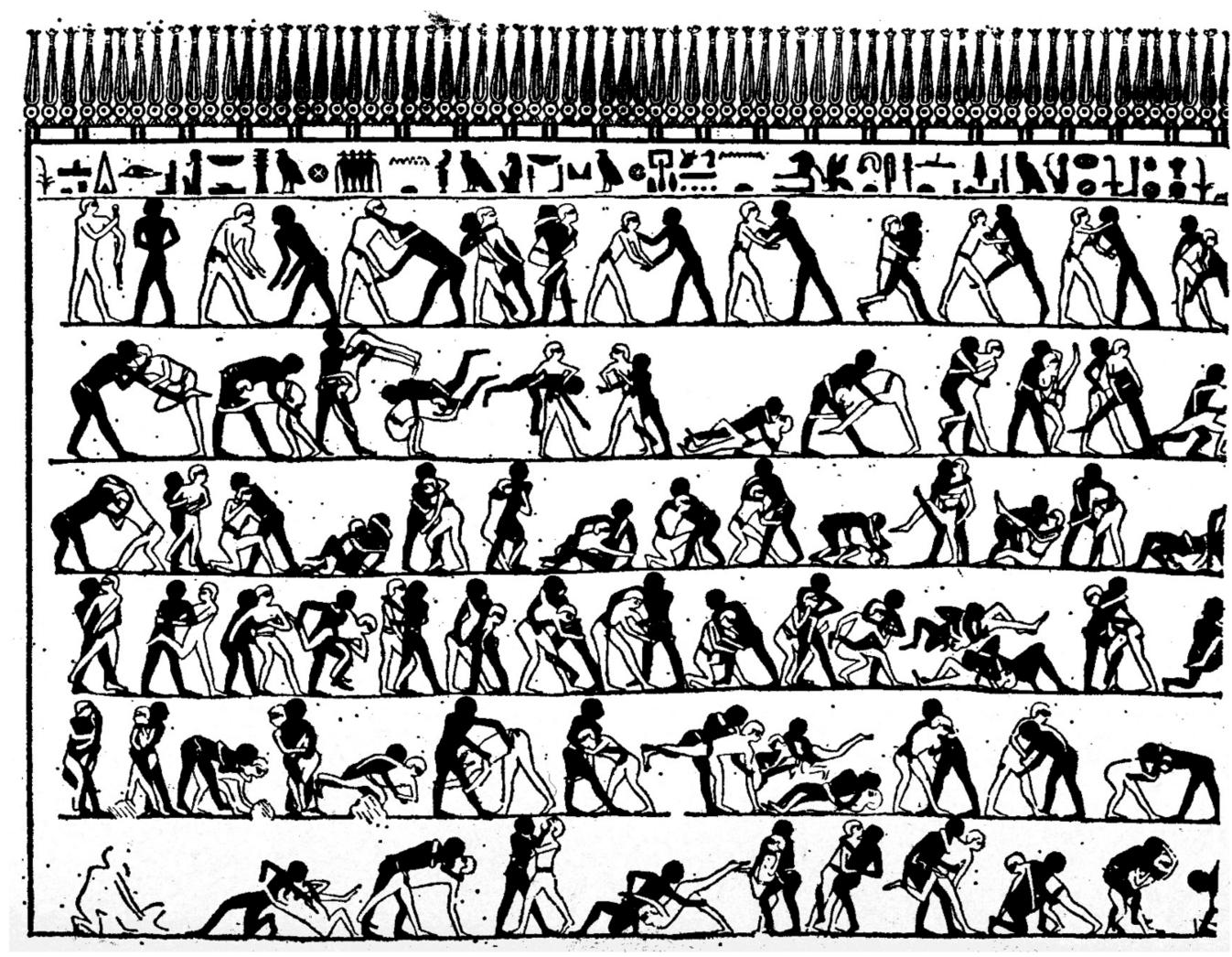
Increasing the complexity of our modelsTransformationsGeometryMaterials, lighting, ...



Increasing the complexity of our models ...but what about *motion*?

First Animation

(Shahr-e Sukhteh, Iran 3200 BCE)



(tomb of Khnumhotep, Egypt 2400 BCE)



to former former for

allel vir Hann N non algertane les

א למני ליומיא איינאלי

Non . W. Wolfmmit

A work tota was alles

pere care anothe decable

Times of energy allow of a stand at the former of a stand a stand as the former of a stand a stand as the former of a stan

- Commission of States allo of

annieros. o. des miti-o

Al automoto bill to go and an all and the set

Plann fils.

als veniging more police it is a

I HAT LI MAY CONT atting in the nother partola fe THAN MONTAS na ulmana bil do antot win of ענטום וחדיר גמן Fright antre of (n of gump w -Wally multor אחרן מנוא אחר ((a [ponton (a your untin un front d to belfwert in al Hypor " Th of water men news an parala cut for come for promy

- indulation of the month of th

ליאים לאיזים לא איזים לא מארז באיני איזים לא איזים לא איזים לא מאיזים לא איזים ל איזי איזים לא איזים ל

L'unter ouo les pilsons file con a dimmo ch nuitor filmin to lone ciment por paranti de li parle no pi parle no pi

Leonardo da Vinci (1510)

9 Jons all port of the part of the price of th PRIVEN CONU BANG cupie a polatio chun A 118 adil un tur fund

Claude Monet, "Woman with a Parasol" (1875)

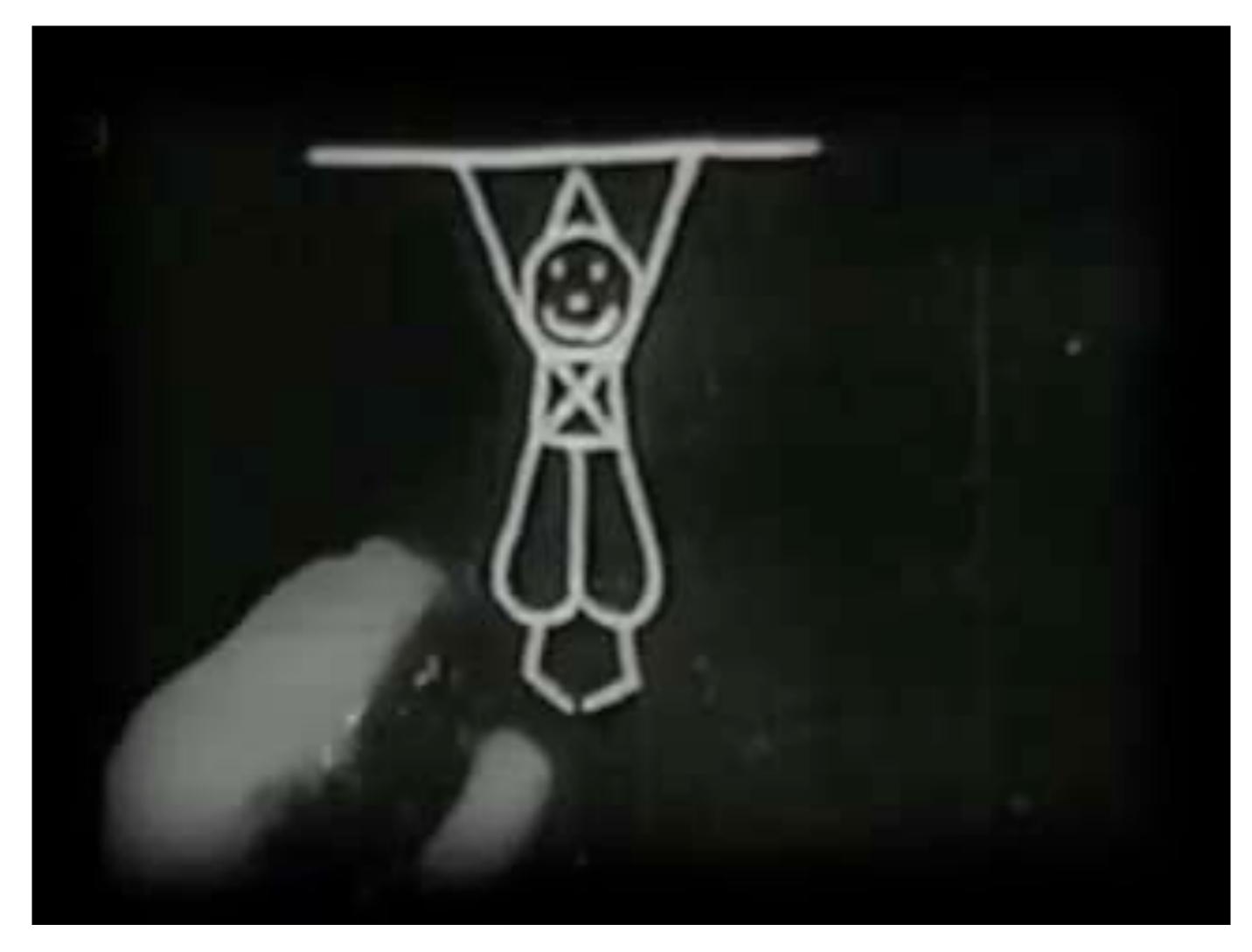
(Phenakistoscope, 1831)

First Film

Originally used as scientific tool rather than for entertainment Critical *technology* that accelerated development of animation

Eadweard Muybridge, "Sallie Gardner" (1878)

First Animation on Film



Emile Cohl, "Fantasmagorie" (1908)

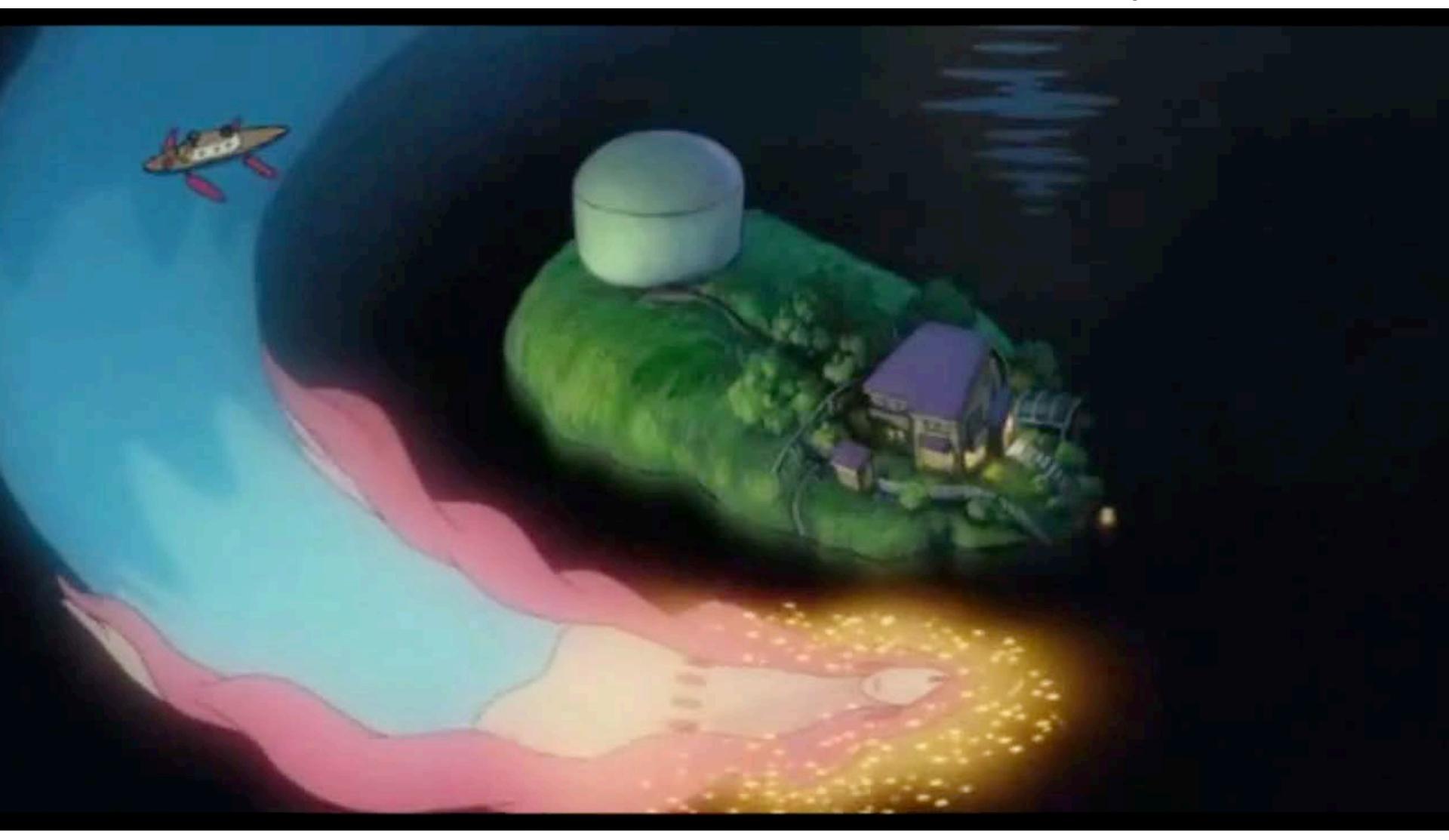
First Feature-Length Animation

Lotte Reiniger, "Die Abenteuer des Prinzen Achmed" (1926)

First Hand-Drawn Feature-Length Animation

Disney, "Snow White and the Seven Dwarves" (1937)

