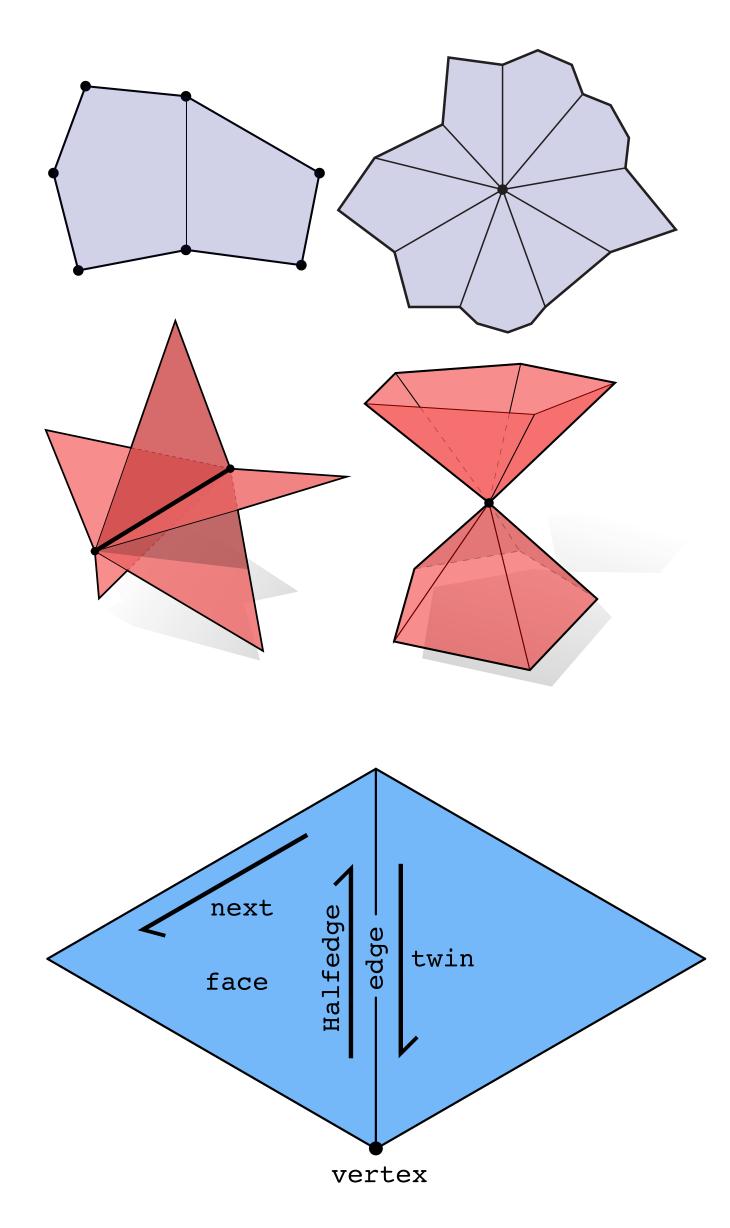
Digital Geometry Processing

Computer Graphics CMU 15-462/15-662

Last time: Meshes & Manifolds

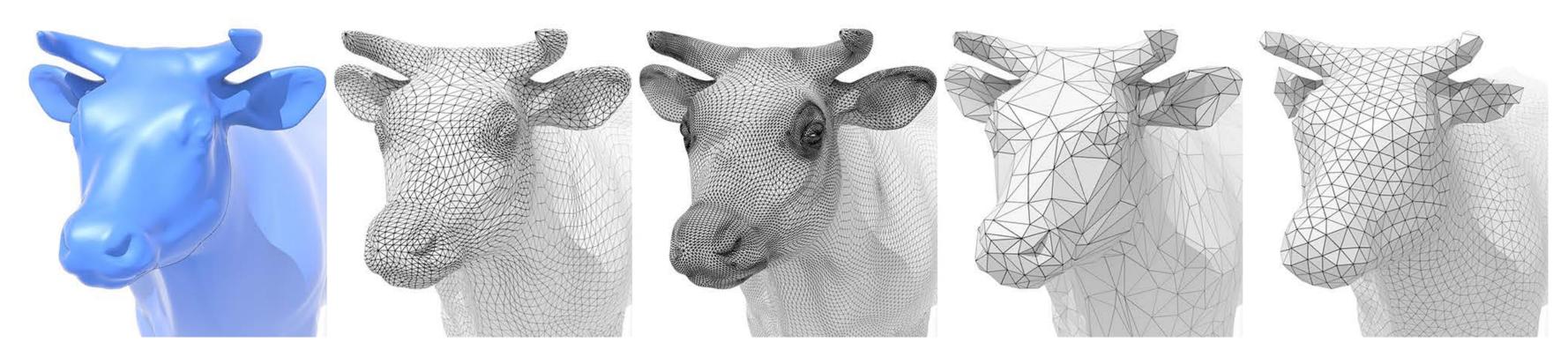
Mathematical description of geometry

- simplifying assumption: manifold
- for polygon meshes: "fans, not fins"
- **Data structures for surfaces**
- polygon soup
- halfedge mesh
- storage cost vs. access time, etc.
- **Today:**
 - how do we manipulate geometry?
 - geometry processing / resampling



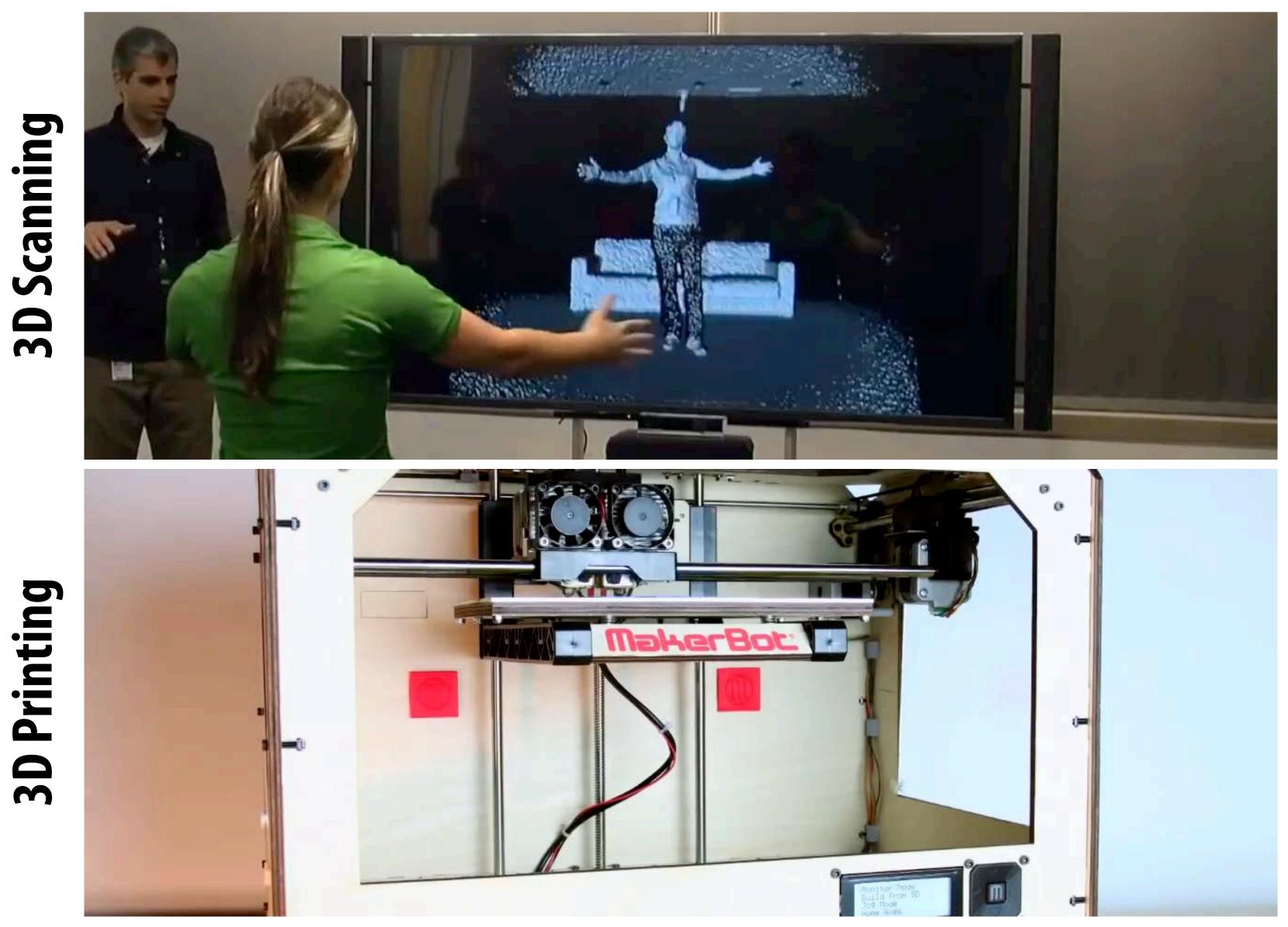
Today: Geometry Processing

- Extend traditional digital signal processing (audio, video, etc.) to deal with geometric signals:
 - upsampling / downsampling / resampling / filtering ...
 - aliasing (reconstructed surface gives "false impression")
- Beyond pure geometry, these are basic building blocks for many areas/algorithms in graphics (rendering, animation...)



