Radiometry

Computer Graphics CMU 15-462/15-662

'y

Last time we discussed color

Image credit: Licensed under CC BY-SA 3.0 via Commons https://commons.wikimedia.org/wiki/File:EM_spectrum.svg#/media/File:EM_spectrum.svg

Rendering is more than just color! Also need to know <u>how much</u> light hits each pixel: color

image

How do we *quantify* measurements of light?

Radiometry

- System of units and measures for measuring EM radiation (light)
- **Geometric optics model of light**
 - Photons travel in straight lines
 - Represented by rays
 - Wavelength << size of objects
 - No diffraction, interference, ...
- LOTS of terminology!
 - Focus first on <u>concepts</u>
 - Terminology comes second

Names don't constitute knowledge!

(Richard Feynman)

What do we want to measure (and why?)

- Many physical processes convert energy into photons
 - E.g., incandescent lightbulb turns heat into light (blackbody radiation)
 - Nuclear fusion in stars (sun!) generates photons
 - **Etc.**
- Each photon carries a small amount of energy
- Want some way of recording "how much energy"
- Energy of photons hitting an object ~ "brightness"

 - images
- Simplifying assumption: "steady state" process

Film, eyes, CCD sensor, sunburn, solar panels, ...

Need this information to make accurate (and beautiful!)

How long does it take for lighting to reach steady state?

What does light propagation look like? Can't see it with the naked eye!

Instead, repeat same experiment many times, take "snapshot" at slightly different offsets each time.

Imagine every photon is a little rubber ball hitting the scene:

How can we record this process? What information should we store?

Radiant energy is "total # of hits"

- One idea: just store the *total* number of "hits" that occur anywhere in the scene, over the complete duration of the scene
- This quantity captures the total *energy* of all the photons hitting the scene*

"Radiant energy": 40

*Eventually we will care about constants & units. But these will not help our *conceptual* understanding...

Radiant flux is "hits per second"

- For illumination phenomena at the level of human perception, usually safe to assume equilibrium is reached immediately.
- So, rather than record total energy over some (arbitrary) duration, may make more sense to record total hits per second

Estimate of "radiant flux": 40 hits/2s = 20 hits/s

Irradiance is "#hits per second, per unit area" Typically we want to get more specific than just the total To make images, also need to know where hits occurred

- So, compute hits per second in some *"really small"* area, divided by area:

Estimate of "radiant energy density": 2/ ϵ^2

Image generation as irradiance estimation

From this point of view, our goal in image generation is to estimate the irradiance at each point of an image (or really: the total radiant flux per pixel...):

Recap so far...

Radiant Energy (total number of hits)

Radiant Flux (total hits per second)

Radiant Energy Density (hits per unit area)

Radiant Flux Density a.k.a. Irradiance (hits per second per unit area)

Ok, but how about some units...

Measuring illumination: radiant energy

- How can we be more precise about the amount of energy?
- Said we were just going to count "the number of hits," but do all hits contribute same amount of *energy*?
- **Energy of a single photon:**

Sensor

Q: What are units for a photon?

Aside: Units are a powerful *debugging* tool!

Measuring illumination: radiant flux (power)

Flux: energy per unit time (Watts) received by the sensor (or emitted by the light)

$$\Phi = \lim_{\Delta \to 0} \frac{\Delta Q}{\Delta t} = \frac{\mathrm{d}Q}{\mathrm{d}t} \begin{bmatrix} \mathrm{J} \\ \mathrm{s} \end{bmatrix}$$

Can also go the other direction: time integral of flux is total radiant energy

$$Q = \int_{t_0}^{t_1} \Phi(t) \, \mathrm{d}t$$
 (Units?)

Sensor

Measuring illumination: irradiance

- Radiant flux: time density of energy
- Irradiance: area density of radiant flux

Given a sensor of with area *A*, we can consider the average flux over the entire sensor area:

 Φ

 \overline{A}

Irradiance (E) is given by taking the limit of area at a single point on the sensor:

$$E(\mathbf{p}) = \lim_{\Delta \to 0} \frac{\Delta \Phi(\mathbf{p})}{\Delta A} = \frac{\mathrm{d}\Phi(\mathbf{p})}{\mathrm{d}A}$$

$\left[\frac{\mathbf{p}}{\mathbf{A}}\right] \left[\frac{\mathbf{W}}{\mathbf{m}^2}\right]$

Recap, with units

Radiant Energy (total number of hits) Joules (J)

Radiant Flux

(total hits per second) Joules per second (J/s) = Watts (W)

Radiant Energy Density (hits per unit area) Joules per square meter (J/m²)

Radiant Flux Density a.k.a. Irradiance (hits per second per unit area) Watts per square meter (W/m²)

What about color?

How might we quantify, say, the "amount of green?"