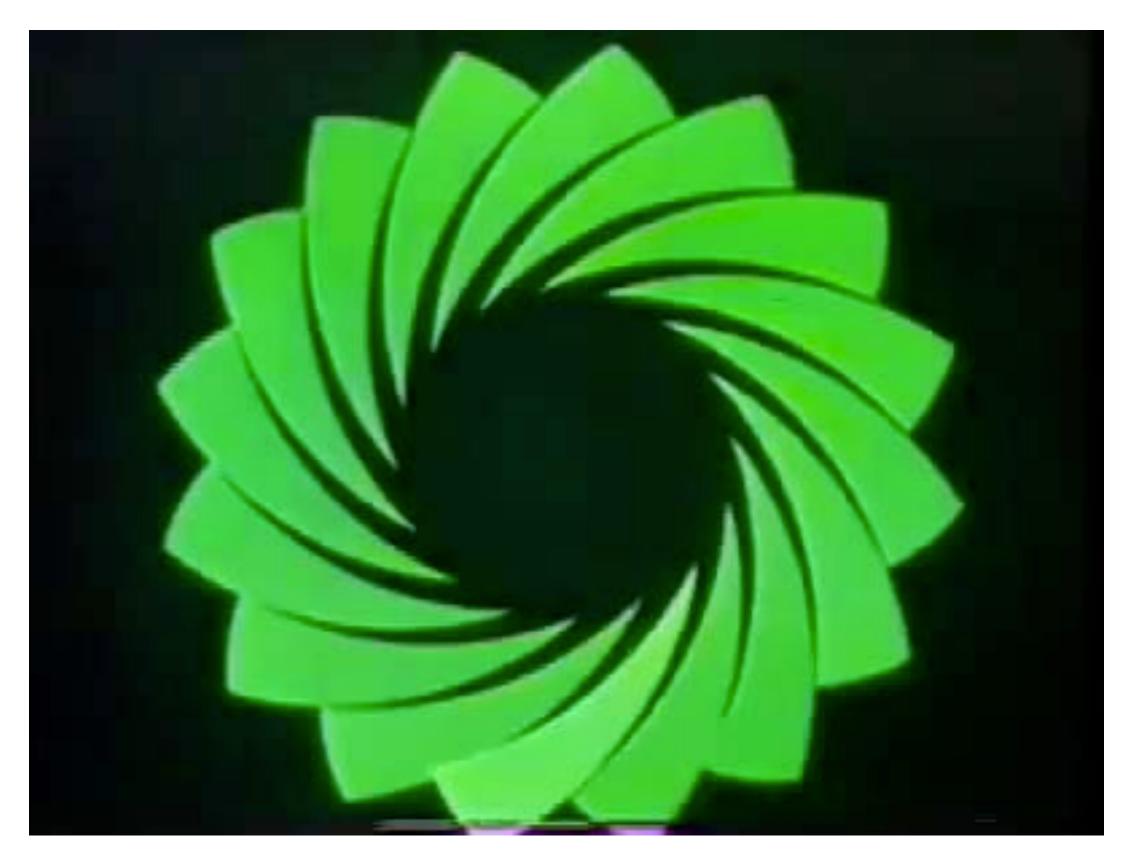
Hand-Drawn Animation - Present Day



Studio Ghibli, "Ponyo" (2008)

First Computer-Generated Animation

- New technology, also developed as a scientific tool
- Again turbo-charged the development of animation



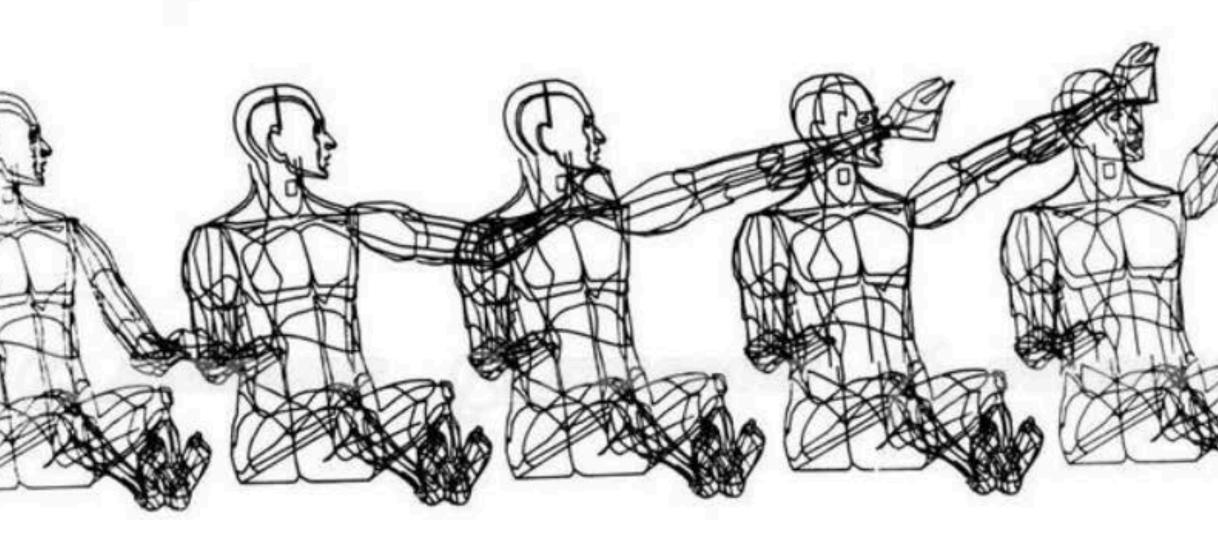
John Whitney, "Catalog" (1961)

Sector Sector

First Digital-Computer-Generated Animation

Ivan Sutherland, "Sketchpad" (1963)

First 3D Computer Animation

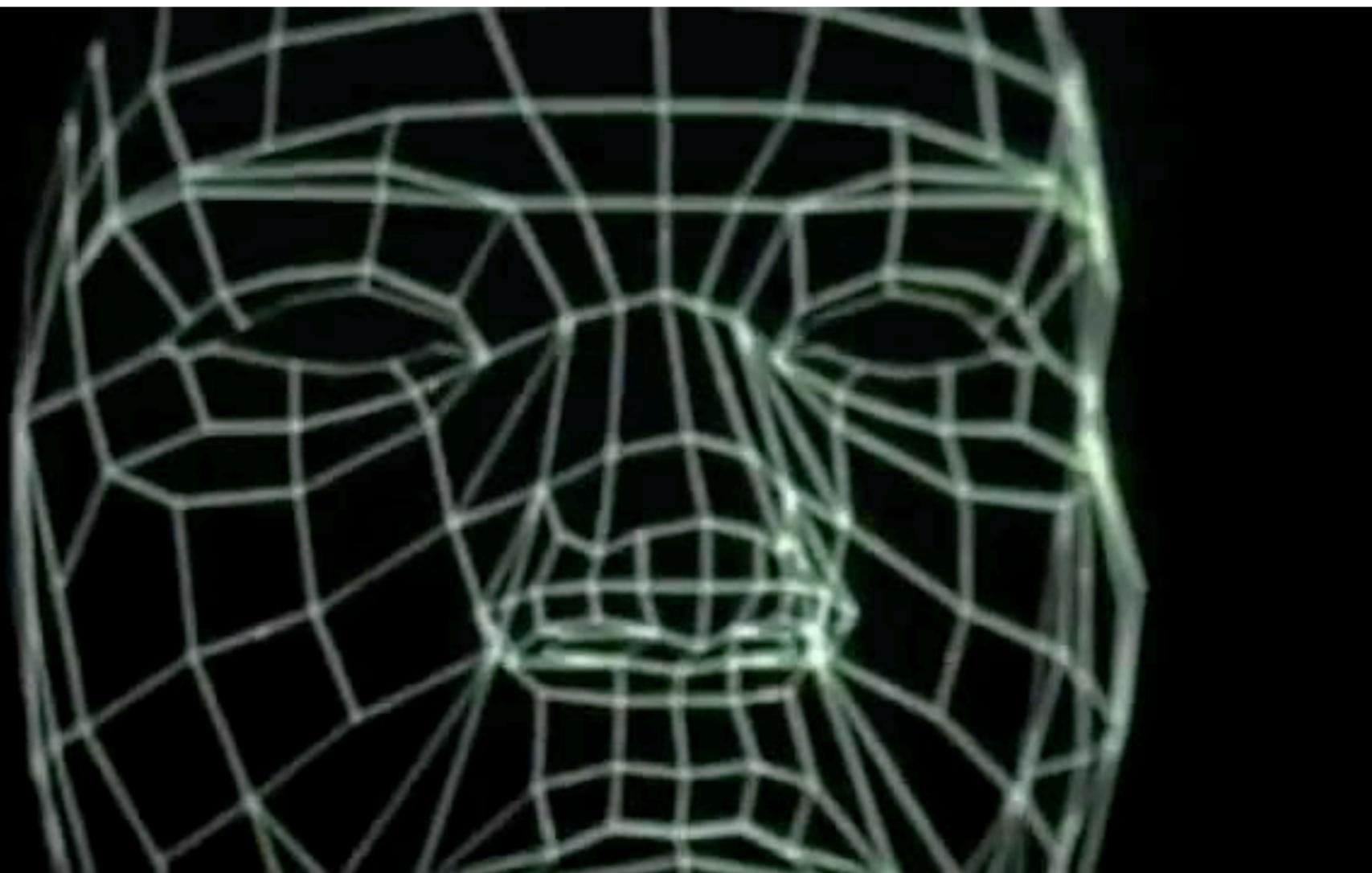


William Fetter, "Boeing Man" (1964)

Early Computer Animation

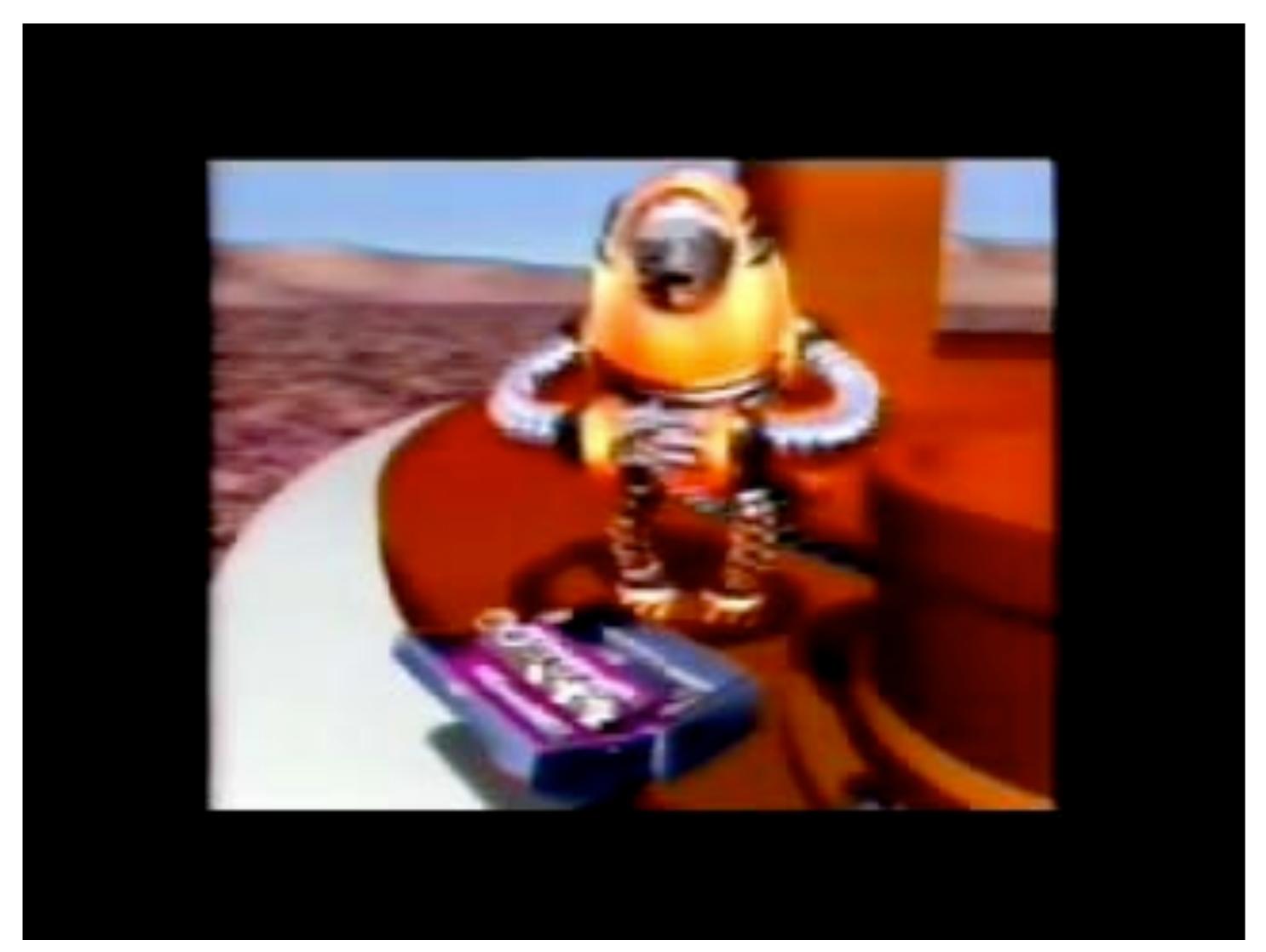
Nikolay Konstantinov, "Kitty" (1968)