Digital Geometry Processing: Motivation

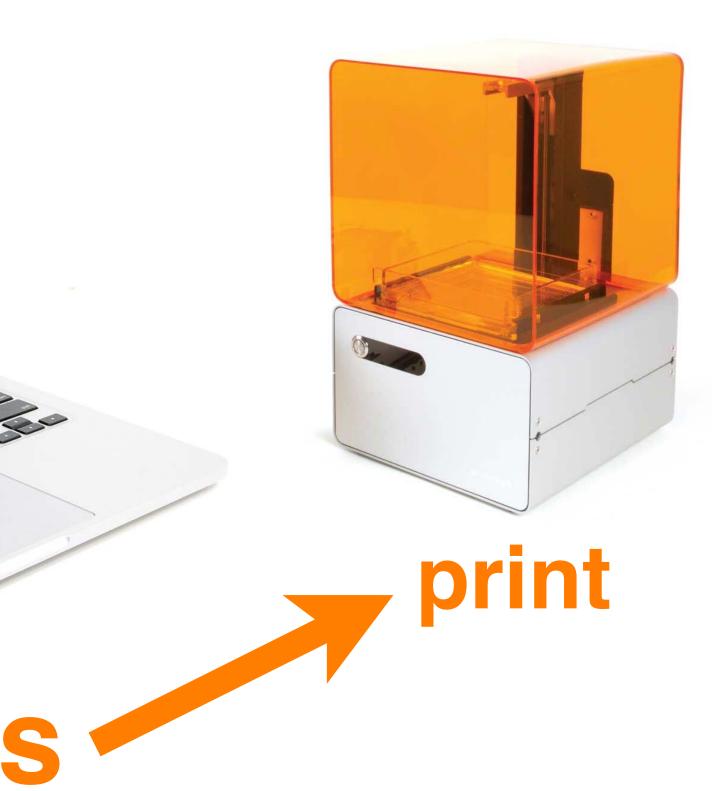
3D Scanning



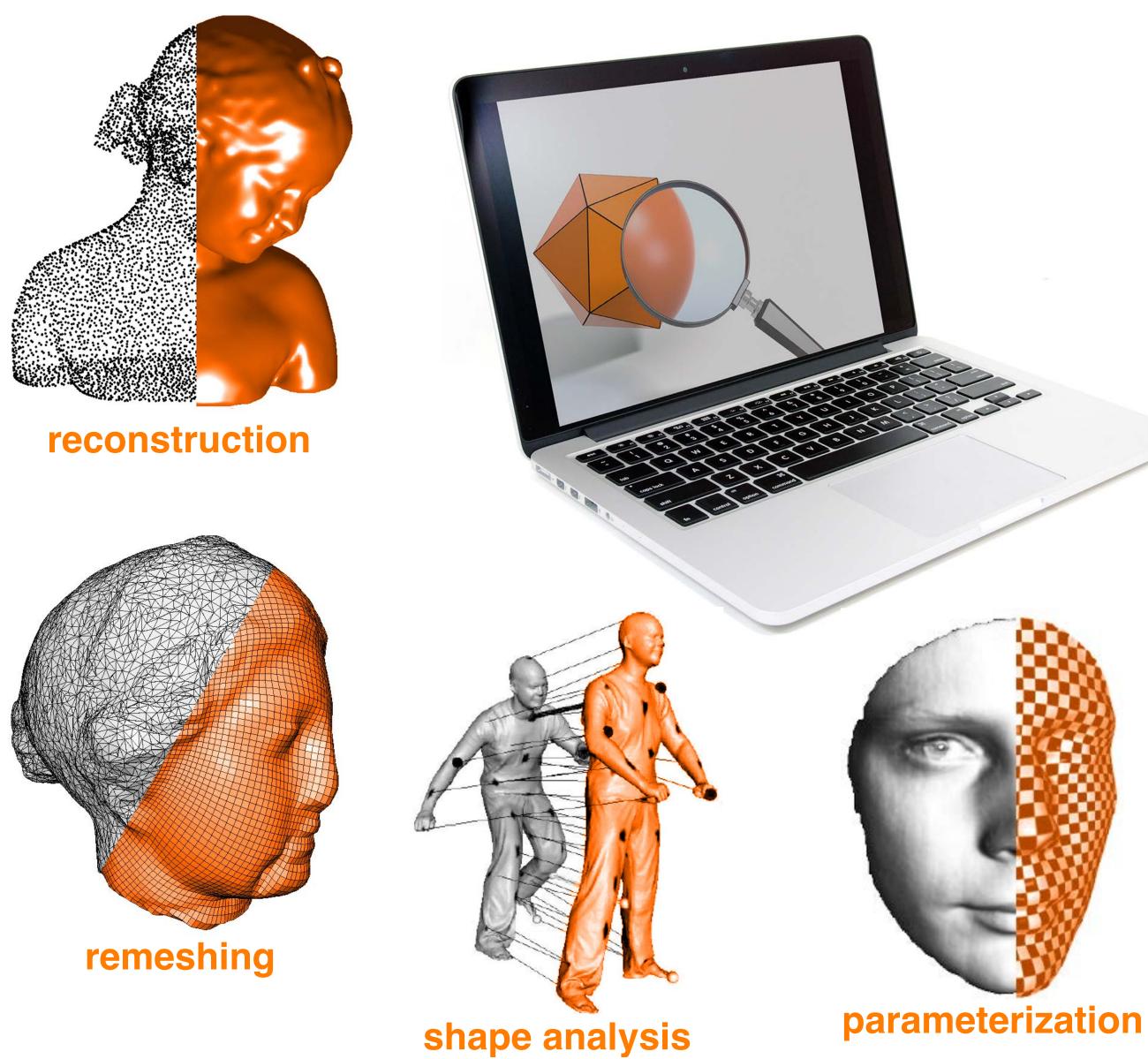
Geometry Processing Pipeline

scar

process



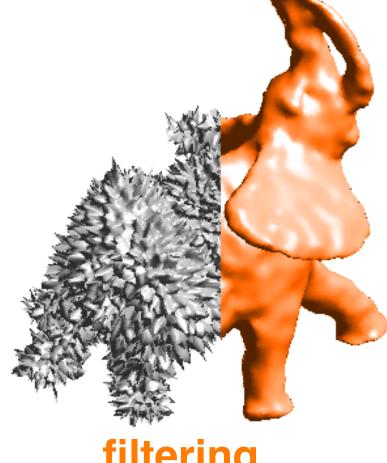
Geometry Processing Tasks



compression

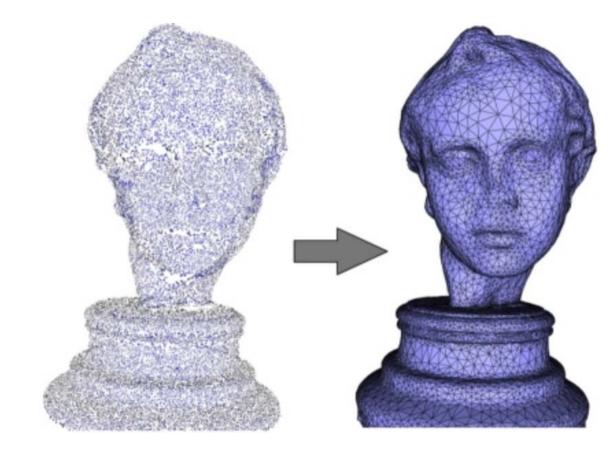
CMU 15-462/662

filtering



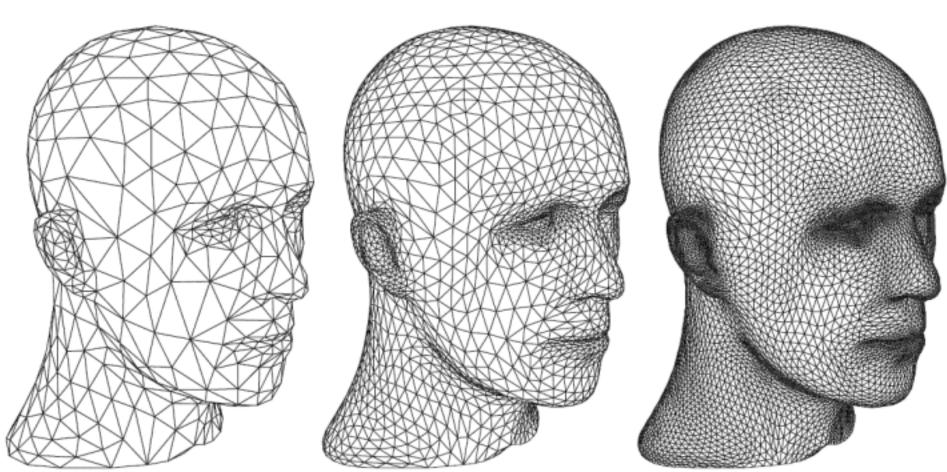
Geometry Processing: Reconstruction

- Given samples of geometry, reconstruct surface
- What are "samples"? Many possibilities:
 - points, points & normals, ...
 - image pairs / sets (multi-view stereo)
 - line density integrals (MRI/CT scans)
 - How do you get a surface? Many techniques:
 - silhouette-based (visual hull)
 - Voronoi-based (e.g., power crust)
 - PDE-based (e.g., Poisson reconstruction)
 - **Radon transform / isosurfacing (marching cubes)**



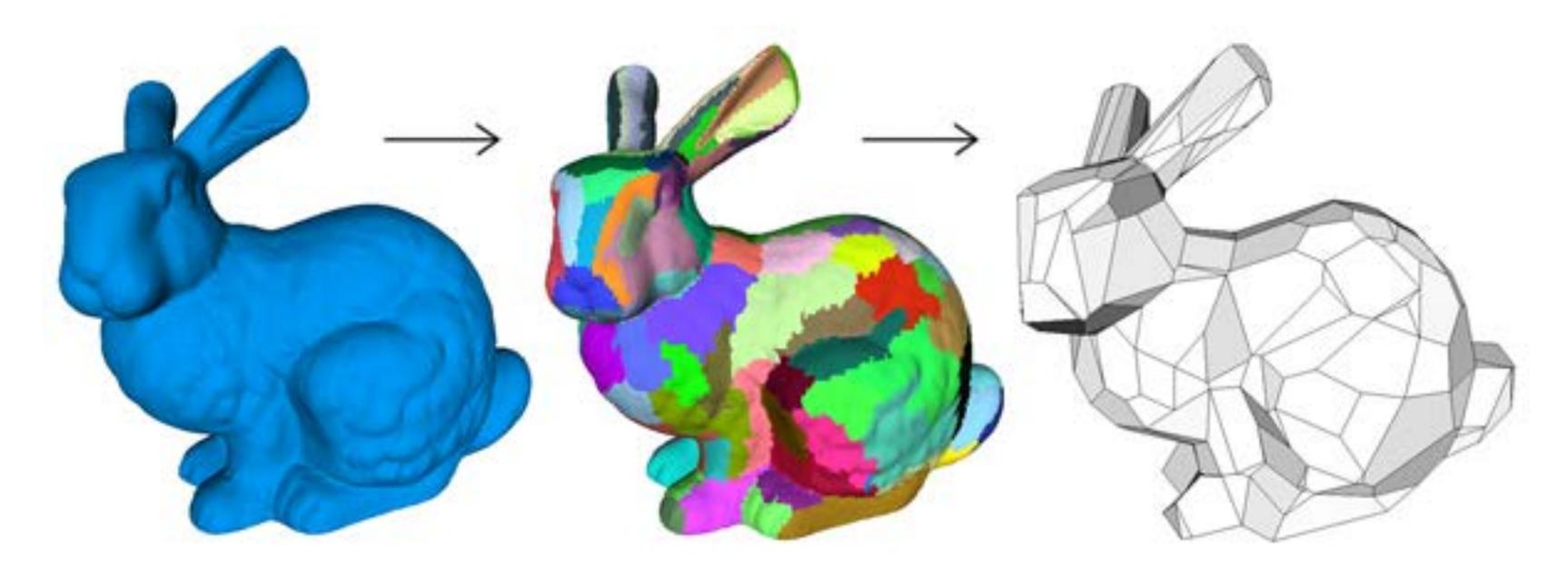
Geometry Processing: Upsampling

- **Increase resolution via interpolation**
- Images: e.g., bilinear, bicubic interpolation
- **Polygon meshes:**
 - subdivision
 - bilateral upsampling



Geometry Processing: Downsampling

- **Decrease resolution; try to preserve shape/appearance**
- Images: nearest-neighbor, bilinear, bicubic interpolation
- **Point clouds: subsampling (just take fewer points!)**
 - **Polygon meshes:**
 - iterative decimation, variational shape approximation, ...

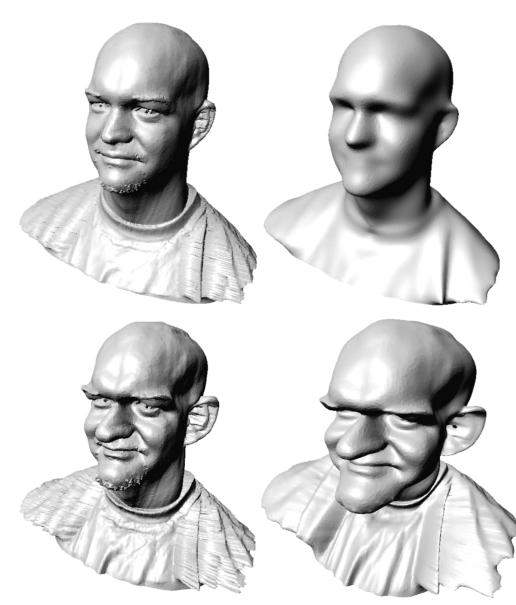


Geometry Processing: Resampling Modify sample distribution to improve quality Images: not an issue! (Pixels always stored on a regular grid) Meshes: *shape* of polygons is extremely important! - different notion of "quality" depending on task

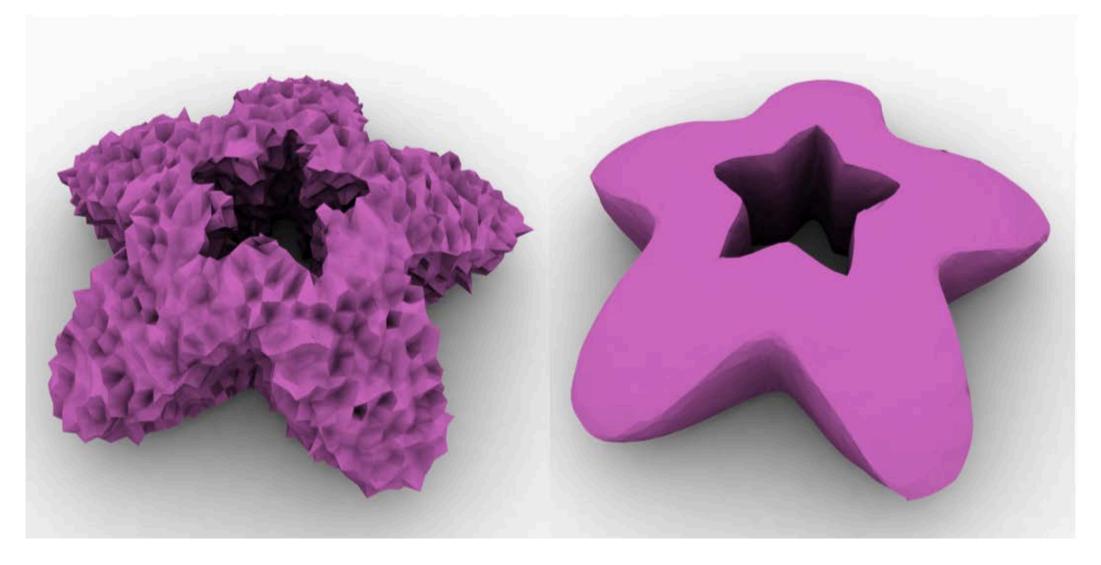
- - e.g., visualization vs. solving equations

Geometry Processing: Filtering

- Remove noise, or emphasize important features (e.g., edges)
- Images: blurring, bilateral filter, edge detection, ...
- Polygon meshes:
 - curvature flow
 - bilateral filter
 - spectral filter



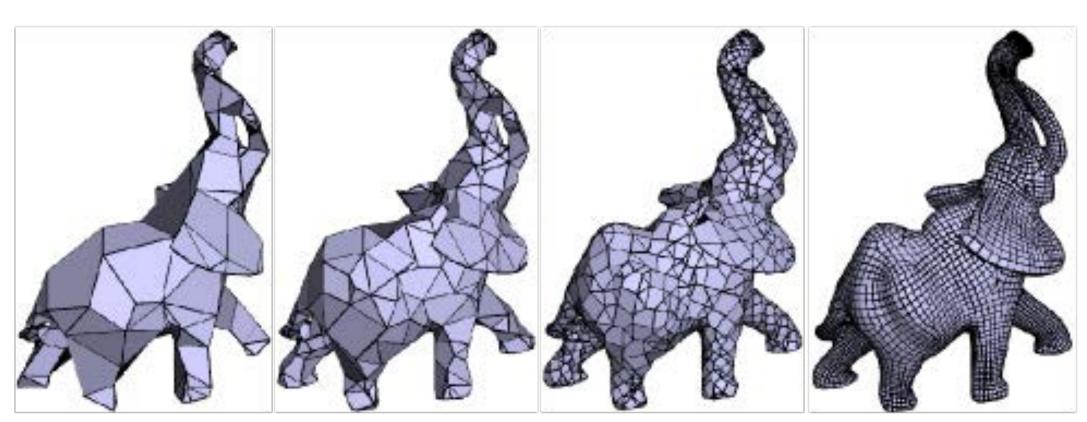


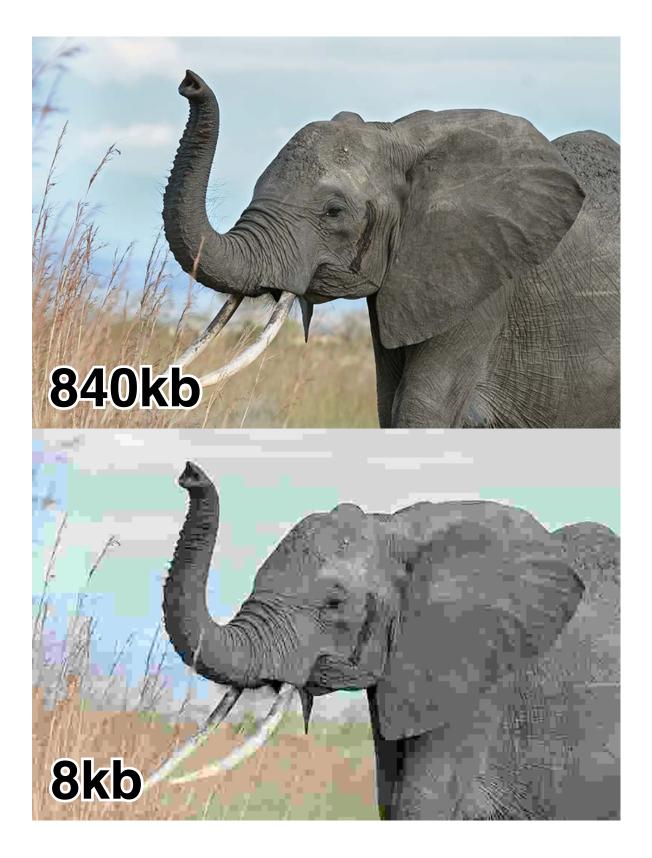


ng features (e.g., edges) etection, ...