Spectral power distribution

Describes irradiance per unit wavelength (units?)

Energy per unit time per unit area per unit wavelength...

Given what we now know about radiant energy...

Why do some parts of a surface look lighter or darker?

Why do we have seasons?

Summer (Northern hemisphere)

Earth's axis of rotation: ~23.5° off axis

[Image credit: Pearson Prentice Hall]

Winter (Northern hemisphere)

Beam power in terms of irradiance Consider beam with flux Φ incident on surface with area A

Projected area

Consider beam with flux Φ incident on angled surface with area A'

A = projected area of surface relative to direction of beam

$A = A' \cos \theta$

Lambert's Law

Irradiance at surface is proportional to cosine of angle between light direction and surface normal.

"N-dot-L" lighting

Most basic way to shade a surface: take dot product of unit surface normal (N) and unit direction to light (L)

```
double surfaceColor( Vec3 N, Vec3 L)
return dot( N, L );
```

(Q: What's wrong with this code?)

"N-dot-L" lighting

Most basic way to shade a surface: take dot product of unit surface normal (N) and unit direction to light (L)

```
double surfaceColor( Vec3 N, Vec3 L)
return max( 0., dot( N, L ));
```


Example: "directional" lighting

- Common abstraction: infinitely bright light source "at infinity"
- All light directions (L) are therefore identical

ng ght source "at infinity" tical

Irradiance falloff with distance

 E_1

Since same amount of energy is distributed over larger and larger spheres, has to get darker quadratically with distance.

Assume light is emitting flux Φ in a uniform angular distribution

Compare irradiance at surface of two spheres:

What does quadratic falloff *look* like? Single point light, move in 1m increments:

...things get dark fast!

Angles and solid angles

Angle: ratio of subtended arc length on circle to radius

-
$$\theta = \frac{l}{r}$$

- Circle has 2π radians

- Solid angle: ratio of subtended area on sphere to radius squared
 - $\Omega = \frac{A}{r^2}$
 - Sphere has 4π steradians

Solid angles in practice

THE SIZE OF THE PART OF EARTH'S SURFACE DIRECTLY UNDER VARIOUS SPACE OBJECTS

http://xkcd.com/1276/

Sun and moon both subtend ~60µ sr as seen from earth

Surface area of earth: ~510M km²

• Projected area: $510 \text{Mkm}^2 \frac{60 \mu \text{sr}}{4 \pi \text{sr}} = 510 \frac{15}{\pi}$ $\approx 2400 \text{km}^2$

Differential solid angle

Consider a tiny area swept out by a tiny angle in each direction...

$$dA = (r d\theta)(r \sin \theta d\phi)$$
$$= r^2 \sin \theta d\theta d\phi$$

$$\mathrm{d}\omega = \frac{\mathrm{d}A}{r^2} = \sin\theta\,\mathrm{d}\theta\,\mathrm{d}\phi$$

Differential solid angle is just that same tiny area projected onto the *unit* sphere

Differential solid angle

ω as a direction vector

Will use ω to donate a direction vector (unit length)

Radiance

Radiance is the solid angle density of irradiance

$$L(\mathbf{p}, \omega) = \lim_{\Delta \to 0} \frac{\Delta E_{\omega}(\mathbf{p})}{\Delta \omega} = \frac{\mathrm{d} E_{\omega}}{\mathrm{d} \omega}$$

where E_{ω} denotes that the differential surface area is oriented to face in the direction ω

In other words, radiance is energy along a ray defined by origin point *p* and direction ω

Energy per unit time per unit area per unit solid angle...!

$\frac{\omega(\mathbf{p})}{\omega} \quad \left| \frac{W}{\mathrm{m}^2 \, \mathrm{sr}} \right|$

Surface Radiance

Equivalently,

$$L(\mathbf{p}, \omega) = \frac{\mathrm{d}E(\mathbf{p})}{\mathrm{d}\omega\cos\theta} = \frac{\mathrm{d}}{\mathrm{d}A}$$

- Previous slide described measuring radiance at a surface oriented in ray direction
 - cos(theta) accounts for different surface orientation

$l^2\Phi(p)$ $d\omega\cos\theta$

Spectral Radiance

- To summarize, radiance is: radiant energy per unit time per unit area per unit solid angle
- To really get a complete description of light we have to break this down just one more step: radiant energy per unit time per unit area per unit solid angle per unit wavelength
- Q: What additional information do we now get?
- A: Color!

Why do we break energy down to this granularity? (spectral radiance)

Because once we have spectral radiance, we have a complete description of the light in an environment!