Early Computer Animation



Ed Catmull & Fred Park, "Computer Animated Faces" (1972)

First Attempted CG Feature Film



NYIT [Williams, Heckbert, Catmull, ...], "The Works" (1984)

First CG Feature Film

Pixar, "Toy Story" (1995)

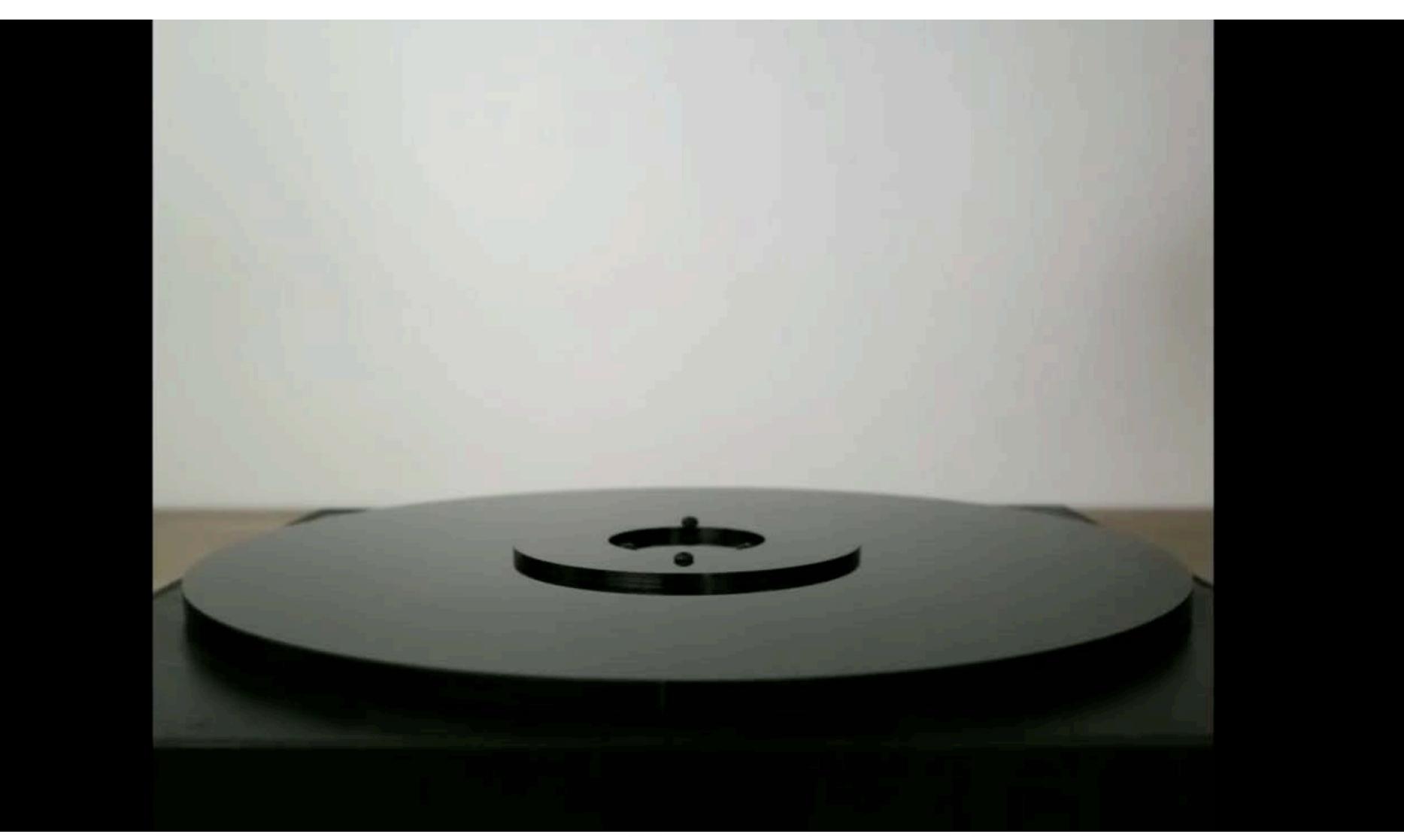
Computer Animation - Present Day

MOVIECLIPS.COM

Sony Pictures Animation, "Cloudy With a Chance of Meatballs" (2009)

Zoetrope - Solid Animation

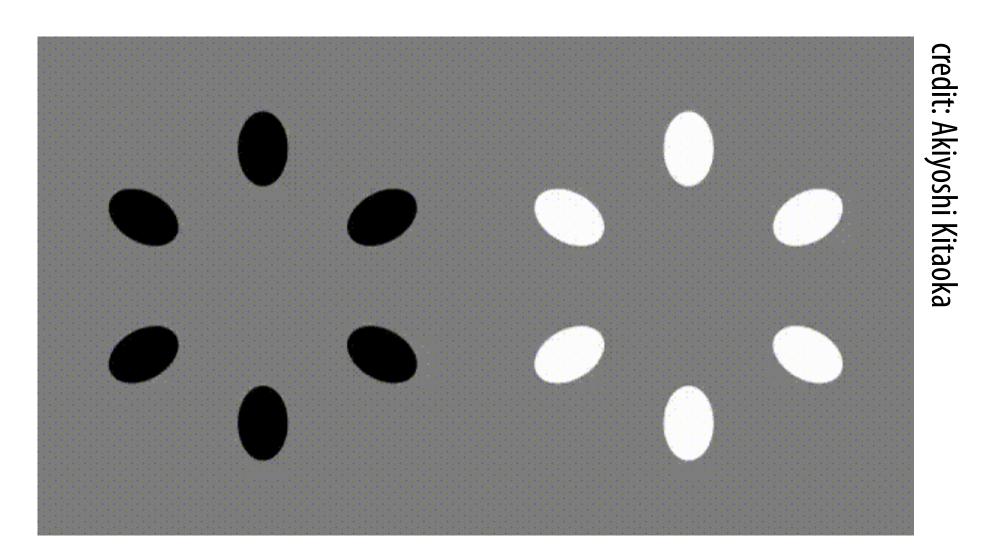
Zoetrope - 3D Printed Animation



John Edmark — BLOOMS

Perception of Motion

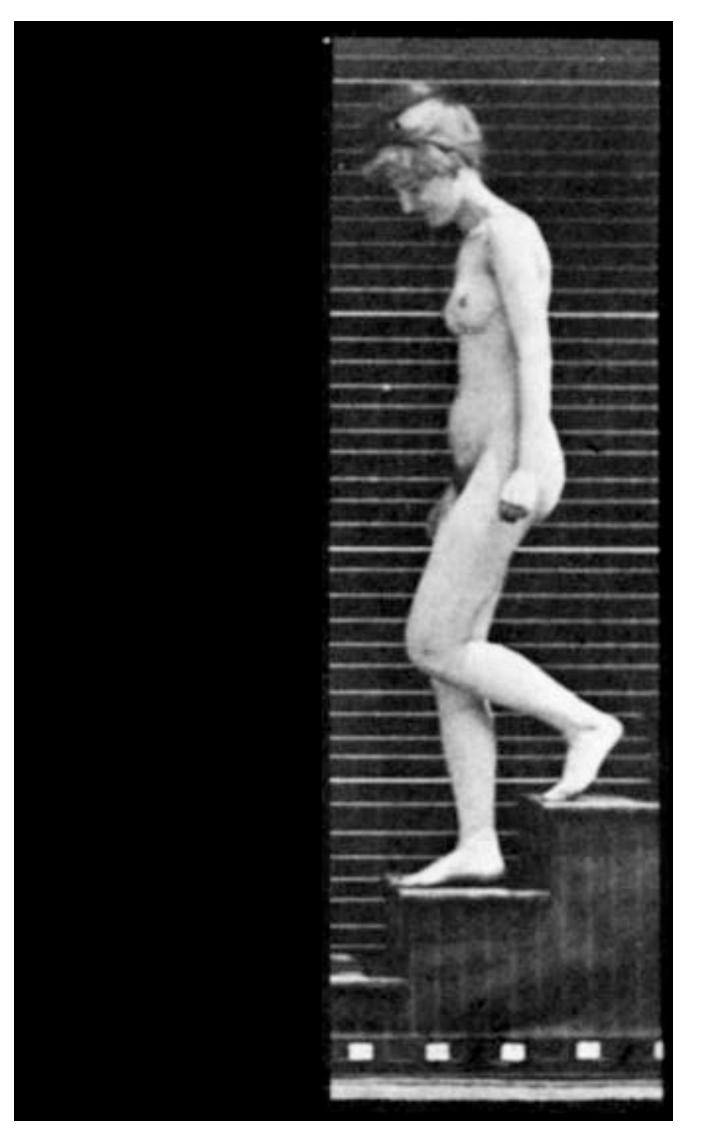
- Original (but debunked) theory: persistence of vision ("streaking")
- The eye is not a camera! More modern explanation:
 - *beta phenomenon*: visual memory in brain—not eyeball
 - phi phenomenon: brain anticipates, giving sense of motion



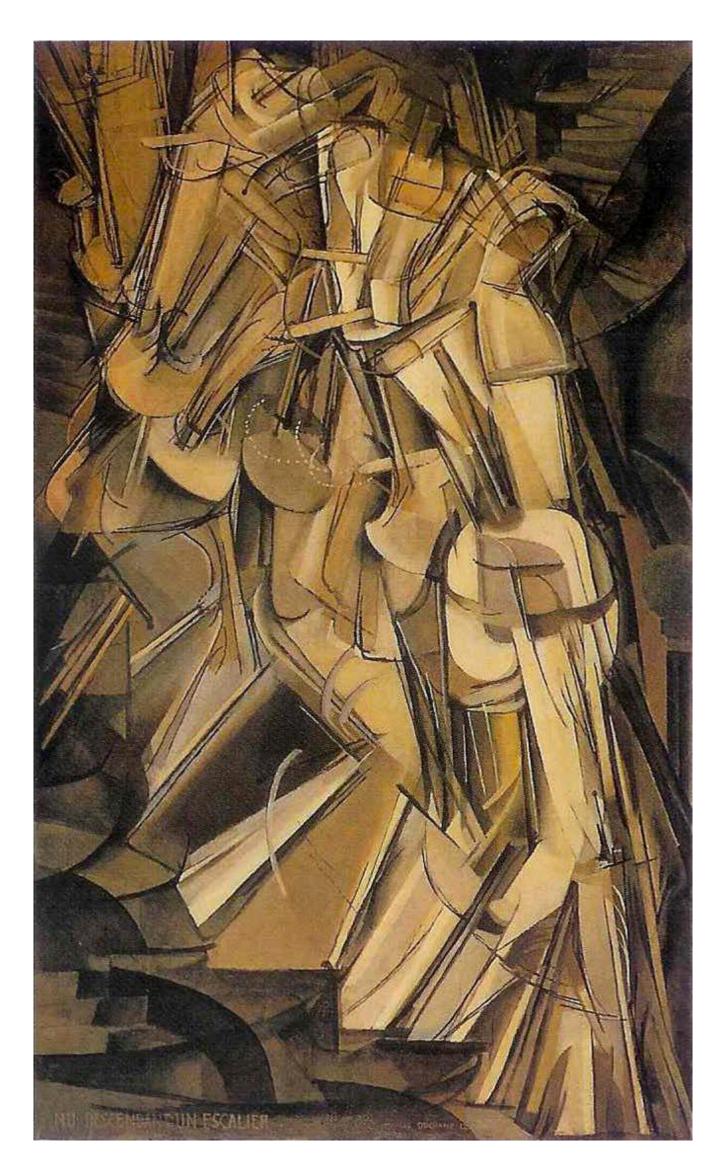
ence of vision ("streaking") explanation: brain—not eyeball iving sense of motion