Geometry Processing: Compression

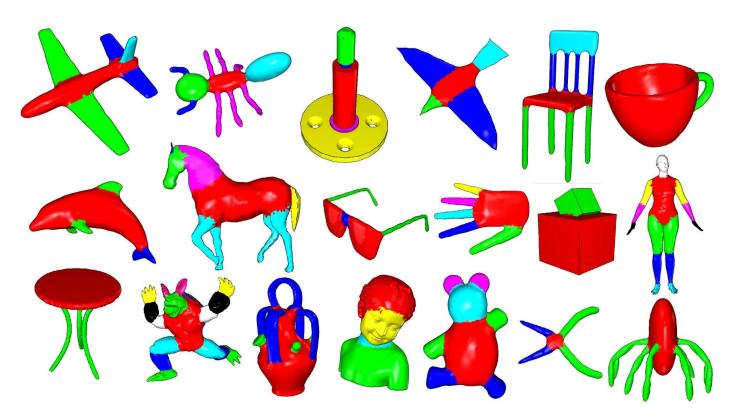
- Reduce storage size by eliminating redundant data/ approximating unimportant data
- **Images:**
 - run-length, Huffman coding *lossless*
 - cosine/wavelet (JPEG/MPEG) *lossy*
 - **Polygon meshes:**
 - compress geometry and connectivity
 - many techniques (lossy & lossless)

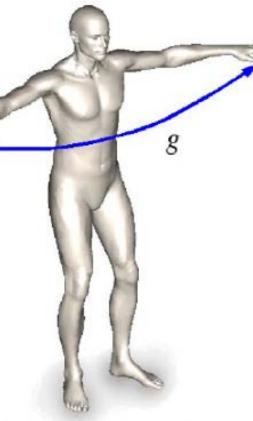




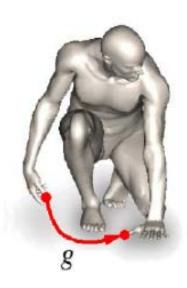
Geometry Processing: Shape Analysis

- Identify/understand important semantic features
- Images: computer vision, segmentation, face detection, ...
- **Polygon meshes:**
 - segmentation, correspondence, symmetry detection, ...





Extrinsic symmetry

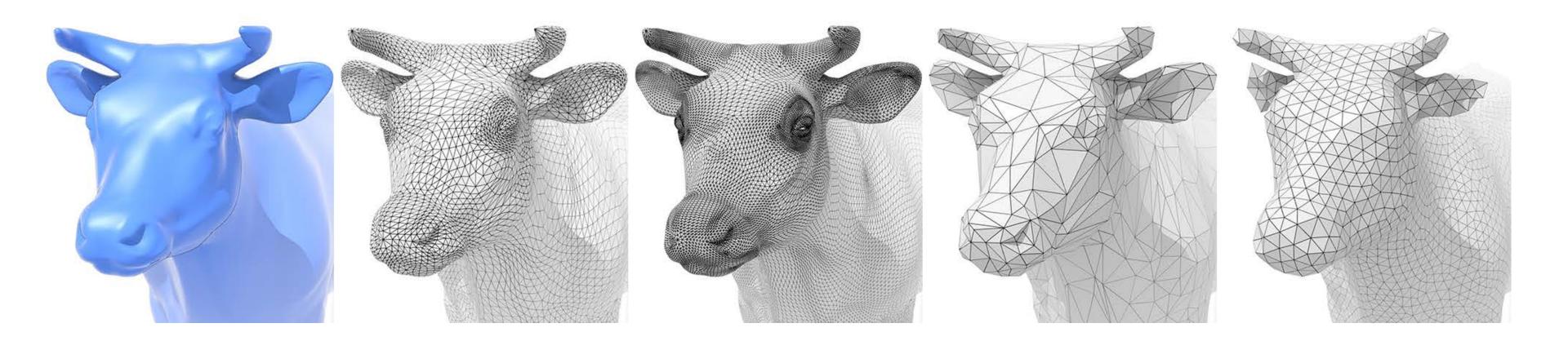


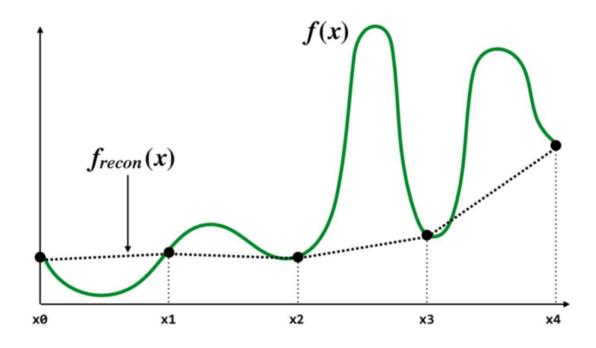
Intrinsic symmetry

Enough overview— Let's process some geometry!

Remeshing as resampling

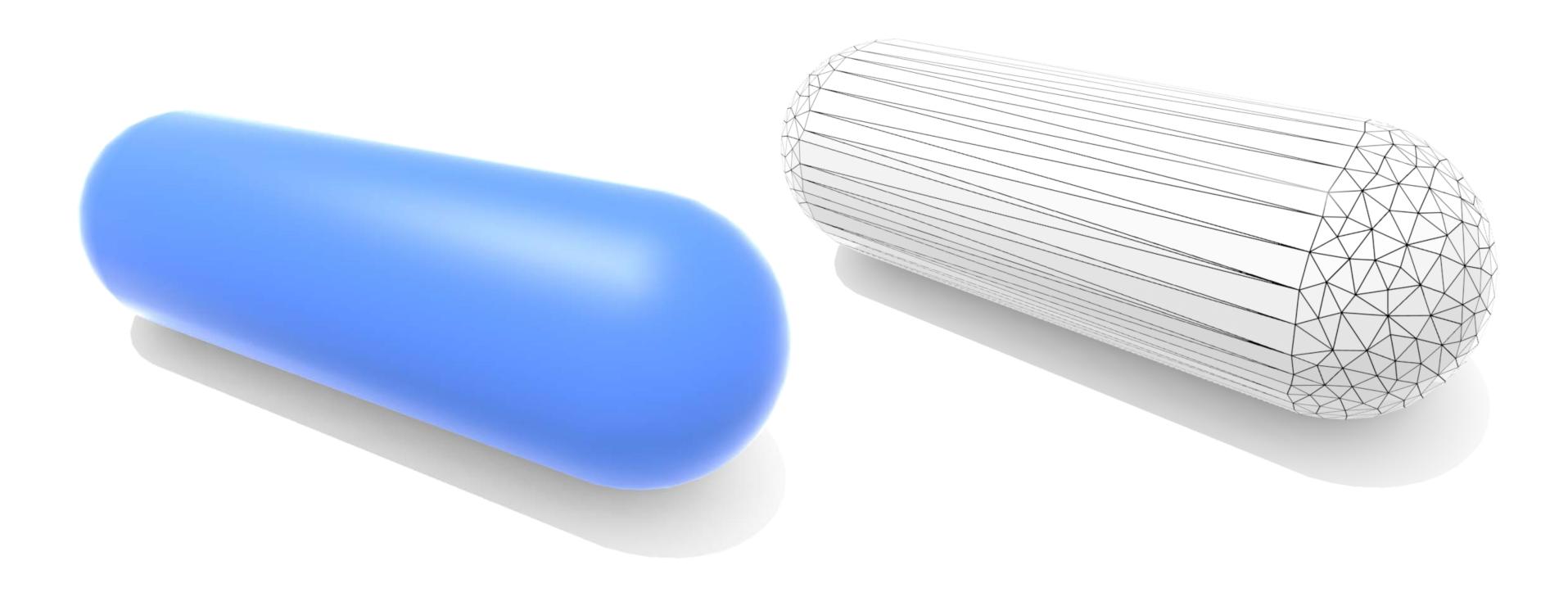
- **Remember our discussion of aliasing**
- Bad sampling makes signal appear different than it really is
- E.g., undersampled curve looks flat
- **Geometry is no different!**
 - undersampling destroys features
 - oversampling bad for performance





What makes a "good" mesh?

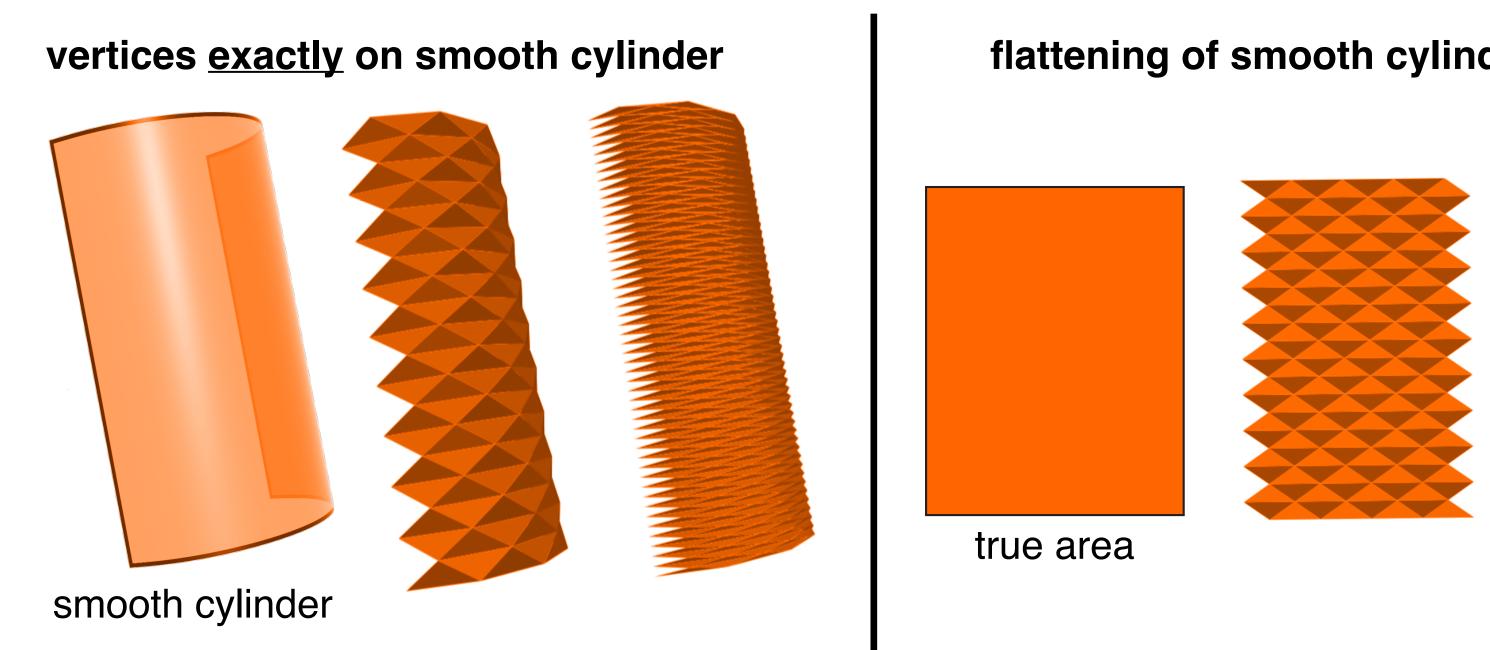
- One idea: good approximation of original shape!
- Keep only elements that contribute information about shape
- Add additional information where, e.g., curvature is large



al shape! *cornation* about shape *curvature* is large

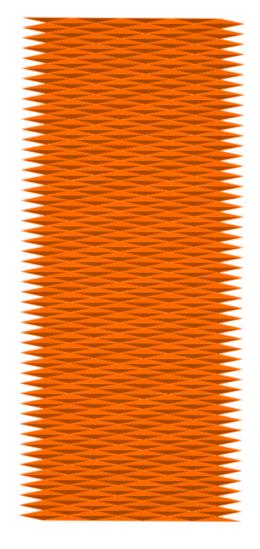
Approximation of position is not enough!