Field radiance: the light field

- Light field = radiance function on rays
- Radiance is constant along rays *
- Spherical gantry: captures 4D light field (all light leaving object)

* in a vacuum

Light Field Photography

- A standard camera captures a small "slice" of the light field
- Light field cameras capture a "bigger slice," recombine information to get new images after taking the photo

ce" of the light field ce," recombine cing the photo

Incident vs. Exitant Radiance

Often need to distinguish between incident radiance and exitant radiance functions at a point on a surface

In general: $L_i(\mathbf{p},\omega) \neq L_o(\mathbf{p},\omega)$

Properties of radiance

- **Radiance is a fundamental field quantity that characterizes** the distribution of light in an environment
 - Radiance is the quantity associated with a ray
 - Rendering is all about computing radiance
- **Radiance is constant along a ray (in a vacuum)**
- A pinhole camera measures radiance

Irradiance from the environment **Computing flux per unit area on surface, due to incoming light** from all directions:

$$E(\mathbf{p}) = \int_{H^2} L_i(\mathbf{p}, \omega) \cos \theta d\omega$$

(This is what we often want to do for rendering!)

Simple case: irradiance from uniform hemispherical source

$$\begin{split} E(\mathbf{p}) &= \int_{H^2} L \, \mathrm{d}\omega \\ &= L \int_0^{2\pi} \int_0^{\frac{\pi}{2}} \cos\theta \sin\theta \, \mathrm{d}\theta \, \mathrm{d}\phi \\ &= L\pi \end{split}$$

Example of hemispherical light source

Q: Why didn't we just get the same constant $L\pi$ (white) at every point?

Ambient occlusion

- Assume *spherical* (vs. hemispherical) light source, "at infinity"
- Irradiance is now rotation, translation invariant
- Can pre-compute, "bake" into texture to enhance shading

ambient occlusion map

without A0 map

with AO map

Screen-space ambient occlusion

Credit: NVIDIA

Screen-space ambient occlusion

Credit: NVIDIA

Screen-space ambient occlusion

Credit: NVIDIA

Irradiance from a uniform area source (source emits radiance L)

$$\begin{split} E(\mathbf{p}) &= \int_{H^2} L(\mathbf{p}, \omega) \, \cos \theta \, \mathrm{d}\omega \\ &= L \int_{\Omega} \cos \theta \, \mathrm{d}\omega \\ &= L \Omega^{\perp} \\ \int & \int & - \end{array}$$

Projected solid angle:

- Cosine-weighted solid angle
- Area of object O projected onto unit sphere, then projected onto plane

 $\mathrm{d}\omega^{\perp} = |\cos\theta| \,\mathrm{d}\omega$

Uniform disk source (oriented perpendicular to plane)

Geometric Derivation

(using projected solid angle)

 $\Omega^{\perp} = \pi \sin^2 \alpha$

Algebraic Derivation

Examples of Area Light Sources Generally "softer" appearance than point lights:

...and better model of real-world lights!

Measuring illumination: radiant intensity

Power per solid angle emanating from a point source

More realistic light models via "goniometry"

http://www.mpi-inf.mpg.de/resources/mpimodel/v1.0/luminaires/index.html http://www.visual-3d.com/tools/photometricviewer/

Goniometric diagram measures light intensity as function of angle.

Photometry: light + humans

- All radiometric quantities have equivalents in photometry
- **Photometry: accounts for** response of human visual system $V(\lambda)$ 0.5 to electromagnetic radiation
- Luminance (Y) is photometric quantity that corresponds to radiance: integrate radiance over all wavelengths, weight by eye's luminous efficacy curve, e.g.:

$$Y(\mathbf{p},\omega) = \int_0^\infty L(\mathbf{p},\omega,\lambda) \mathbf{V}$$

Radiometric and photometric terms

Physics	Radiometry	Photometry	
Energy	Radiant Energy	Luminous Energy	
Flux (Power)	Radiant Power	Luminous Power	
Flux Density	Irradiance (incoming) Radiosity (outgoing)	Illuminance (incoming) Luminosity (outgoing)	
Angular Flux Density	Radiance	Luminance	
Intensity	Radiant Intensity	Luminous Intensity	

Photometric Units

Photometry	MKS	CGS	British
Luminous Energy	Talbot	Talbot	Talbot
Luminous Power	Lumen	Lumen	Lumen
Illuminance Luminosity	Lux	Phot	Footcandle
Luminance	Nit, Apostlib, Blondel	Stilb Lambert	Footlambert
Luminous Intensity	Candela	Candela	Candela

"Thus one nit is one lux per steradian is one candela per square meter is one lumen per square meter per steradian. Got it?" — James Kajiya

What information are we missing?

- At the beginning, adopted "geometric optics" model of light
- Miss out on small-scale effects (e.g., diffraction/iridescence)
- Also large-scale effects (e.g., bending of light due to gravity)

ptics" model of light Fraction/iridescence) Flight due to gravity)

Next time...

- More toward our goal of realistic rendering
- Materials, scattering, etc.