phi

Depiction of Motion



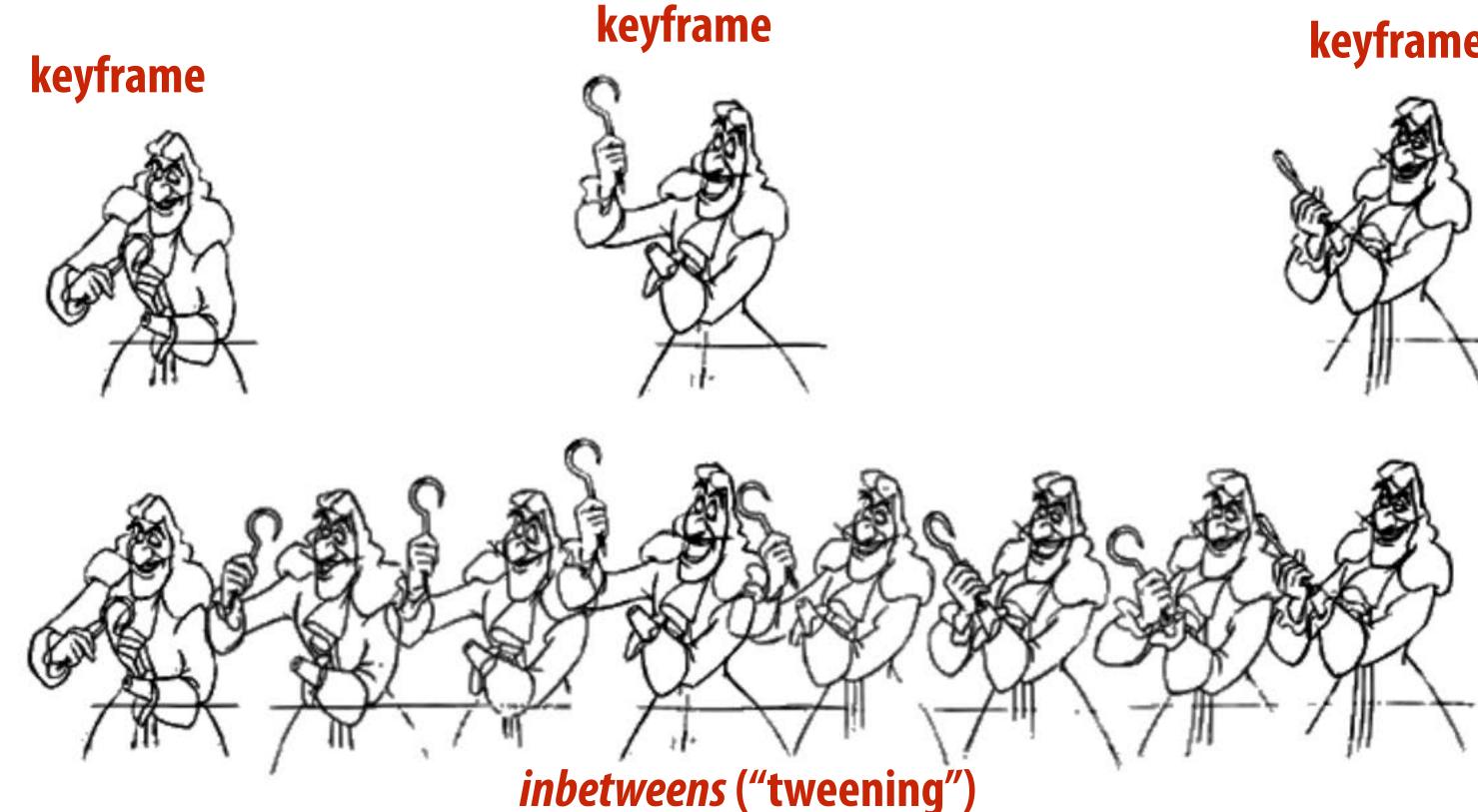
beta (Muybridge, 1887)



phi (Duchamp, 1912)

Generating Motion (Hand-Drawn)

- Senior artist draws keyframes
- **Apprentice draws** *inbetweens*
- **Tedious / labor intensive (opportunity for technology!)**

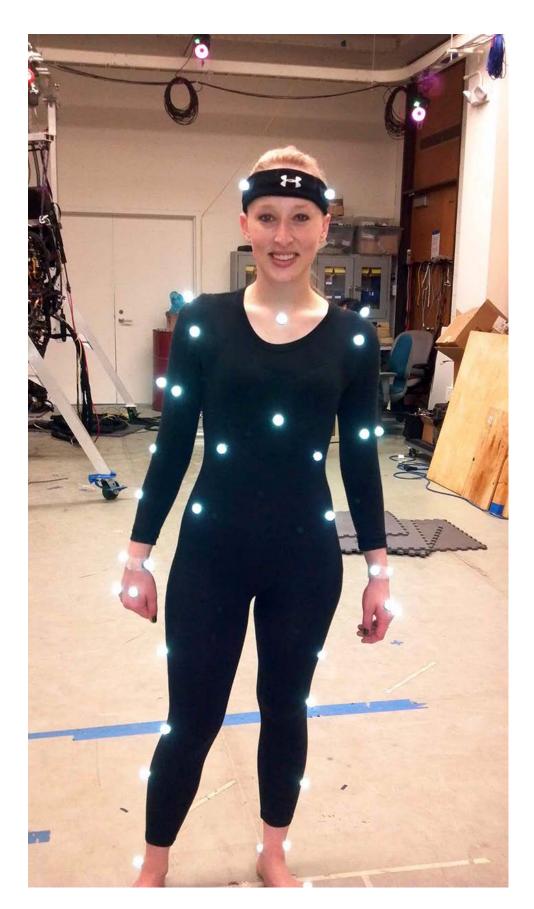


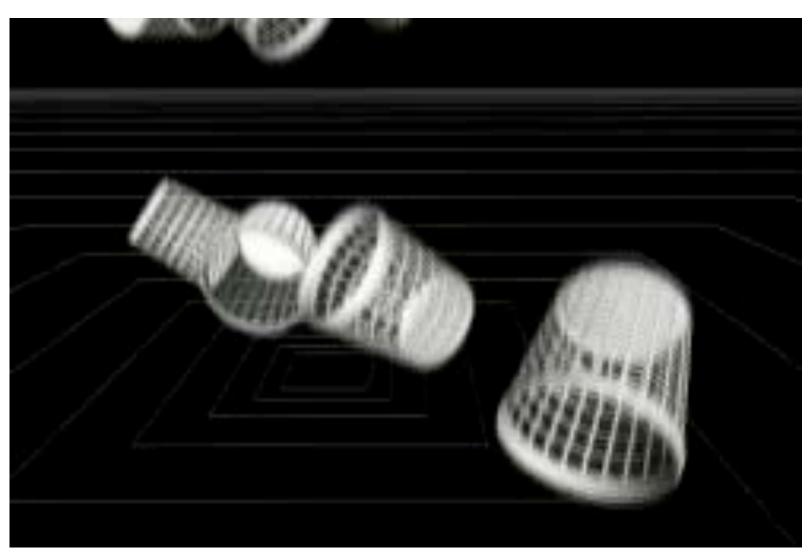
keyframe

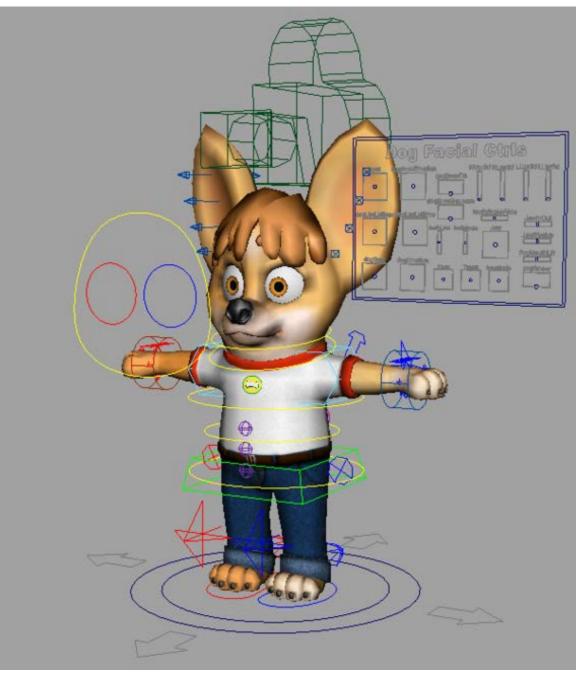
How do we describe motion on a computer?

Basic Techniques in Computer Animation

- Artist-directed (e.g., keyframing)
- Data-driven (e.g., motion capture)
 Procedural (e.g., simulation)

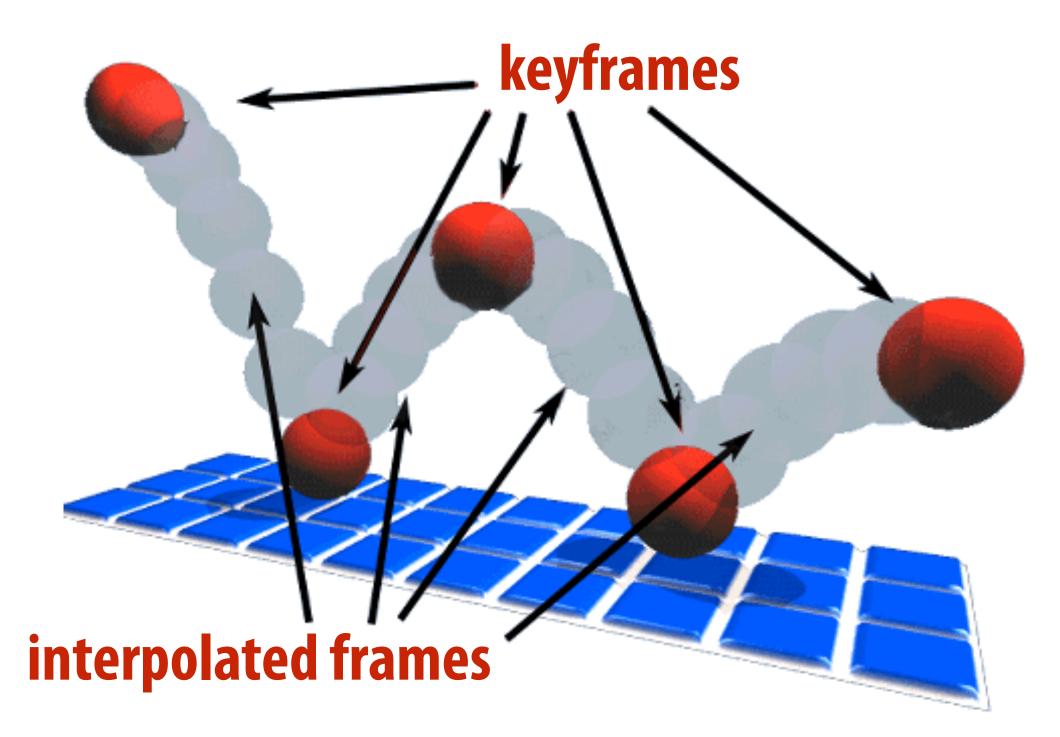






Keyframing

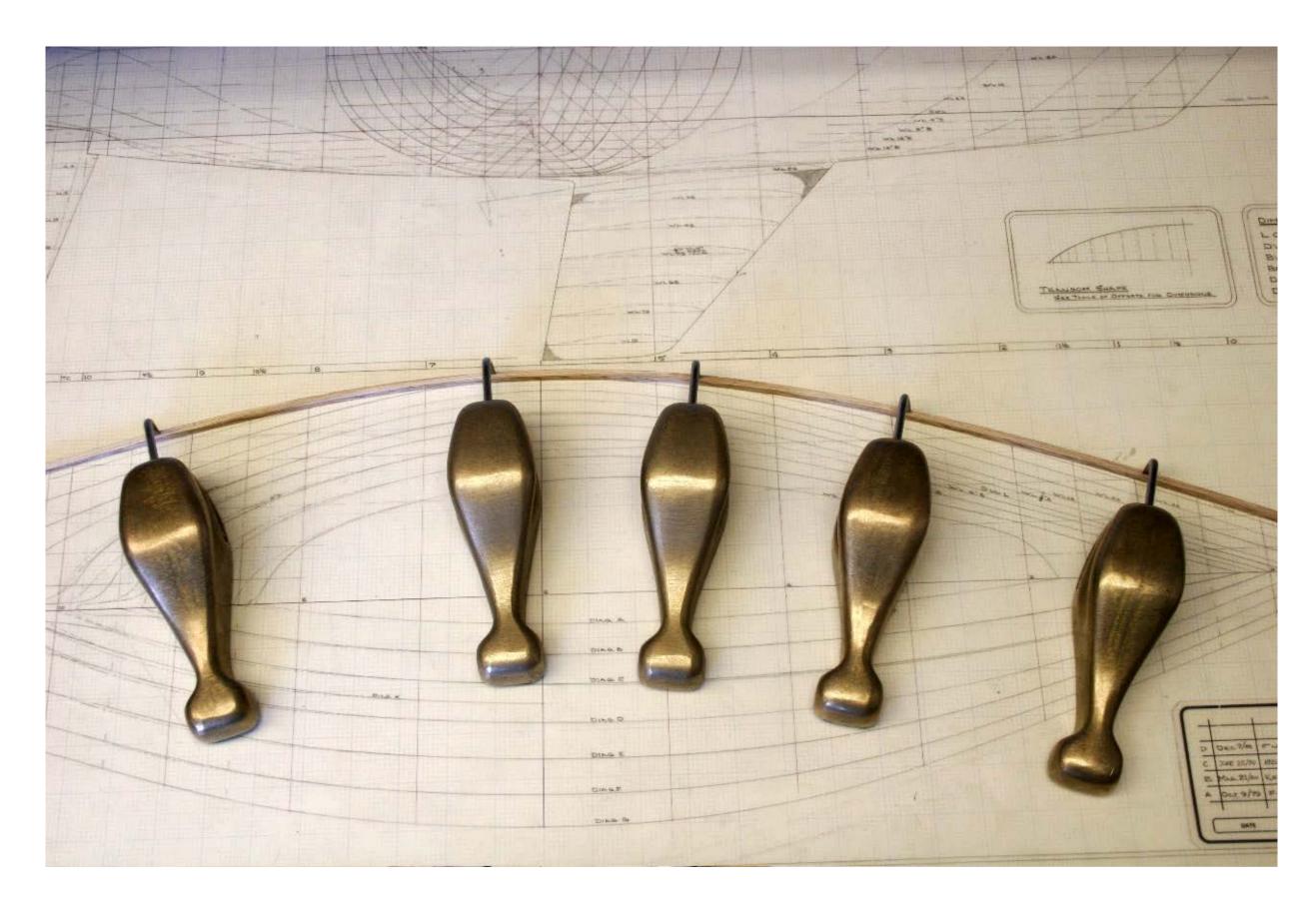
- **Basic idea:**
 - specify important events only
 - computer fills in the rest via interpolation/approximation
 - "Events" don't have to be position
- Could be color, light intensity, camera zoom, ...