- Just because the vertices of a mesh are close to the surface it approximates does not mean it's a good approximation!
- Can still have wrong appearance, wrong area, wrong...
- Need to consider other factors^{*}, e.g., close approximation of surface normals



*See Hildebrandt et al (2007), "On the convergence of metric and geometric properties of polyhedral surfaces"

flattening of smooth cylinder & meshes



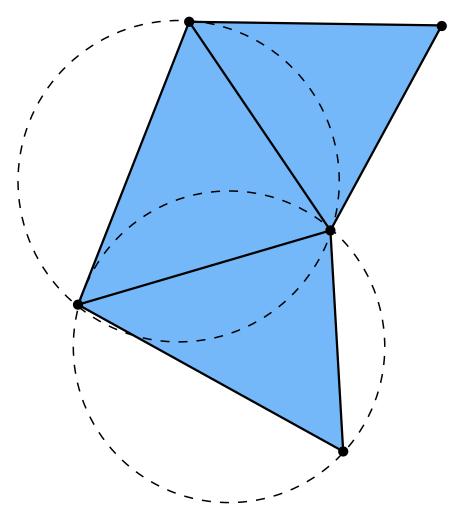
What else makes a "good" triangle mesh? Another rule of thumb: triangle shape

"GOOD"

- E.g., all angles close to 60 degrees
- More sophisticated condition: *Delaunay* (empty circumcircles)
 - often helps with numerical accuracy/stability
 - coincides with <u>shockingly</u> many other desirable properties (maximizes minimum angle, provides smoothest interpolation, guarantees maximum principle...)
- **Tradeoffs w/ good geometric approximation*** -e.g., long & skinny might be "more efficient"

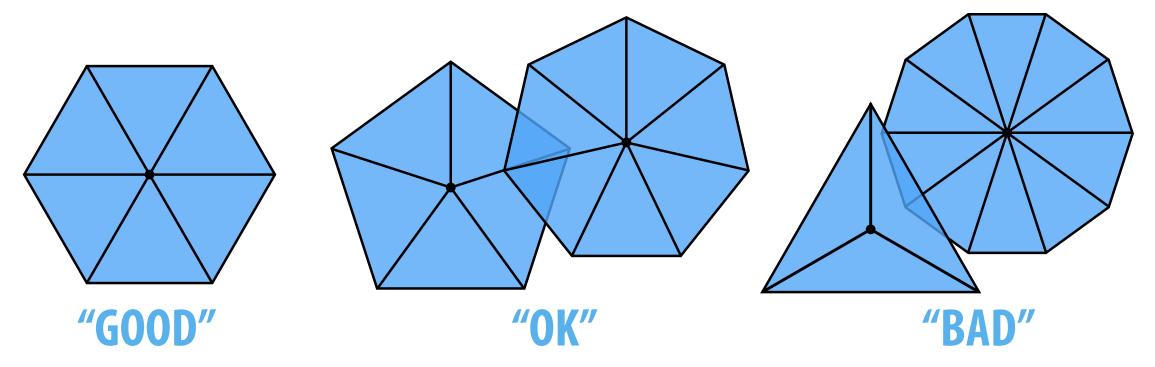
*see Shewchuk, "What is a Good Linear Element"

pronunciation:

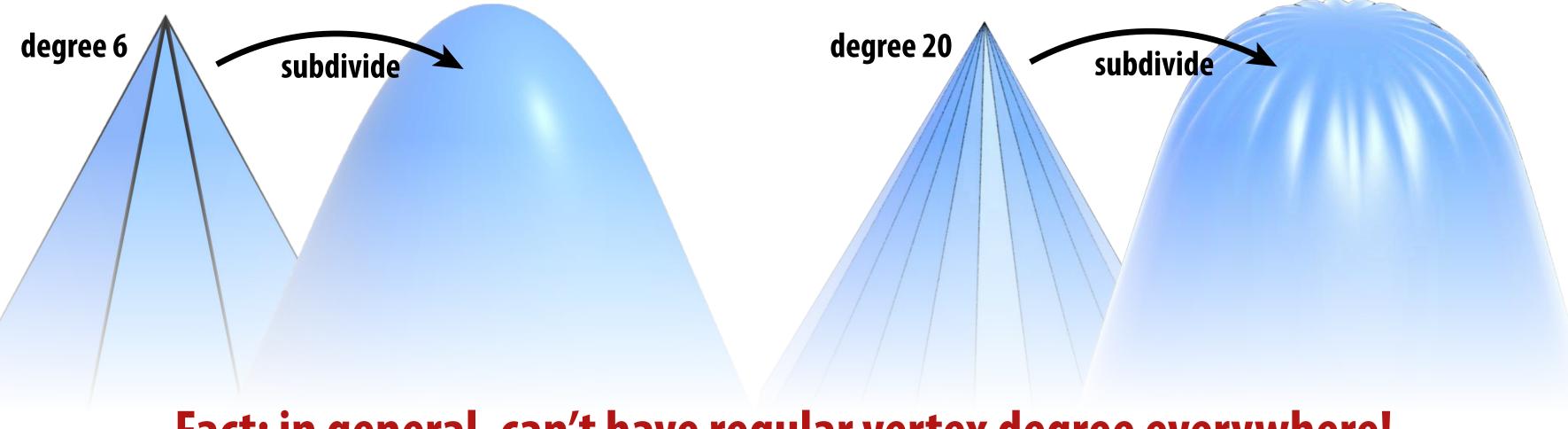


What else constitutes a "good" mesh?

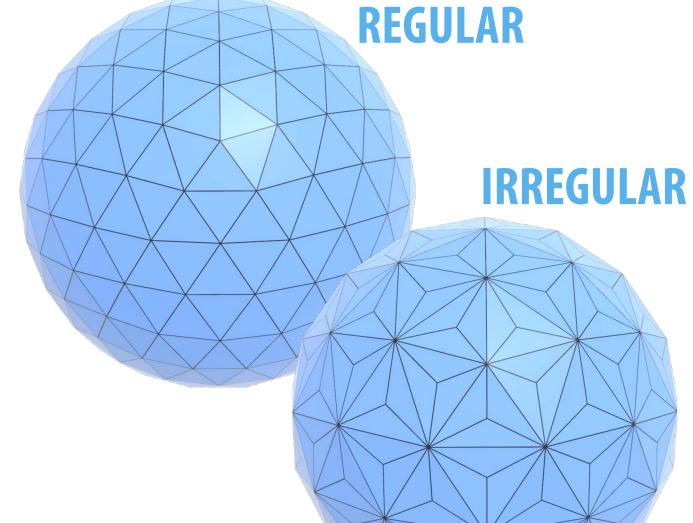
Another rule of thumb: regular vertex degree Degree 6 for triangle mesh, 4 for quad mesh



Why? Better polygon shape; more regular computation; smoother subdivision:



<u>Fact</u>: in general, can't have regular vertex degree everywhere!</u>

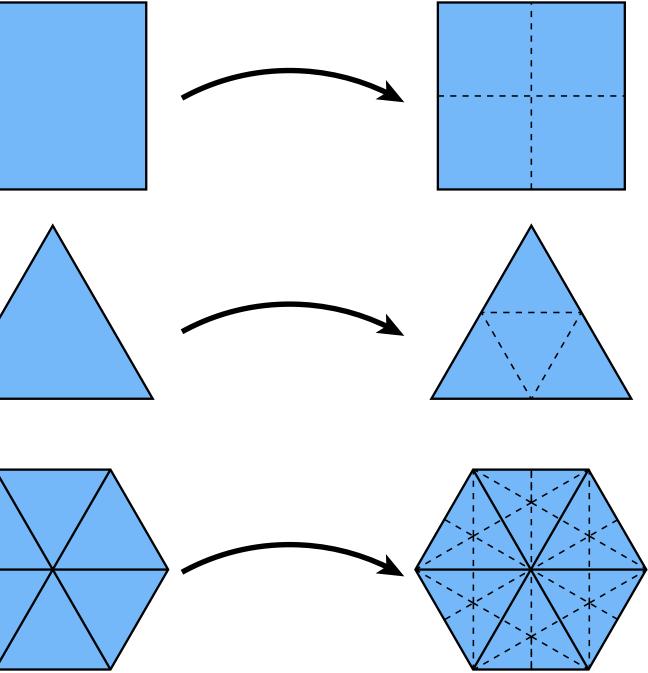


How do we upsample a mesh?

Upsampling via Subdivision

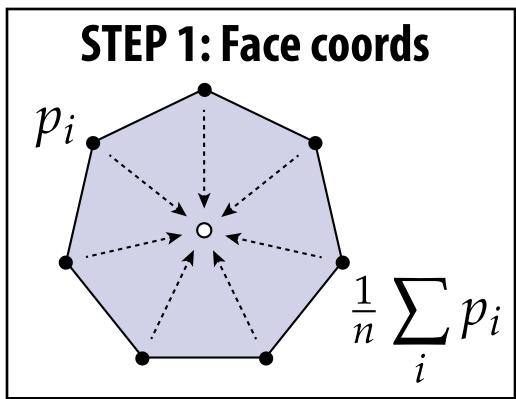
Repeatedly split each element into smaller pieces Replace vertex positions with weighted average of neighbors Main considerations:

- interpolating vs. approximating
- limit surface continuity ($C^1, C^2, ...$)
- behavior at irregular vertices
- Many options:
 - **Quad: Catmull-Clark**
 - Triangle: Loop, Butterfly, Sqrt(3)



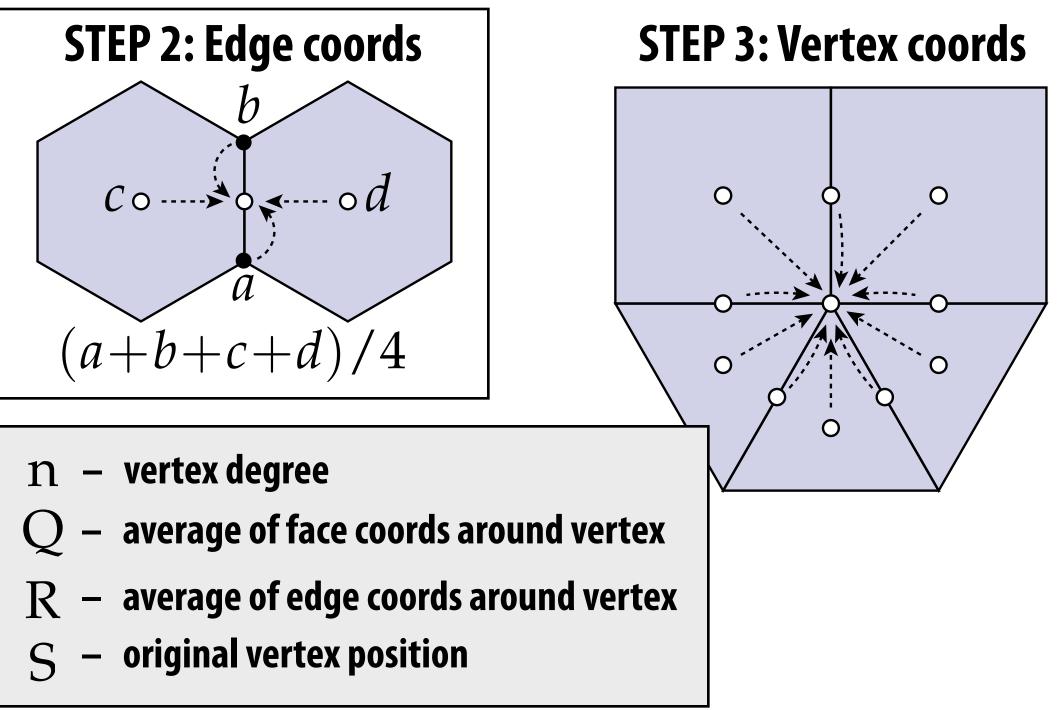
Catmull-Clark Subdivision

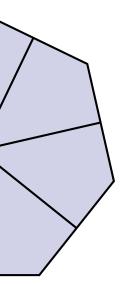
Step 0: split every polygon (any # of sides) into quadrilaterals:



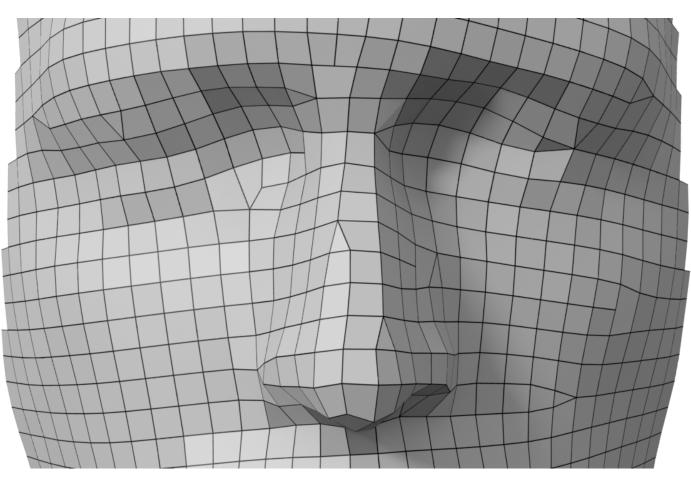
New vertex coords:

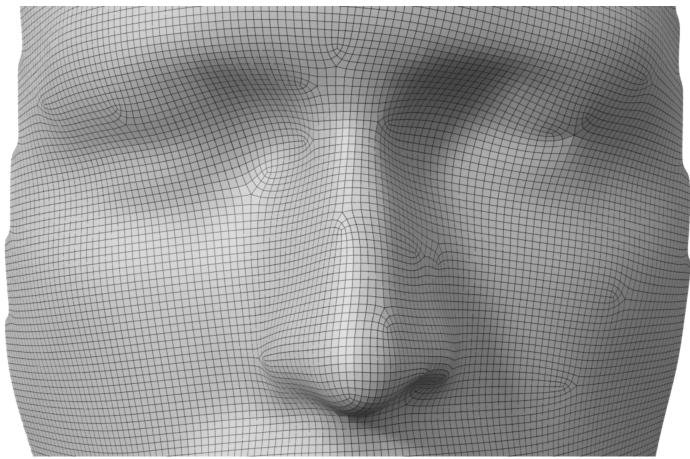
$$Q + 2R + (n - 3)S$$

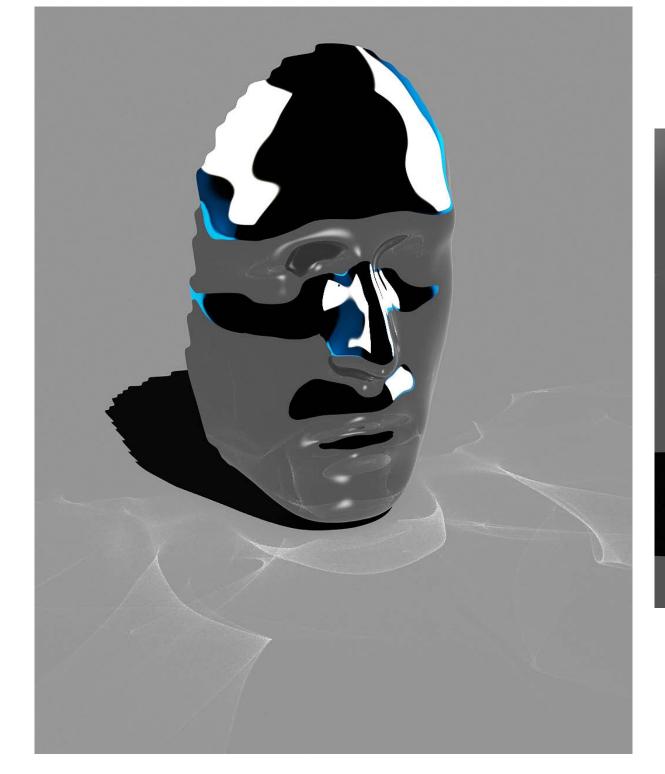


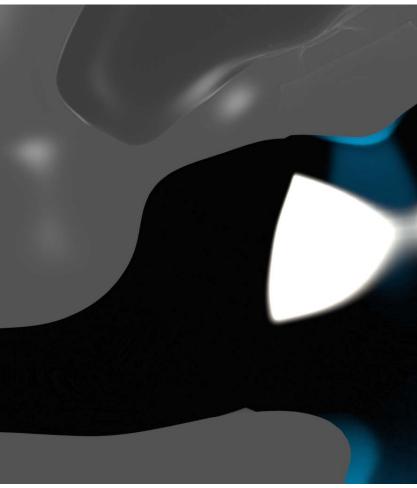


Catmull-Clark on quad mesh



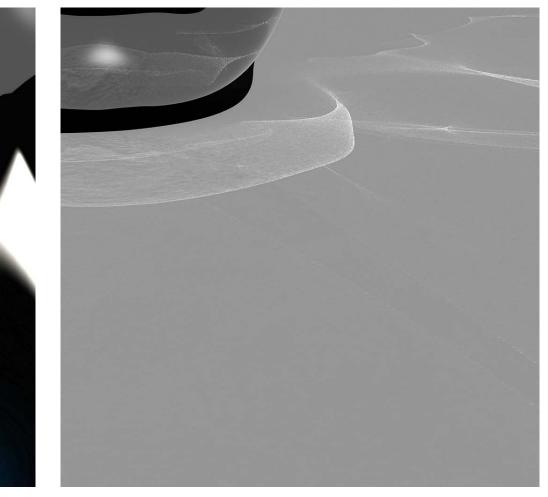






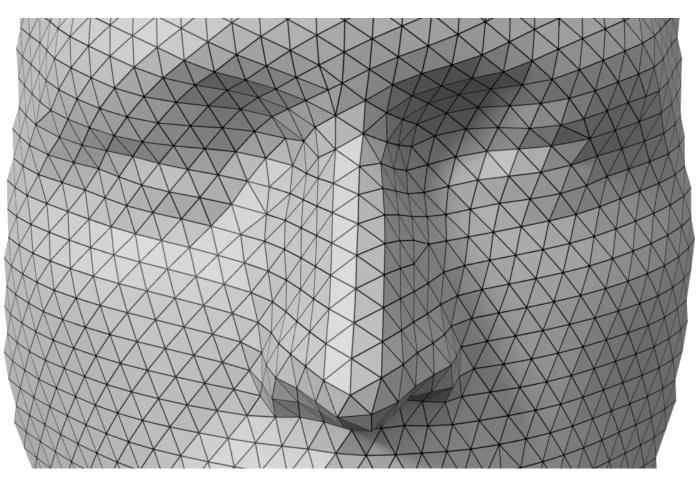
smooth reflection lines

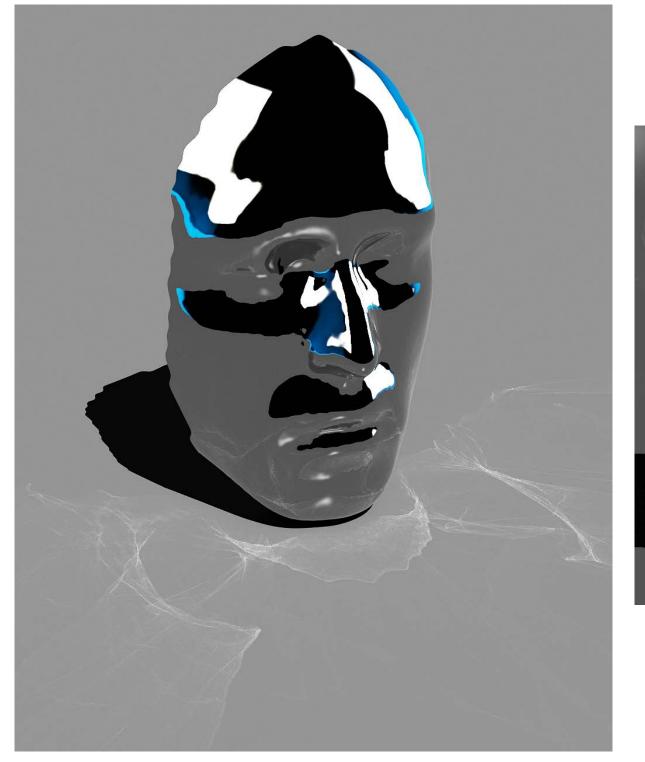
few irregular vertices ⇒ smoothly-varying surface normals

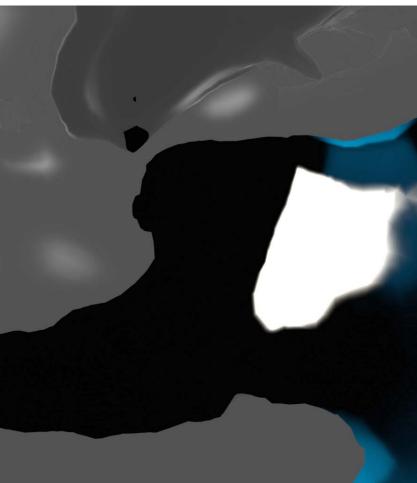


smooth caustics

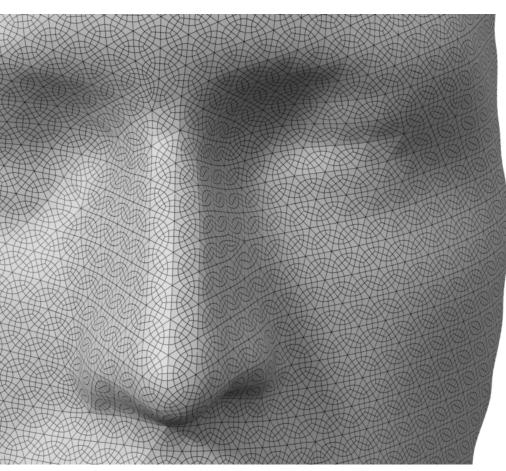
Catmull-Clark on triangle mesh



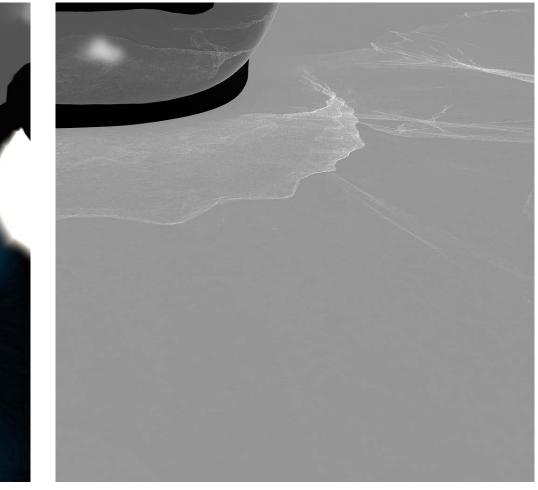




jagged reflection lines



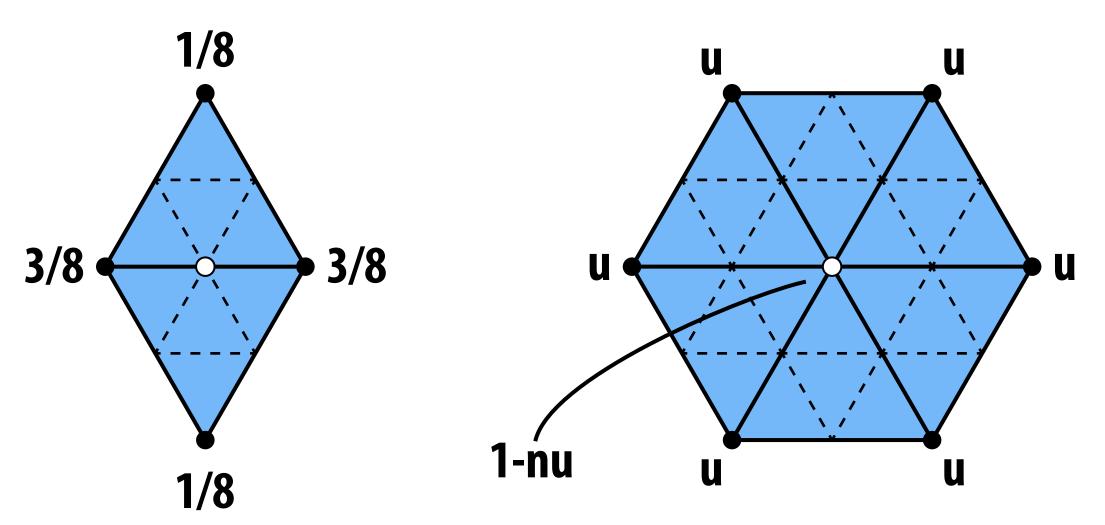
many irregular vertices \implies erratic surface normals

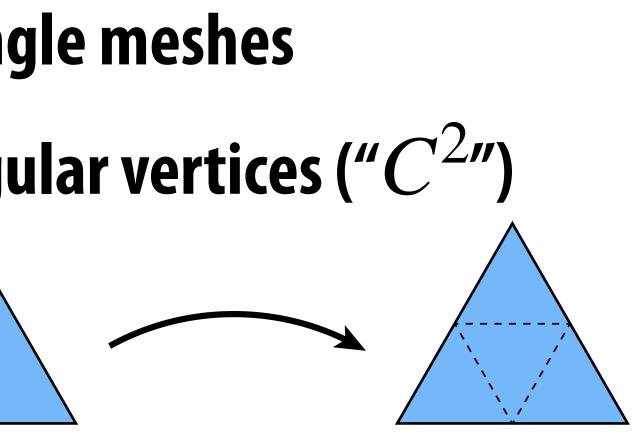


jagged caustics

Loop Subdivision

- **Alternative subdivision scheme for triangle meshes**
- Curvature is continuous away from irregular vertices (" C^{2} ")
- **Algorithm:**
 - Split each triangle into four
 - Assign new vertex positions according to weights:

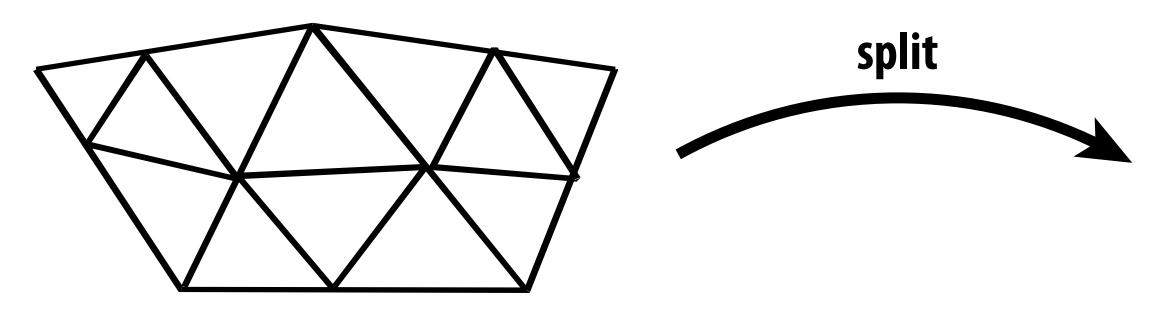




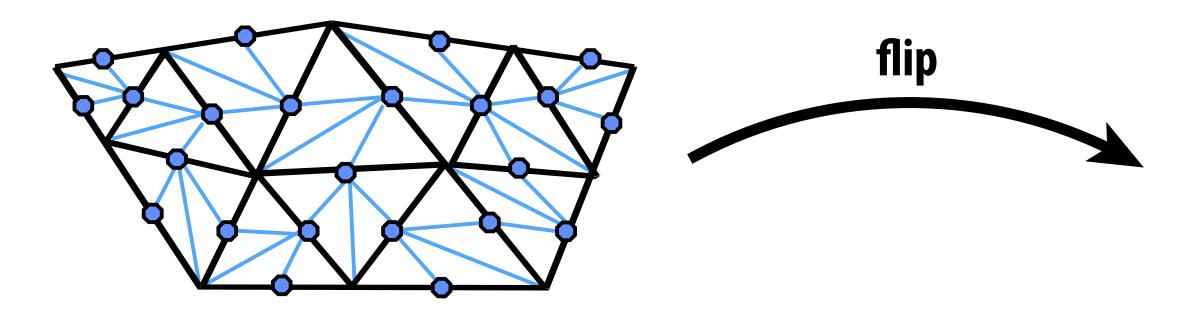
n: vertex degree u: 3/16 if n=3, 3/(8n) otherwise

Loop Subdivision via Edge Operations

First, split edges of original mesh in *any* order:

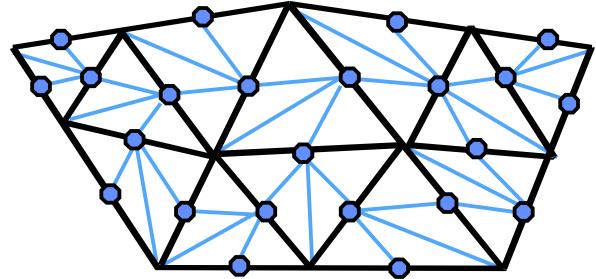


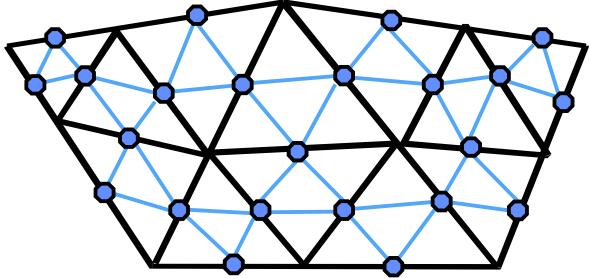
Next, flip new edges that touch a new & old vertex:



(Don't forget to update vertex positions!)