How do you interpolate data?

Spline Interpolation

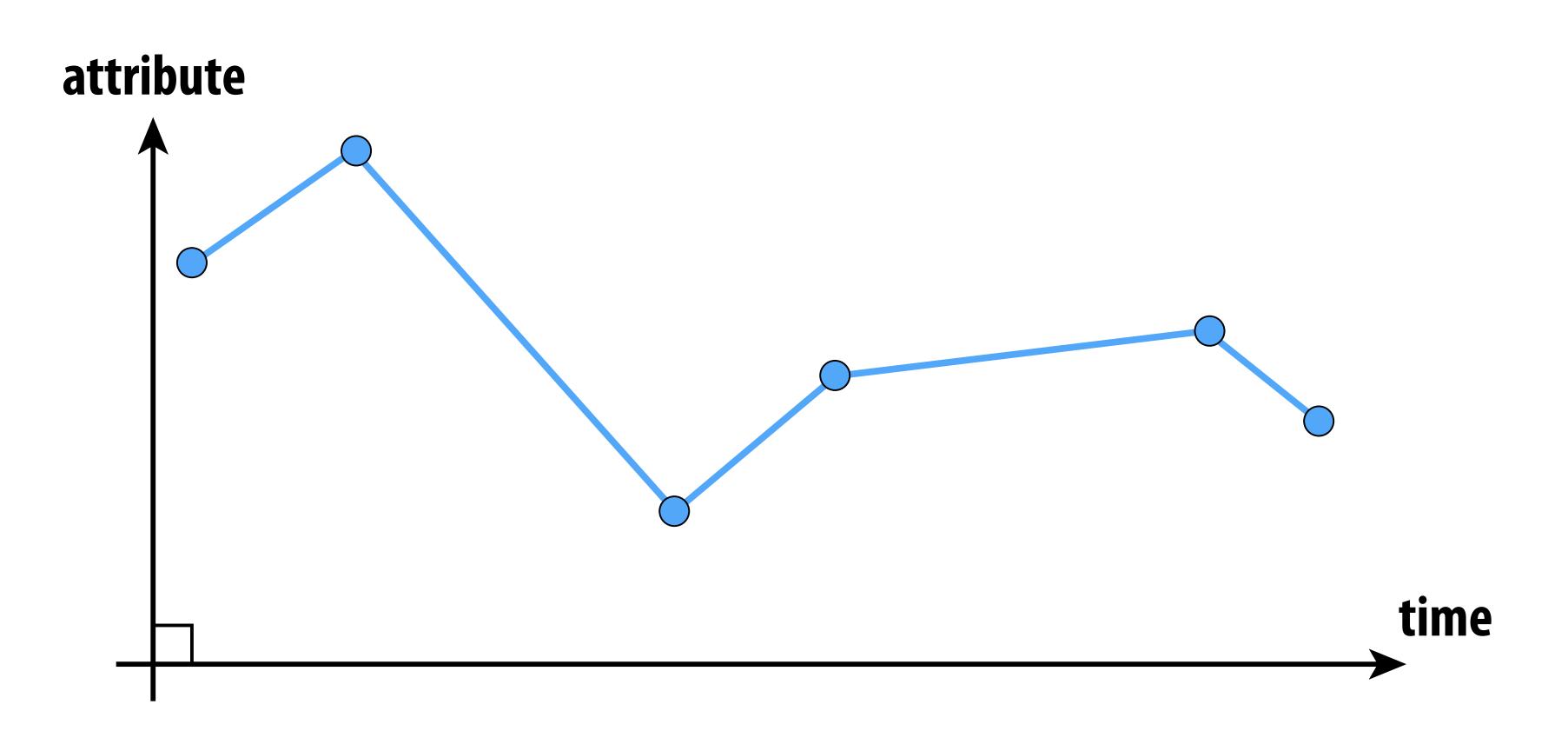
Mathematical theory of interpolation arose from study of thin strips of wood or metal ("splines") under various forces



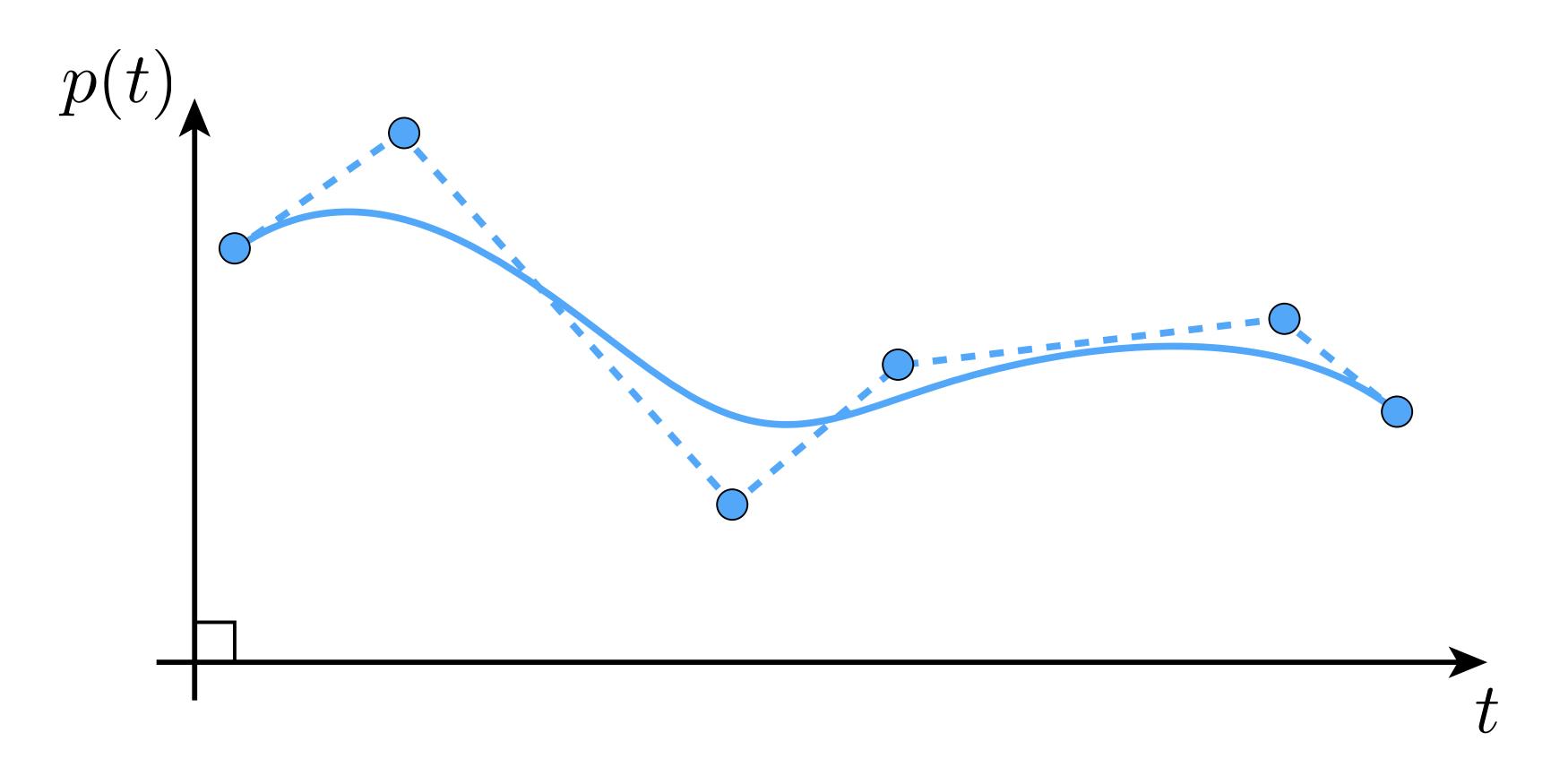
(Good summary in Levin, "The Elastica: A Mathematical History")

Interpolation

- **Basic idea:** "connect the dots"
- **E.g.**, *piecewise linear interpolation*
- Simple, but yields rather rough motion (infinite acceleration)



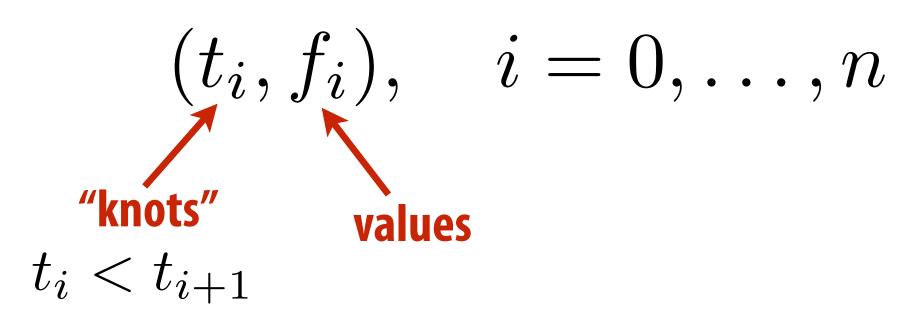
Piecewise Polynomial Interpolation Common interpolant: piecewise polynomial "spline"



Basic motivation: get better continuity than piecewise linear!

Splines

- In general, a spline is any piecewise polynomial function
- In 1D, spline interpolates data over the real line:



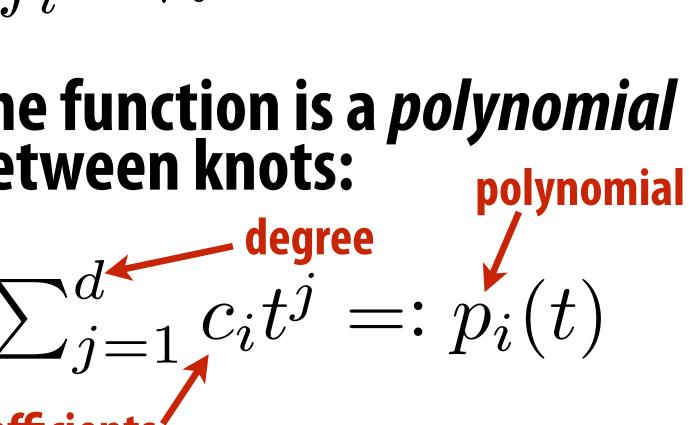
"Interpolates" just means that the function *exactly* passes through those values:

$$f(t_i) = f_i \quad \forall i$$

The only other condition is that the function is a *polynomial* when restricted to any interval between knots:

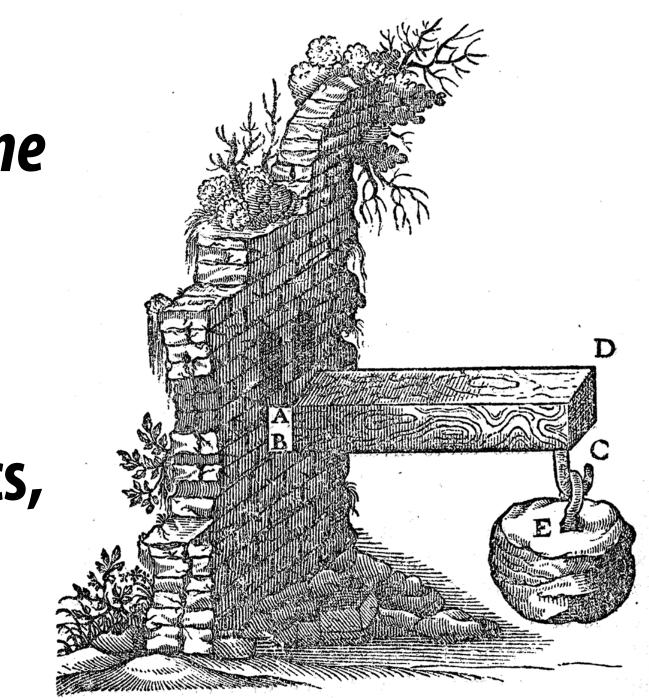
for
$$t_i \le t \le t_{i+1}, f(t) = \sum_{j=1}^{d} t_{j=1}$$