Images cribbed from Denis Zorin.





What if we want *fewer* triangles?

Simplification via Edge Collapse

- One popular scheme: iteratively collapse edges
- Greedy algorithm:
 - assign each edge a cost
 - collapse edge with least cost
 - repeat until target number of elements is reached
 - Particularly effective cost function: *quadric error metric**

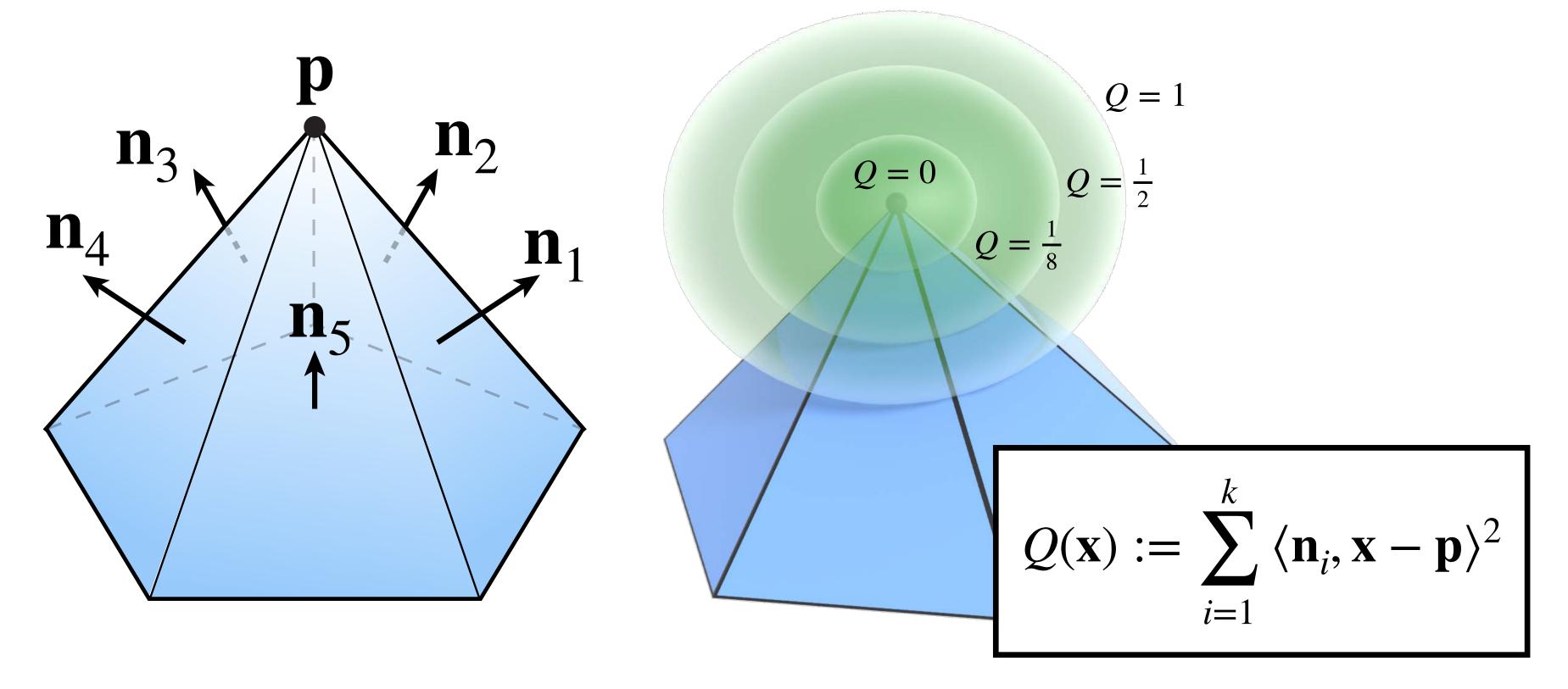
*invented at CMU (Garland & Heckbert 1997)

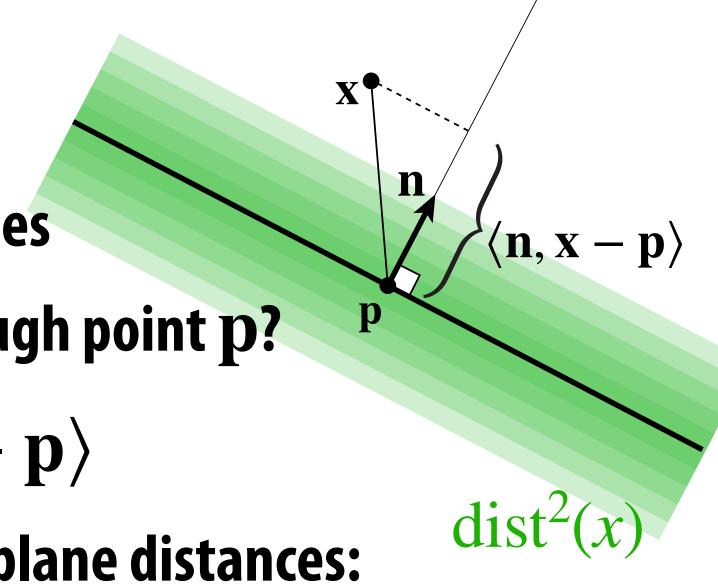
pse e edges

nts is reached d*ric error metric**

Quadric Error Metric

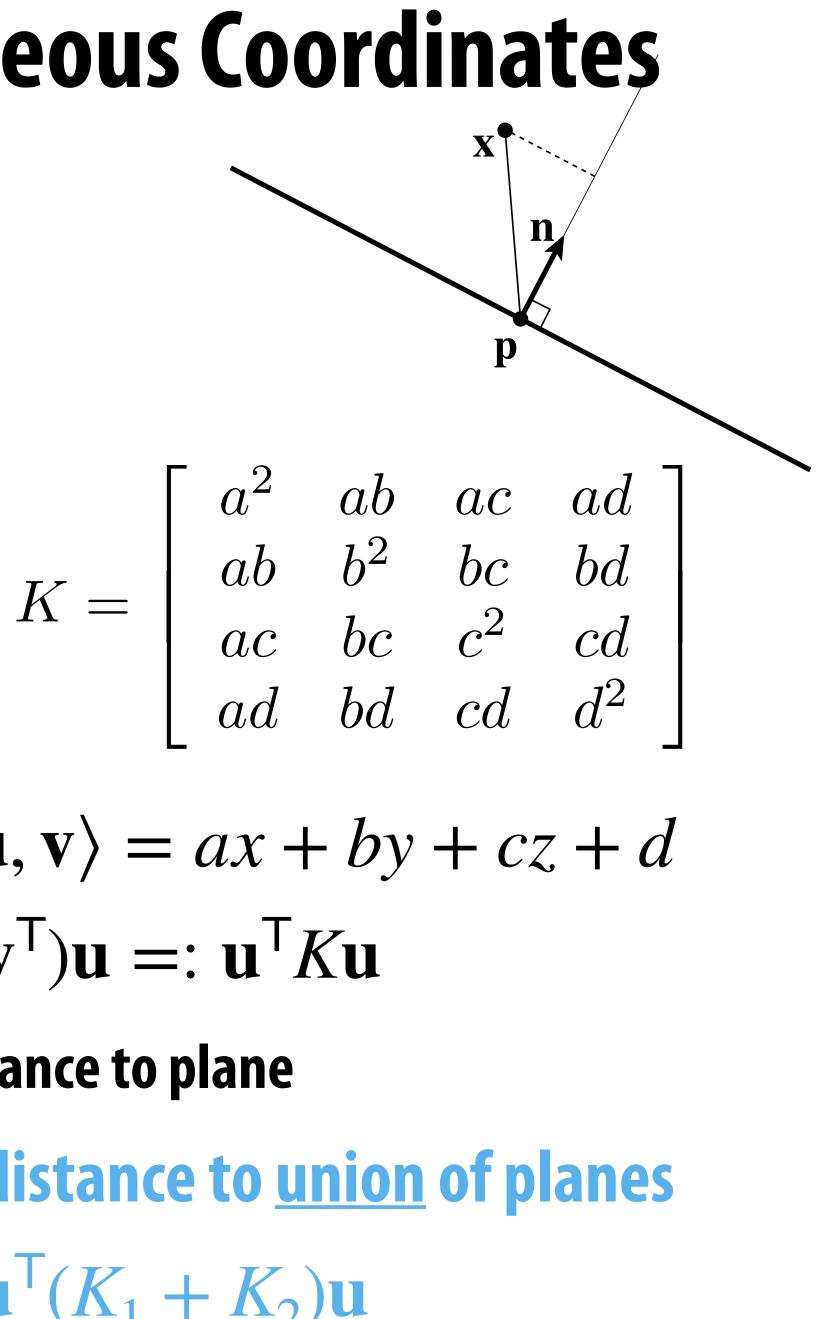
- Approximate distance to a collection of triangles
- Q: Distance to plane w/ normal n passing through point p?
- A: dist(x) = $\langle n, x \rangle \langle n, p \rangle = \langle n, x p \rangle$
- Quadric error is then sum of squared point-to-plane distances:





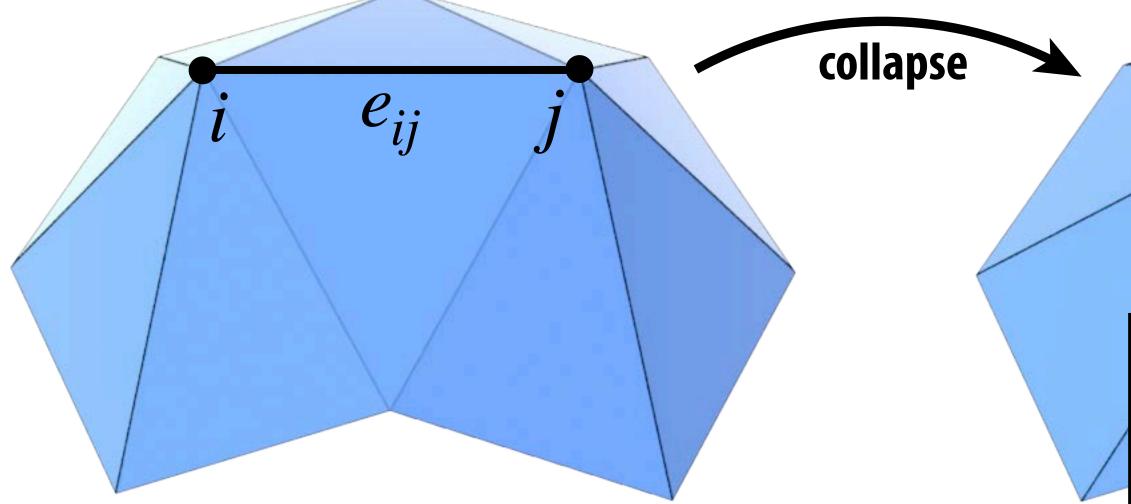
Quadric Error - Homogeneous Coordinates

- Suppose in coordinates we have
 - a query point $\mathbf{x} = (x, y, z)$
 - a normal $\mathbf{n} = (a, b, c)$
 - an offset $d := \langle \mathbf{n}, \mathbf{p} \rangle$
- In homogeneous coordinates, let
 - $\mathbf{u} := (x, y, z, 1)$
 - **v** := (a, b, c, d)
 - Signed distance to plane is then just $\langle \mathbf{u}, \mathbf{v} \rangle = ax + by + cz + d$
- Squared distance is $\langle \mathbf{u}, \mathbf{v} \rangle^2 = \mathbf{u}^{\mathsf{T}} (\mathbf{v} \mathbf{v}^{\mathsf{T}}) \mathbf{u} =: \mathbf{u}^{\mathsf{T}} K \mathbf{u}$
- Matrix $K = \mathbf{v}\mathbf{v}^T$ encodes squared distance to plane Key idea: <u>sum</u> of matrices $K \iff$ distance to <u>union</u> of planes $\mathbf{u}^T K_1 \mathbf{u} + \mathbf{u}^T K_2 \mathbf{u} = \mathbf{u}^T (K_1 + K_2) \mathbf{u}$



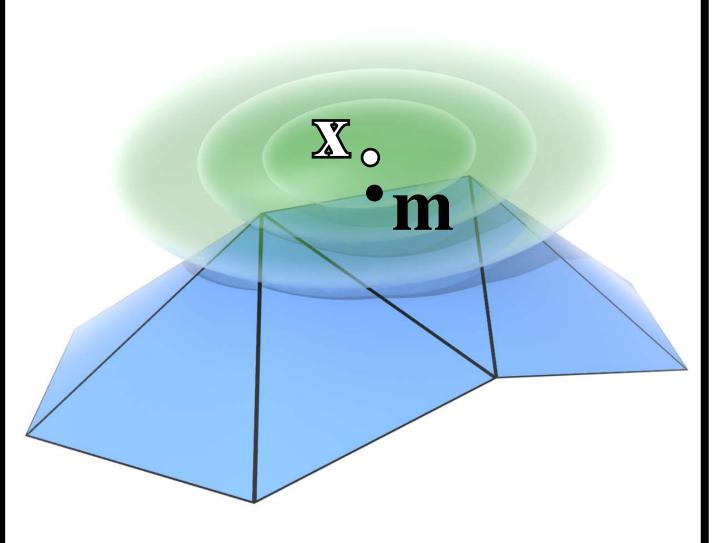
Quadric Error of Edge Collapse

- How much does it cost to collapse an edge e_{ij} ?
- Idea: compute midpoint m, measure error $Q(\mathbf{m}) = \mathbf{m}^{\mathsf{T}}(K_i + K_i)\mathbf{m}$
- **Error becomes "score" for** e_{ij} , **determining priority**



- Better idea: find point x that *minimizes error*!
- **Ok**, but how do we minimize quadric error?

m



Review: Minimizing a Quadratic Function

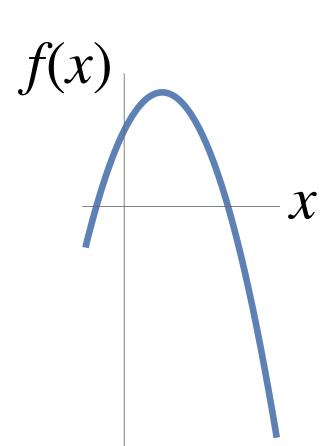
- Suppose you have a function $f(x) = ax^2 + bx + c$ Q: What does the graph of this function look like? **Could also look like this!**

- **Q: How do we find the** *minimum?*
- A: Find where the function looks "flat" if we zoom in really close
- I.e., find point x where 1st derivative vanishes:

f'(x) = 02ax + b = 0

$$x = -b/2a$$

(What does x describe for the second function?)



Minimizing Quadratic Polynomial

- Not much harder to minimize a quadratic polynomial in *n* variables
- Can always write in terms of a symmetric matrix A
- E.g., in 2D: $f(x, y) = ax^2 + bxy + cy^2 + dx + ey + g$

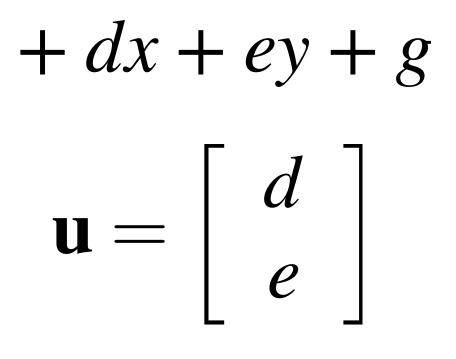
$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} \qquad A = \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix}$$

$f(x, y) = \mathbf{x}^{\mathsf{T}} A \mathbf{x} + \mathbf{u}^{\mathsf{T}} \mathbf{x} + g$

(will have this same form for any *n*)

Q: How do we find a critical point (min/max/saddle)? $2A\mathbf{x} + \mathbf{u} = 0$ **A: Set derivative to zero!**

(Can you show this is true, at least in 2D?)



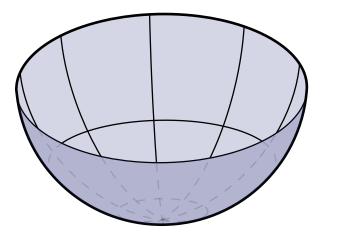
(compare with our 1D solution) $\mathbf{x} = -\frac{1}{2}A^{-1}\mathbf{u}$ x = -b/2a

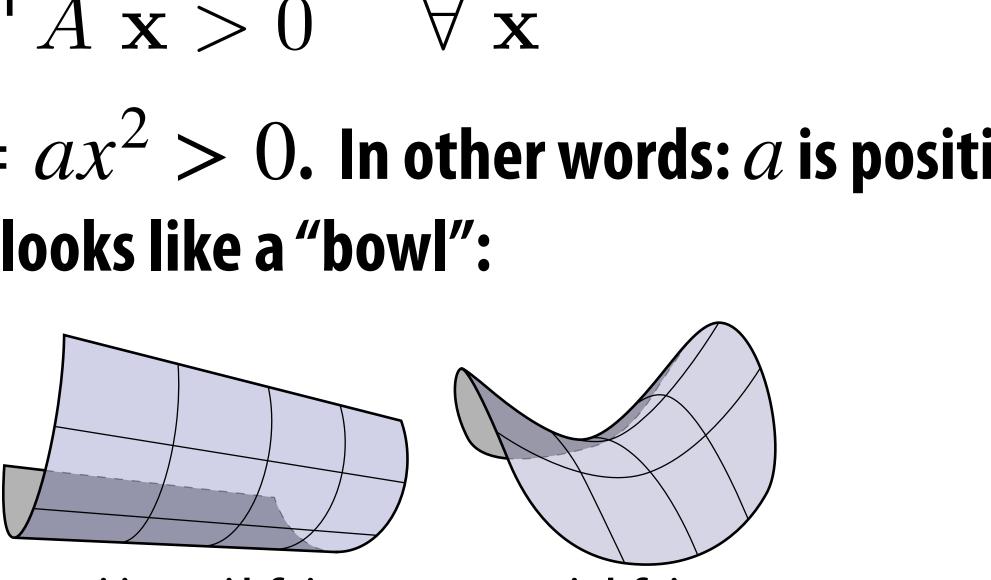
Positive Definite Quadratic Form

- Just like our 1D parabola, critical point is *not* always a min!
- Q: In 2D, 3D, nD, when do we get a *minimum*?
- A: When matrix A is *positive-definite*:

$$\mathbf{x}^{\mathsf{T}}A \mathbf{x} > 0 \quad \forall$$

1D: Must have $xax = ax^2 > 0$. In other words: *a* is positive! 2D: Graph of function looks like a "bowl":





positive definite

positive semidefinite

Positive-definiteness *extremely important* in computer graphics: means we can find minimizers by solving linear equations. Starting point for many algorithms (geometry processing, simulation, ...)

indefinite

Minimizing Quadric Error

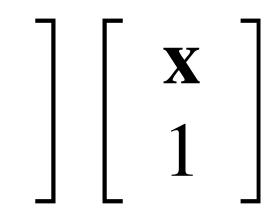
- Find "best" point for edge collapse by minimizing quadratic form min $\mathbf{u}^T K \mathbf{u}$ $\mathbf{u} \in \mathbb{R}^4$
- Already know fourth (homogeneous) coordinate for a point is 1 So, break up our quadratic function into two pieces:

$$\mathbf{x}^{\mathsf{T}} \quad 1 \quad] \begin{bmatrix} B & \mathbf{w} \\ \mathbf{w}^{\mathsf{T}} & d^2 \end{bmatrix}$$

 $= \mathbf{x}^{\mathsf{T}}B\mathbf{x} + 2\mathbf{w}^{\mathsf{T}}\mathbf{x} + d^2$

Now we have a quadratic polynomial in the unknown position $\mathbf{x} \in \mathbb{R}^3$ **Can minimize as before:**

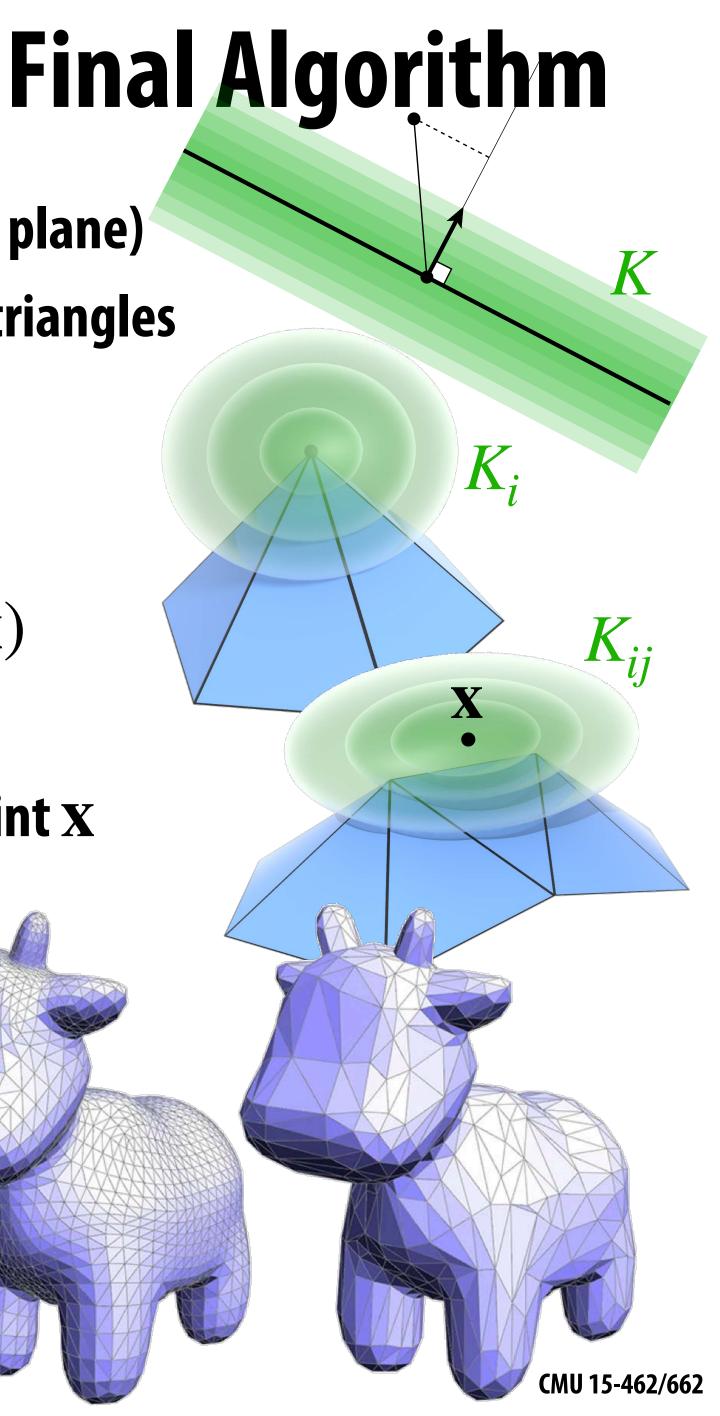
Q: Why should *B* be positive-definite?



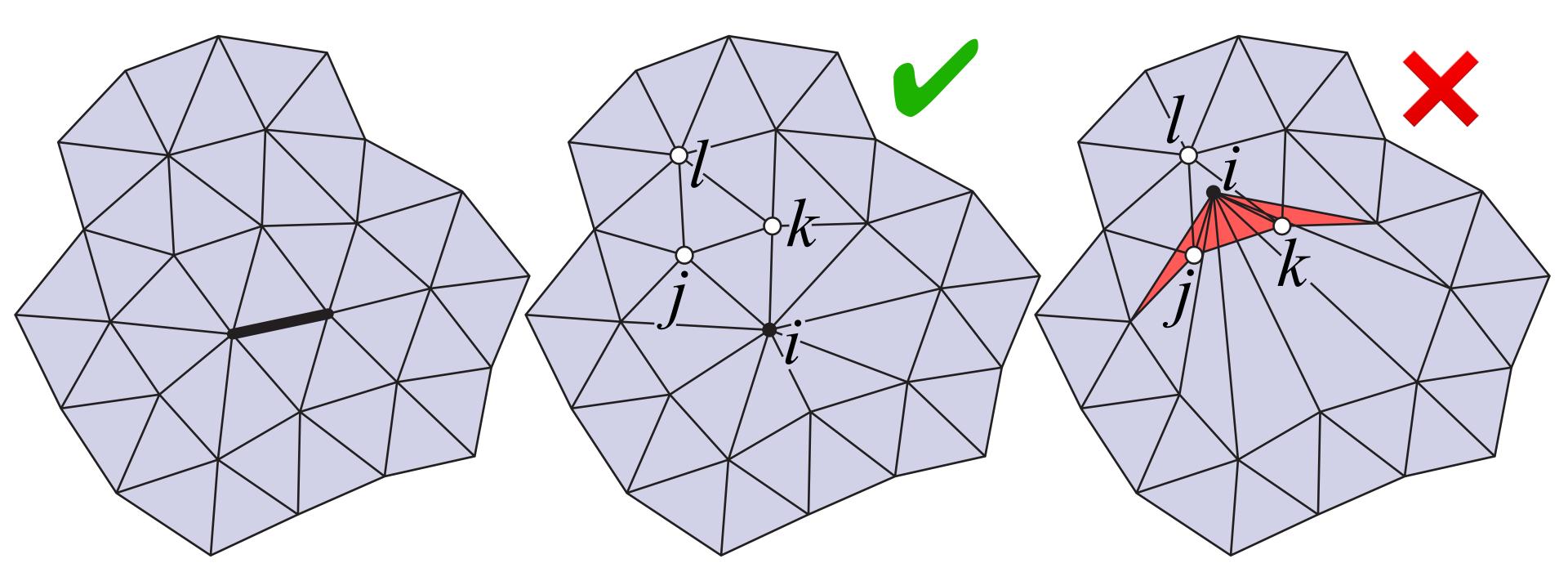
$\Rightarrow \qquad \mathbf{x} = -B^{-1}\mathbf{w}$

Quadric Error Simplification: Final Algorithm

- Compute K for each triangle (squared distance to plane)
- Set K_i at each vertex to sum of Ks from incident triangles
- For each edge e_{ij} :
 - set $K_{ij} = K_i + K_j$
 - find point **x** minimizing error, set cost to $K_{ij}(\mathbf{x})$
- Until we reach target number of triangles:
- collapse edge e_{ij} with smallest cost to optimal point ${f x}$
- set quadric at new vertex to K_{ii}
- update cost of edges touching new vertex
- More details in assignment writeup!