coefficient



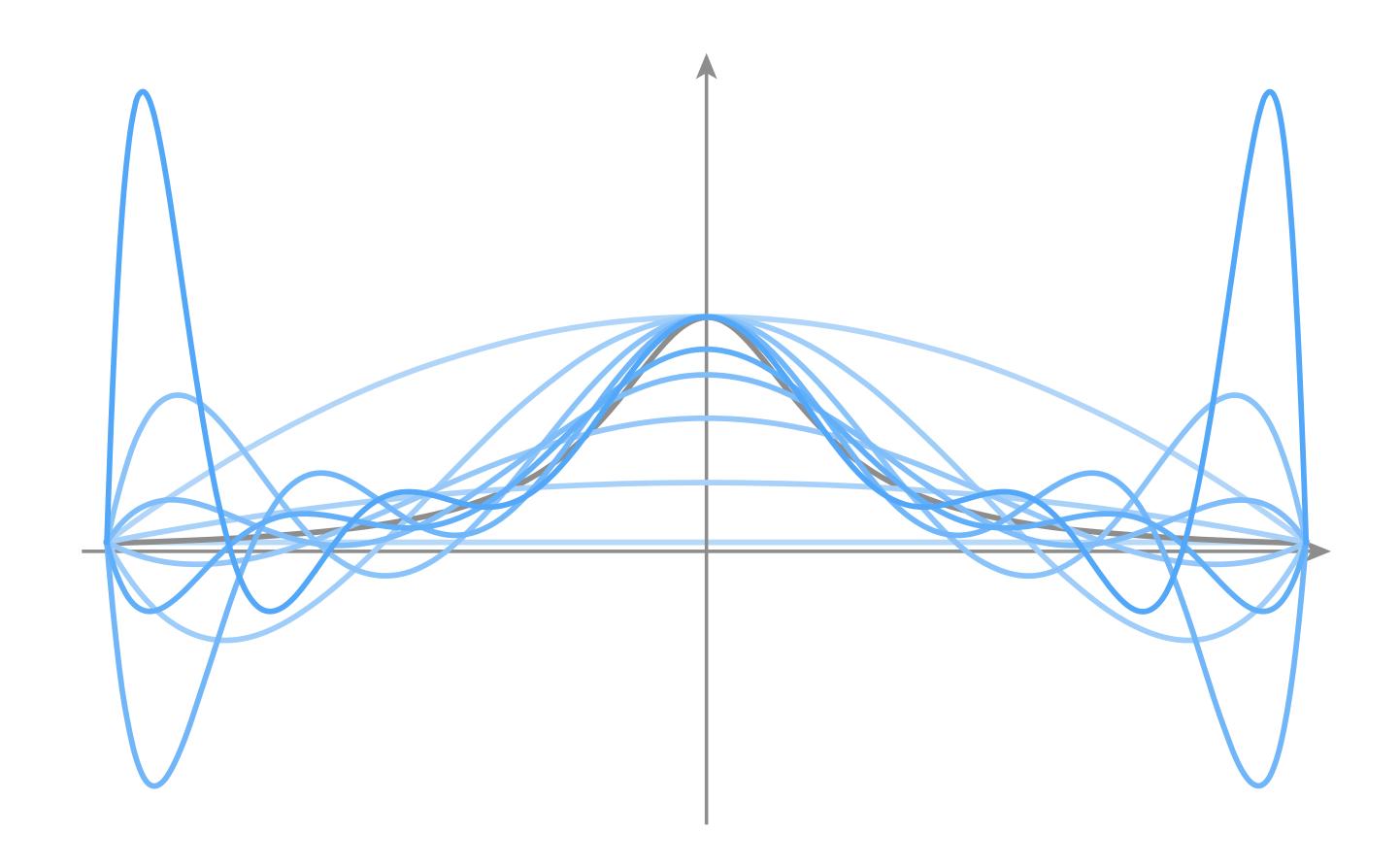
What's so special about *cubic* polynomials?

- Splines most commonly used for interpolation are *cubic* (d=3)
- Piecewise cubics give exact solution to elastic spline problem under assumption of small displacements
- More precisely: among all curves interpolating set of data points, minimizes norm of second derivative (*not* curvature)
- Food for thought: who cares about physical splines? We're on a computer! And are interpolating phenomena in *time*
- Motivation is perhaps pragmatic: e.g., simple closed form, decent continuity
- Plenty of good reasons to choose alternatives (e.g., NURBS for exact conics, clothoid to prevent jerky motion, ...)
- Also...



Runge Phenomenon

- Tempting to use higher-degree polynomials, in order to get higher-order continuity
- **Can lead to oscillation, ultimately** *worse* **approximation**:

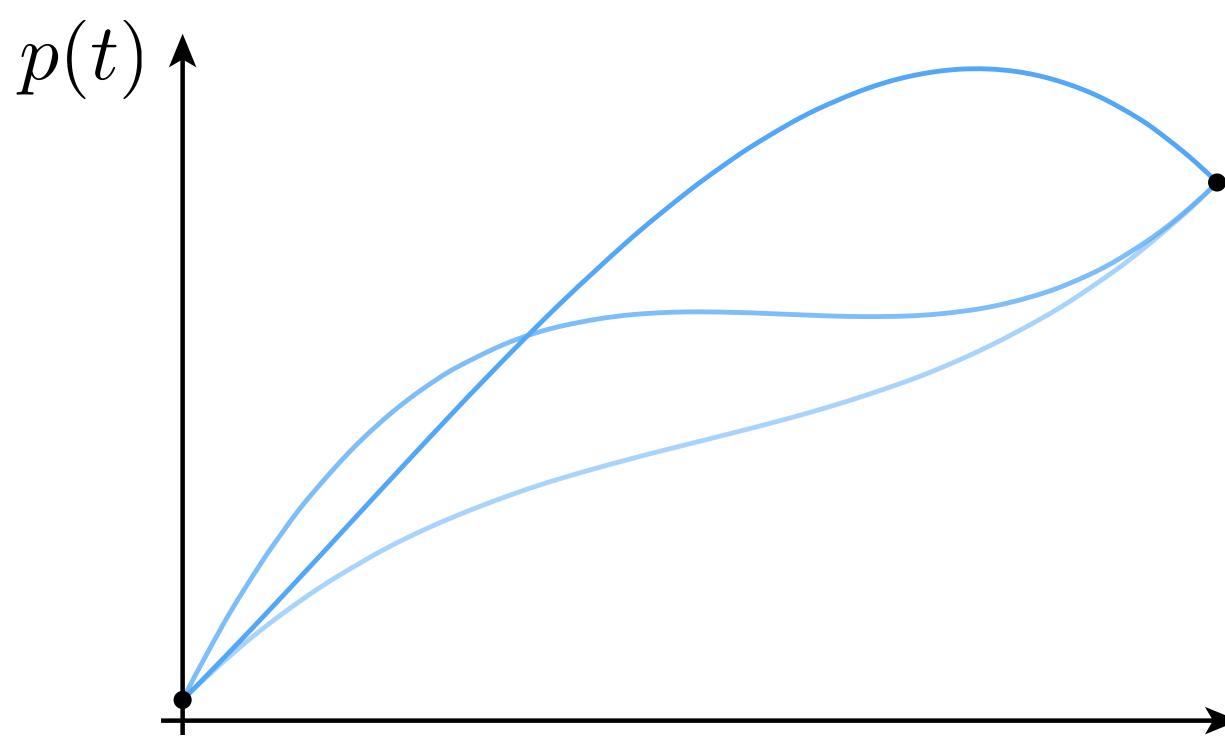


Fitting a Cubic Polynomial to Endpoints

Consider a *single* cubic polynomial

 $p(t) = at^3 + bt^2 + ct + d$

Suppose we want it to match given endpoints:



Many solutions!

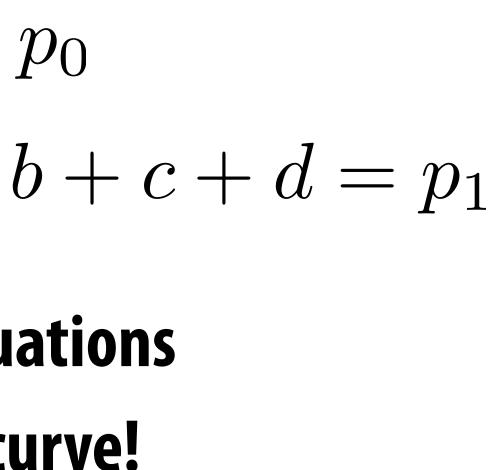
Cubic Polynomial - Degrees of Freedom

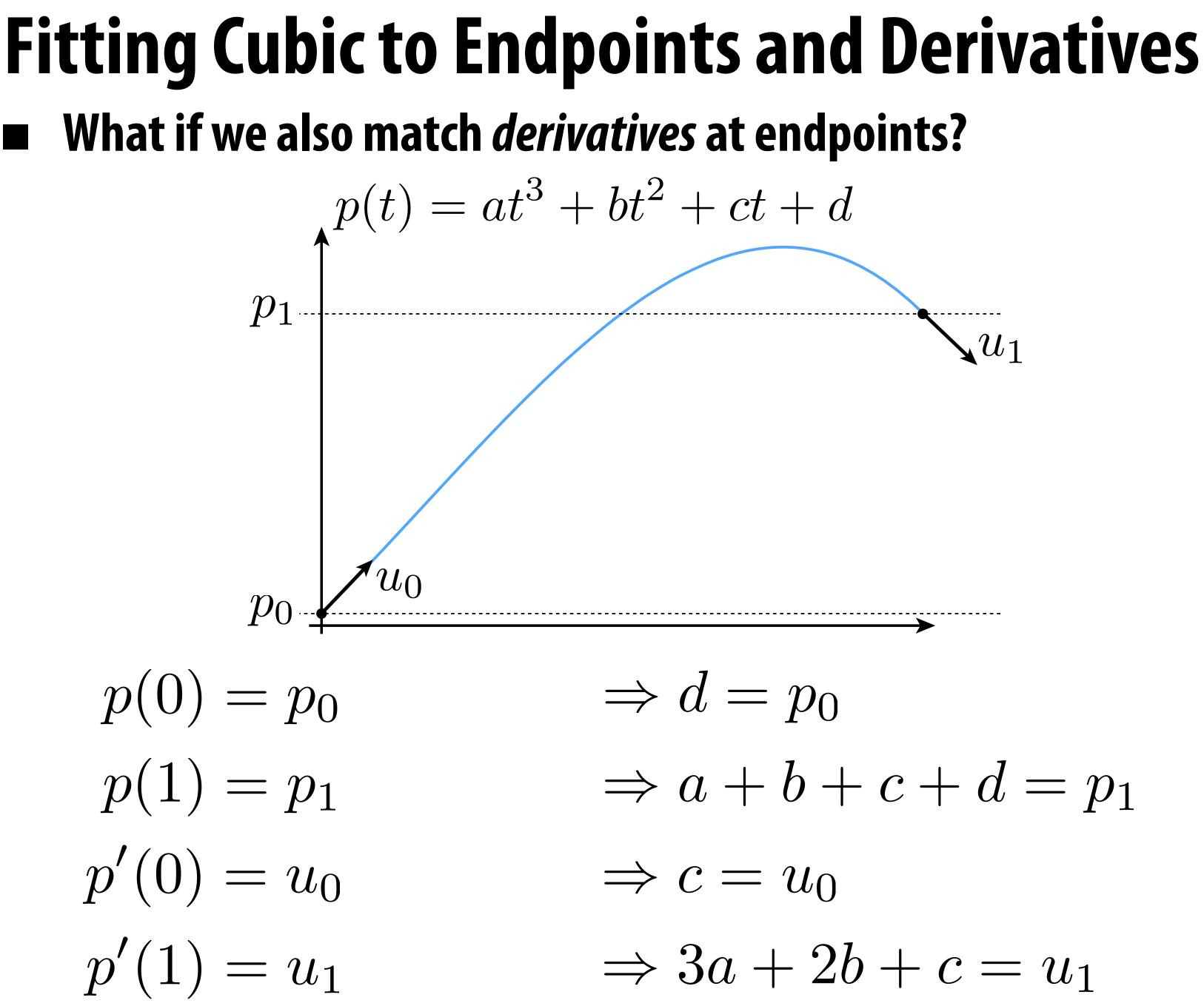
- Why are there so many different solutions?
- Cubic polynomial has four *degrees of freedom (DOFs)*, namely four coefficients (a,b,c,d) that we can manipulate/control
 - Only need two degrees of freedom to specify endpoints:

$$p(t) = at^3 + bt^2 + ct + d$$
$$p(0) = p_0 \qquad \Rightarrow d =$$
$$p(1) = p_1 \qquad \Rightarrow a +$$

Overall, four unknowns but only *two* equations
 Not enough to uniquely determine the curve!

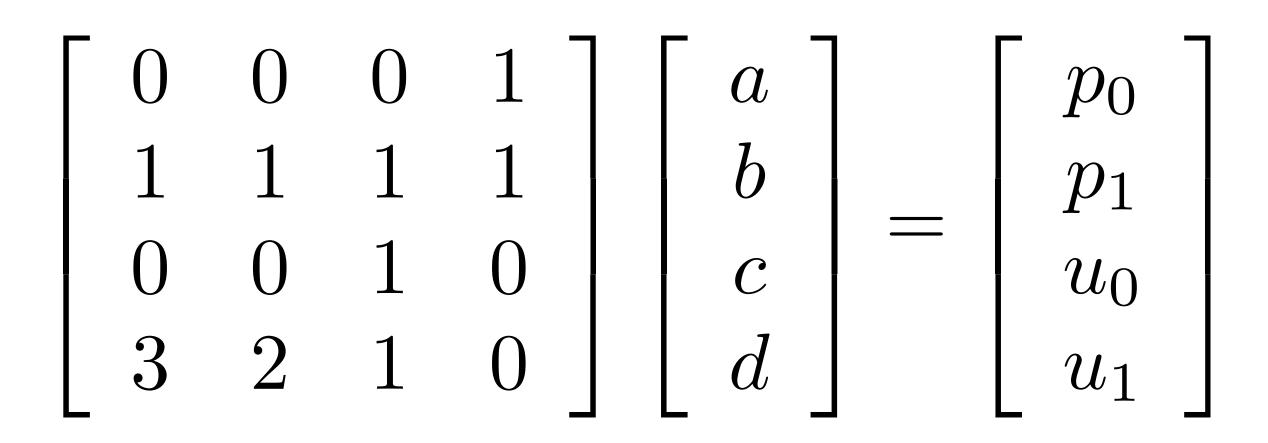
edom (DOFs), namely anipulate/control ecify endpoints:



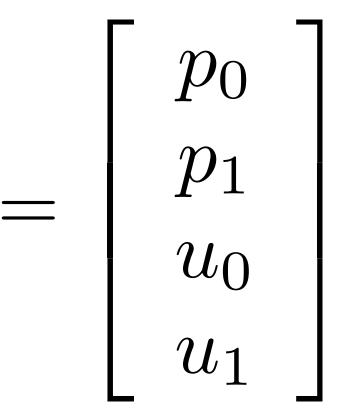


Splines as Linear Systems

- This time, we have four equations in four unknowns
- **Could also express as a matrix equation:**



- Often, this is the game we will play:
 - each condition on spline leads to a linear equality
 - hence, if we have m degrees of freedom, we need m (linearly independent!) conditions to determine spline



Natural Splines

- Now consider *piecewise* spline made of cubic polynomials *p_i*
- For each interval, want polynomial "piece" p_i to interpolate data (e.g., keyframes) at both endpoints:
 - $p_i(t_i) = f_i, \ p_i(t_{i+1}) = f_{i+1}, \ i = 0, \dots, n-1$
 - Want tangents to agree at endpoints ("C¹ continuity"):
 - $p'(t_{i+1}) = p'_{i+1}(t_{i+1}), \ i = 0, \dots, n-2$
- Also want curvature to agree at endpoints ("C² continuity"): $p''(t_{i+1}) = p''_{i+1}(t_{i+1}), \ i = 0, \dots, n-2$
 - How many equations do we have at this point?
 - 2n+(n-1)+(n-1) = 4n-2
- Pin down remaining DOFs by setting curvature to zero at endpoints (this is what makes the curve "natural")

Spline Desiderata

In general, what are some properties of a "good" spline?

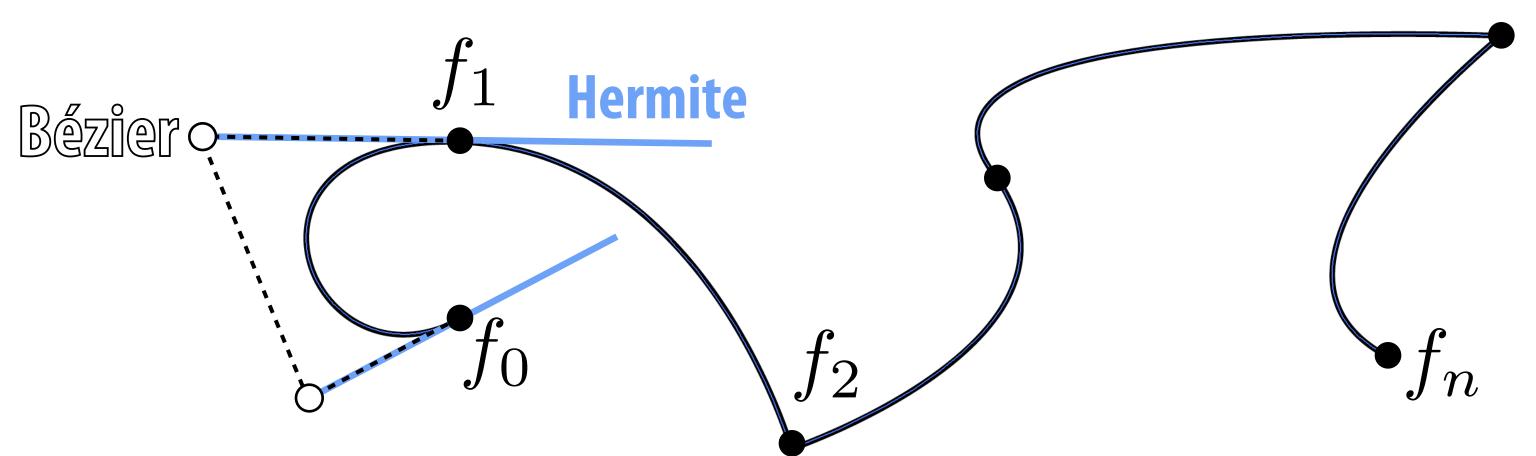
- INTERPOLATION: spline passes *exactly* through data points
- CONTINUITY: at least *twice* differentiable everywhere
- LOCALITY: moving one control point doesn't affect whole curve
- How does our natural spline do?
 - INTERPOLATION: yes, by construction
 - CONTINUITY: C² everywhere
 - LOCALITY: no, coefficients depend on global linear system
- Many other types of splines we can consider
- Spoiler: there is "no free lunch" with cubic splines: can't simultaneously get <u>all three</u> properties

a "good" spline? rough data points e everywhere sn't affect whole curve

global linear system ider oc splines: can't

Review: Hermite/Bézier Splines

Discussed briefly in introduction to geometry Each cubic "piece" specified by endpoints and tangents:



- Equivalently: by four points (Bézier form); just take difference!
- **Commonly used for 2D vector art (Illustrator, Inkscape, SVG, ...)**
- **Can we get tangent continuity?**
- Sure: set both tangents to same value on both sides of knot!
 - **E.g.**, f_1 above, but not f_2

Properties of Hermite/Bézier Spline

- More precisely, want endpoints to interpolate data: $p_i(t_i) = f_i, \ p_i(t_{i+1}) = f_{i+1}, \ i = 0, \dots, n-1$
- Also want tangents to interpolate some given data:

$$p'_i(t_i) = u_i, p'_i(t_{i+1}) = u_{i+1},$$

- How is this *different* from our natural spline's tangent condition?
- There, tangents didn't have to match any prescribed value— they merely had to be the same. Here, they are given.
- How many conditions overall?

 \square 2n + 2n = 4n

- What properties does this curve have?
 - INTERPOLATION and LOCALITY, but not C² CONTINUITY

i = 0, ..., n - 1

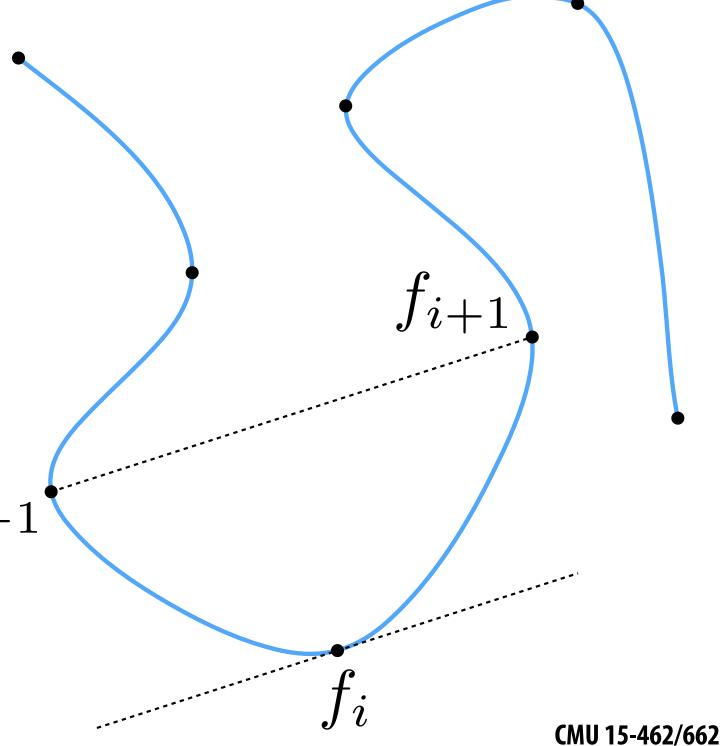
Catmull-Rom Splines

- Sometimes makes sense to specify *tangents* (e.g., illustration)
- **Often more convenient to just specify** *values*
- Catmull-Rom: specialization of Hermite spline, determined by values alone
- **Basic idea: use difference of neighbors to define tangent**

$$u_i := \frac{f_{i+1} - f_{i-1}}{t_{i+1} - t_{i-1}}$$

- All the same properties as any other Hermite spline (locality, etc.)
- Commonly used to interpolate motion in computer animation.

Many, many variants, but Catmull-Rom is usuallygood starting point

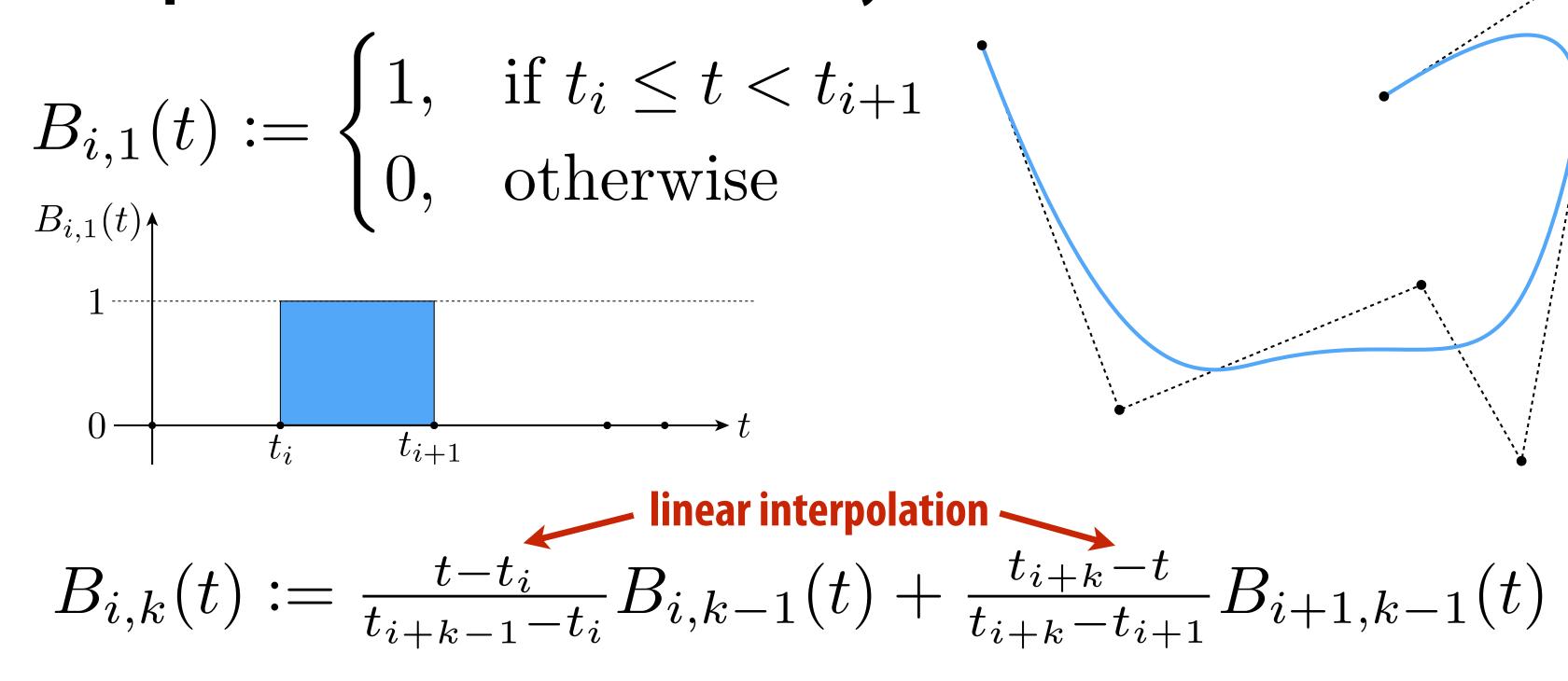


Spline Desiderata, Revisited

	INTERPOLATION	CONTINUITY	LOCALITY
natural	YES	YES	NO
Hermite	YES	NO	YES
???	NO	YES	YES

B-Splines

Get better continuity *and* local control by sacrificing interpolation B-spline *basis* defined recursively:



B-spline itself is then a linear combination of bases:

$$f(t) := \sum_{i} a_i E$$

Spline Desiderata, Revisited

	INTERPOLATION	CONTINUITY	LOCALITY
natural	YES	YES	NO
Hermite	YES	NO	YES
B-splines	NO	YES	YES

Ok, I get it: splines are great. But what exactly are we interpolating?

Simple example: camera path

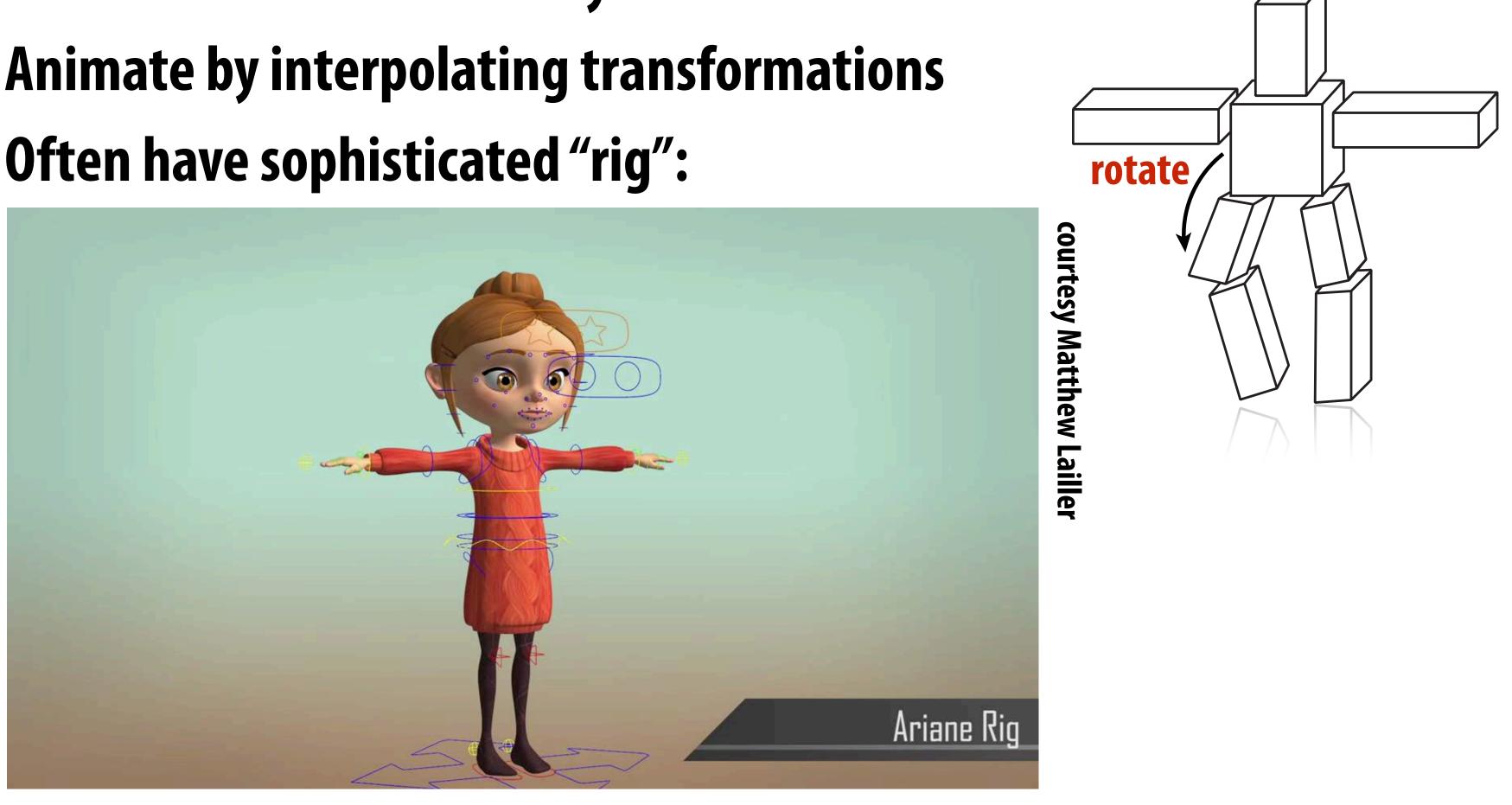
- Animate position, direction, "up" direction of camera
 - each path is a function f(t) = (x(t), y(t), z(t))
 - each component (x,y,z) is a spline

h on of camera t), z(t))

Zaha Hadid Architects—City of Dreams Hotel Towe

Character Animation

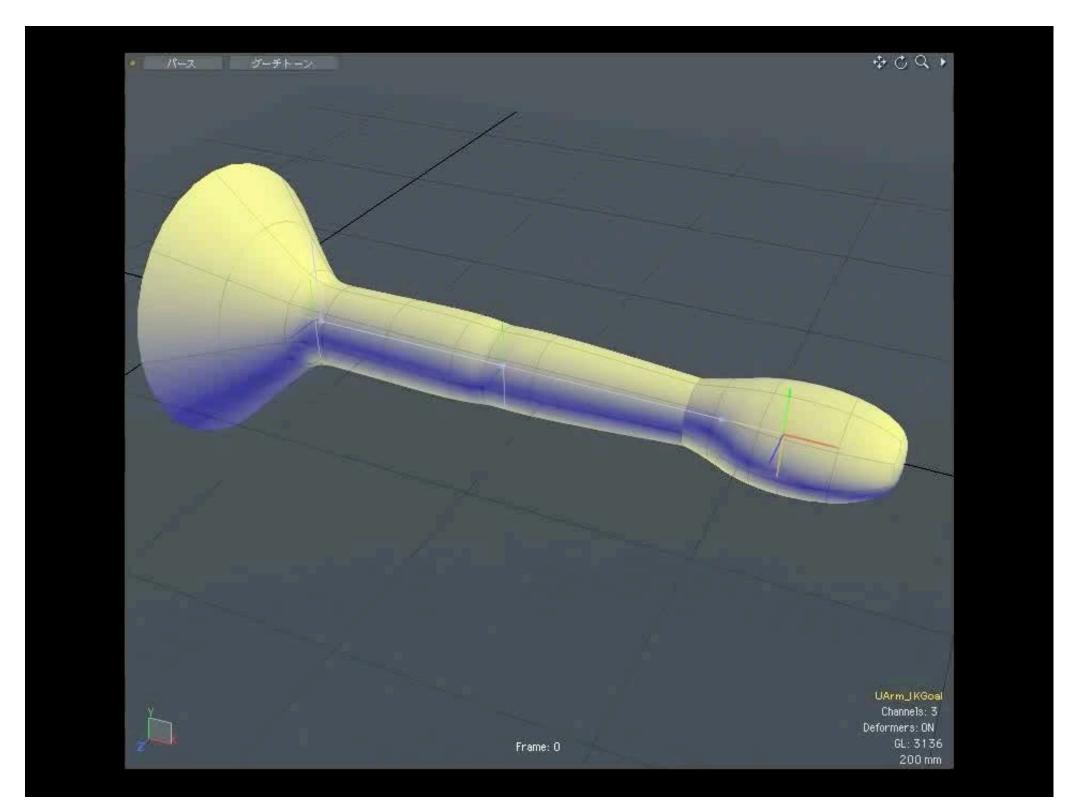
- Scene graph/kinematic chain: scene as tree of transformations
- E.g. in our "cube man," configuration of a leg might be expressed as rotation relative to body
- **Often have sophisticated "rig":**



Even w/ computer "tweening," a lot of work to animate!

Inverse Kinematics

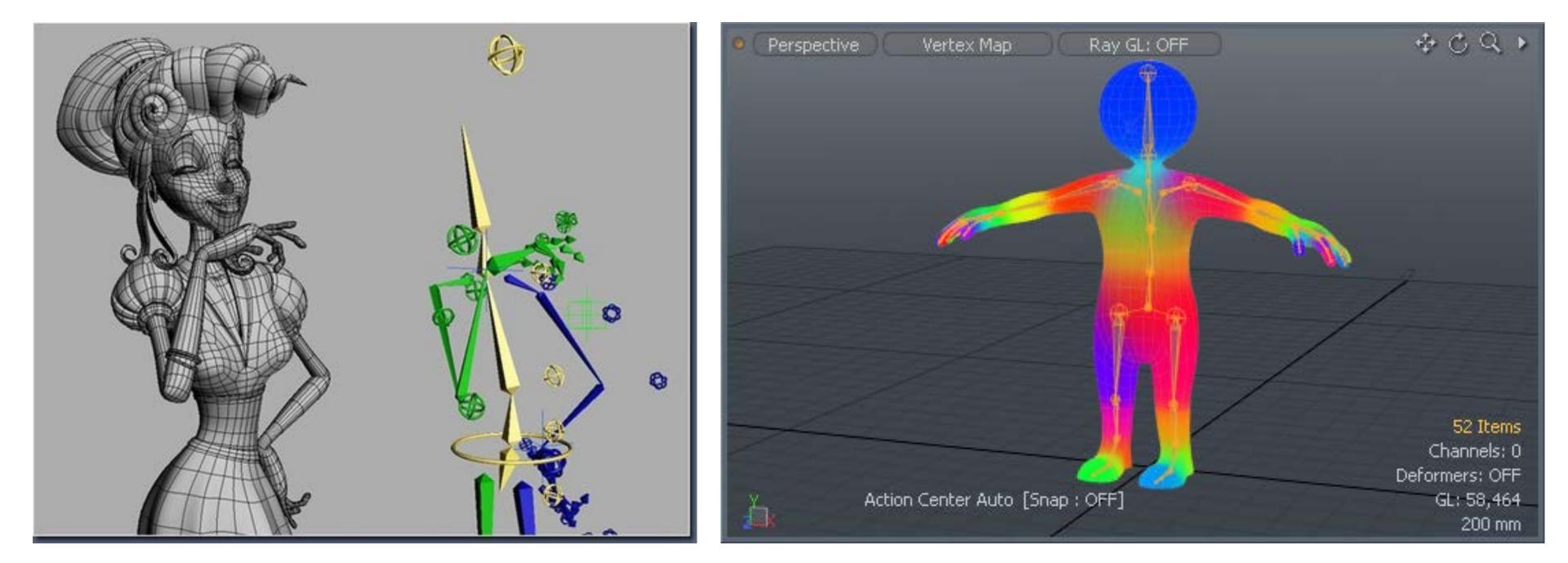
- Important technique in animation & robotics
- Rather than adjust individual transformations, set "goal" and use algorithm to come up with plausible motion:



Many algorithms—basic idea: numerical optimization/descent

Skeletal Animation

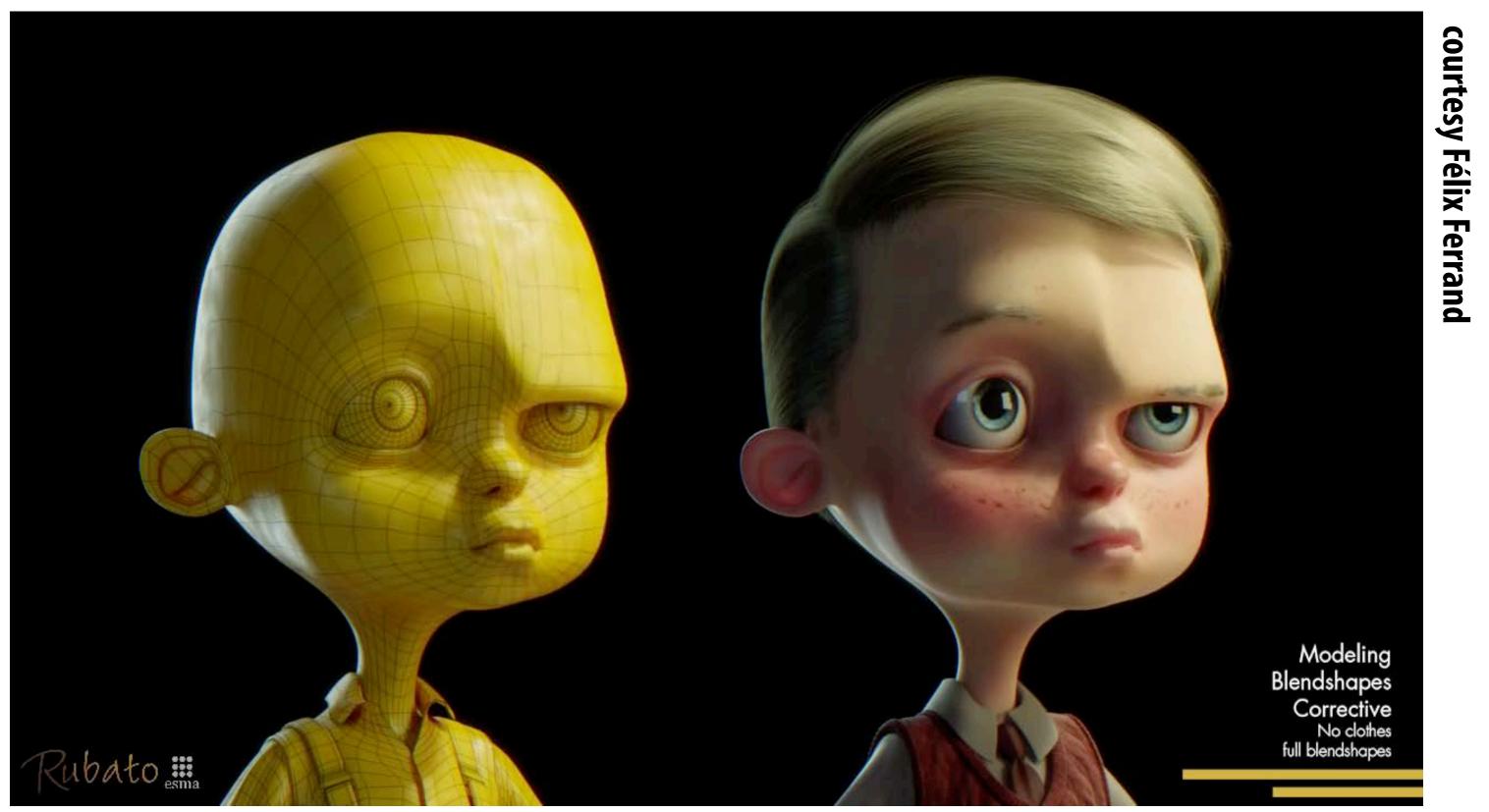
- **Previous characters looked a lot different from "cube man"! Often use "skeleton" to drive deformation of continuous surface**
- Influence of each bone determined by, e.g., weighting function:



(Many other possibilities—still active area of R&D)

Blend Shapes

- Instead of skeleton, interpolate directly between surfaces
- E.g., model a collection of facial expressions:



Simplest scheme: take linear combination of vertex positions Spline used to control choice of weights over time

Coming up next...

- Even with "computer-aided tweening," animating everything by hand takes a lot of work!
- Will see how data, physical simulation can help