Quadric Simplification—Flipped Triangles Depending on where we put the new vertex, one of the new triangles might be "flipped" (normal points in instead of out):

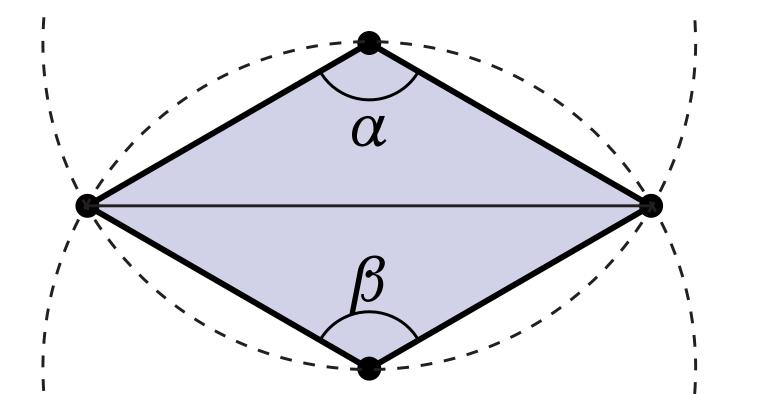


Easy solution: for each triangle *ijk* touching collapsed vertex *i*, consider normals N_{ijk} and N_{kjl} (where kjl is other triangle containing edge jk) • If $\langle N_{ijk}, N_{kjl} \rangle$ is negative, don't collapse this edge!

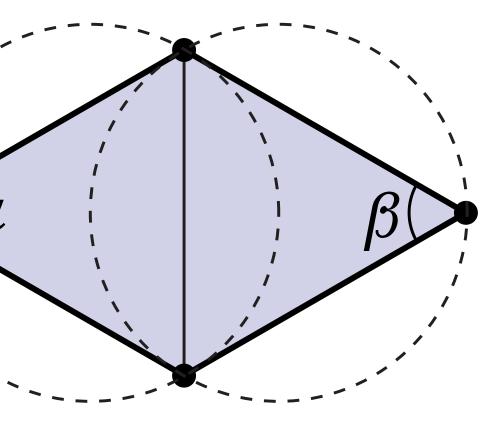
What if we're happy with the *number* of triangles, but want to improve *quality*?

How do we make a mesh "more Delaunay"?

- Already have a good tool: edge flips!
- If $\alpha + \beta > \pi$, flip it!



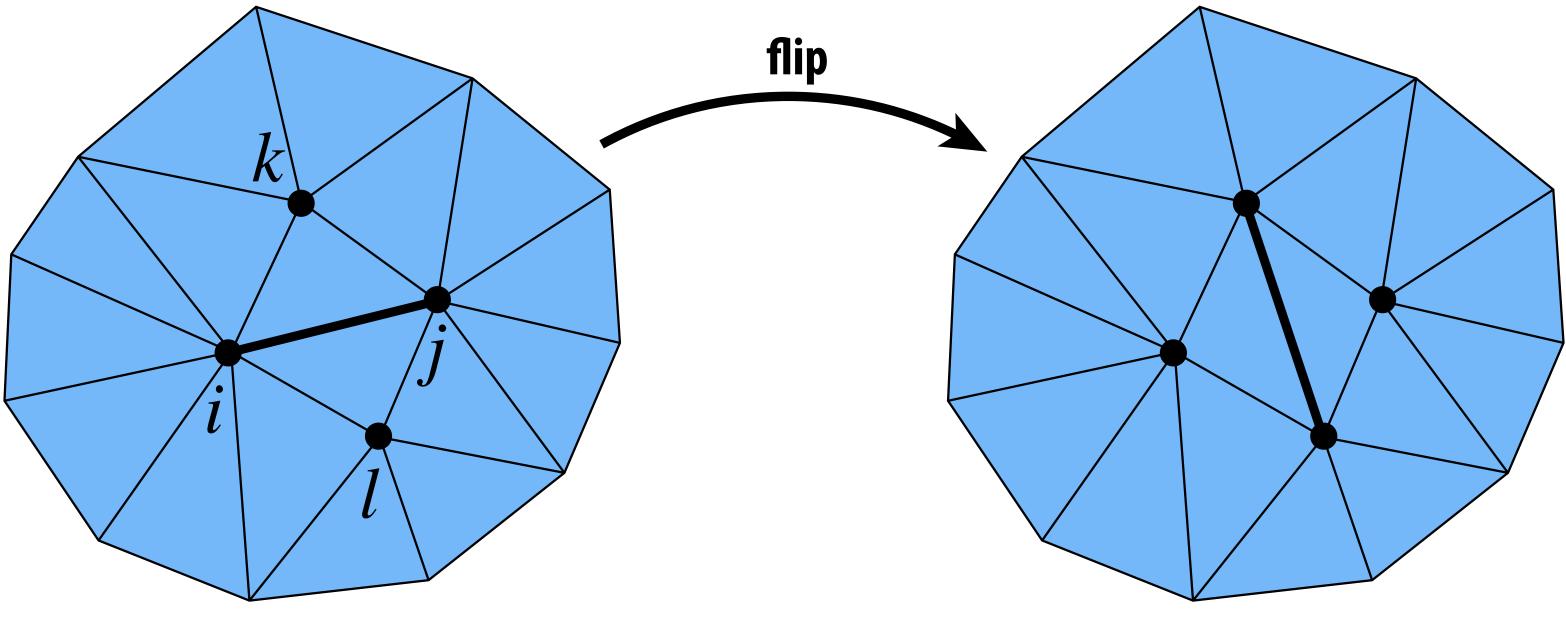
- FACT: in 2D, flipping edges eventually yields Delaunay mesh
- Theory: worst case $O(n^2)$; doesn't always work for surfaces in 3D
- Practice: simple, effective way to improve mesh quality



lds Delaunay mesh ys work for surfaces in 3D e mesh quality

Alternatively: how do we improve degree?

- Same tool: edge flips!
- If total deviation from degree-6 gets smaller, flip it!

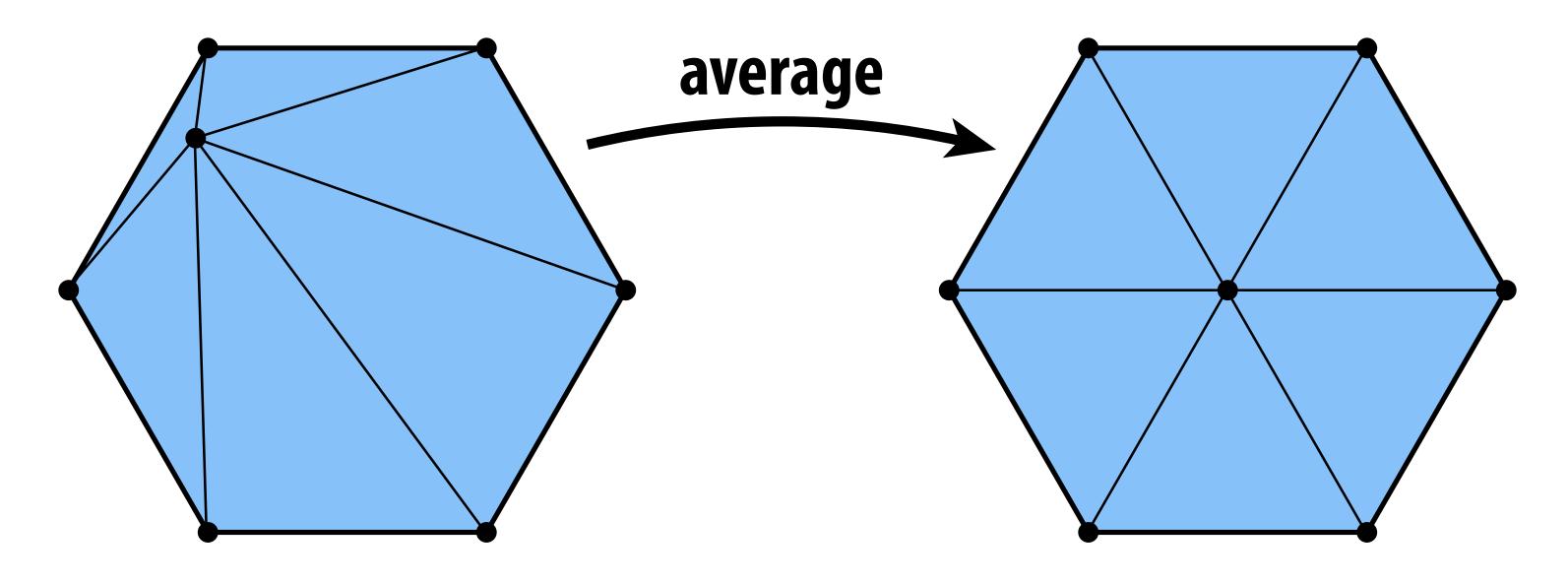


total deviation: $|d_i - 6| + |d_j - 6| + |d_k - 6| + |d_l - 6|$

- FACT: average degree approaches 6 as number of elements increases Iterative edge flipping acts like "discrete diffusion" of degree
- No (known) guarantees; works well in practice

How do we make a triangles "more round"?

- **Delaunay doesn't guarantee triangles are "round" (angles near 60°)**
- **Can often improve shape by centering vertices:**



- Simple version of technique called "Laplacian smoothing"
- On surface: move only in *tangent* direction
- How? Remove normal component from update vector

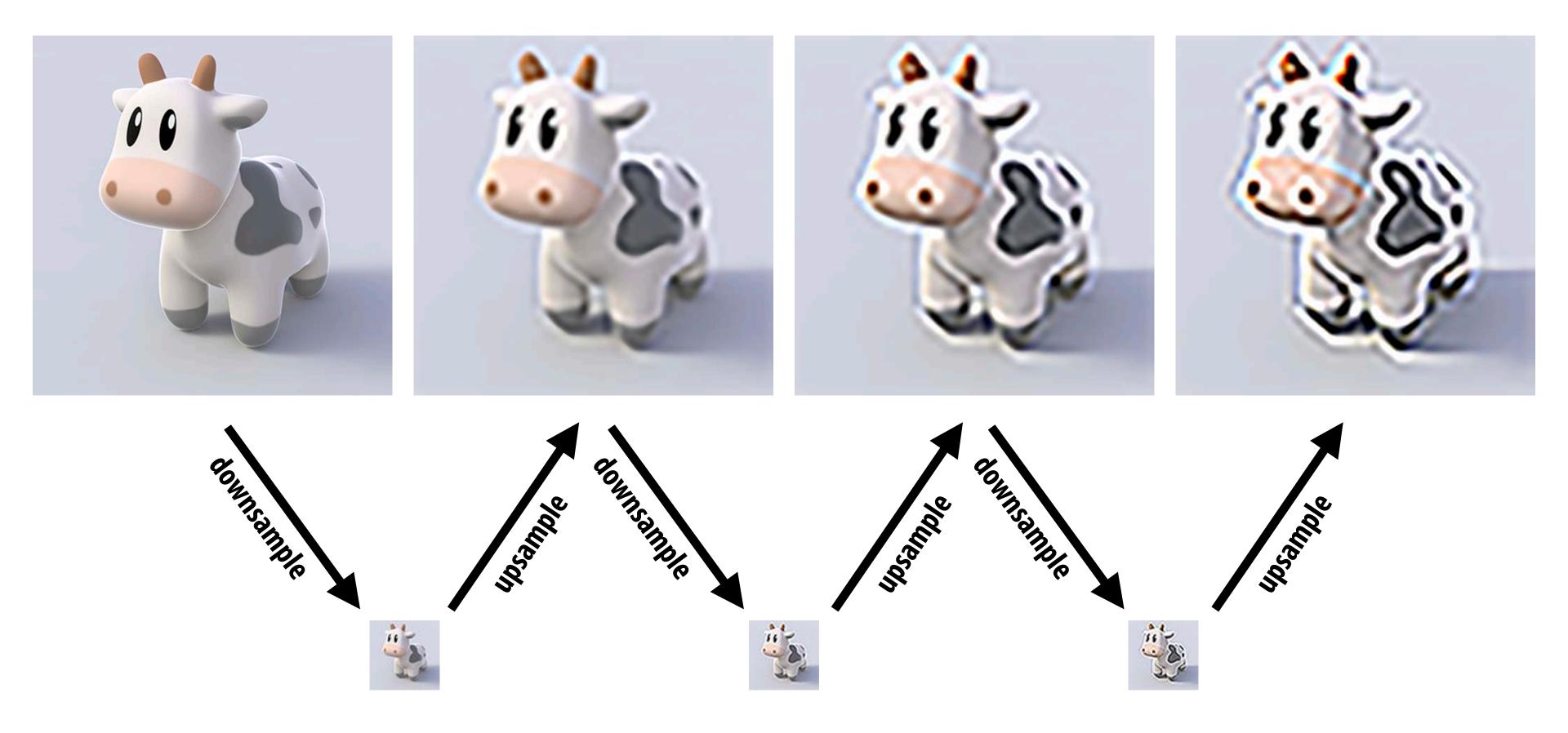
Isotropic Remeshing Algorithm

- Try to make triangles uniform shape & size
- **Repeat four steps:**
 - Split any edge over 4/3rds mean edge length
 - Collapse any edge less than 4/5ths mean edge length
 - Flip edges to improve vertex degree
 - Center vertices tangentially

Based on: Botsch & Kobbelt, "A Remeshing Approach to Multiresolution Modeling"

What can go wrong when you resample a signal?

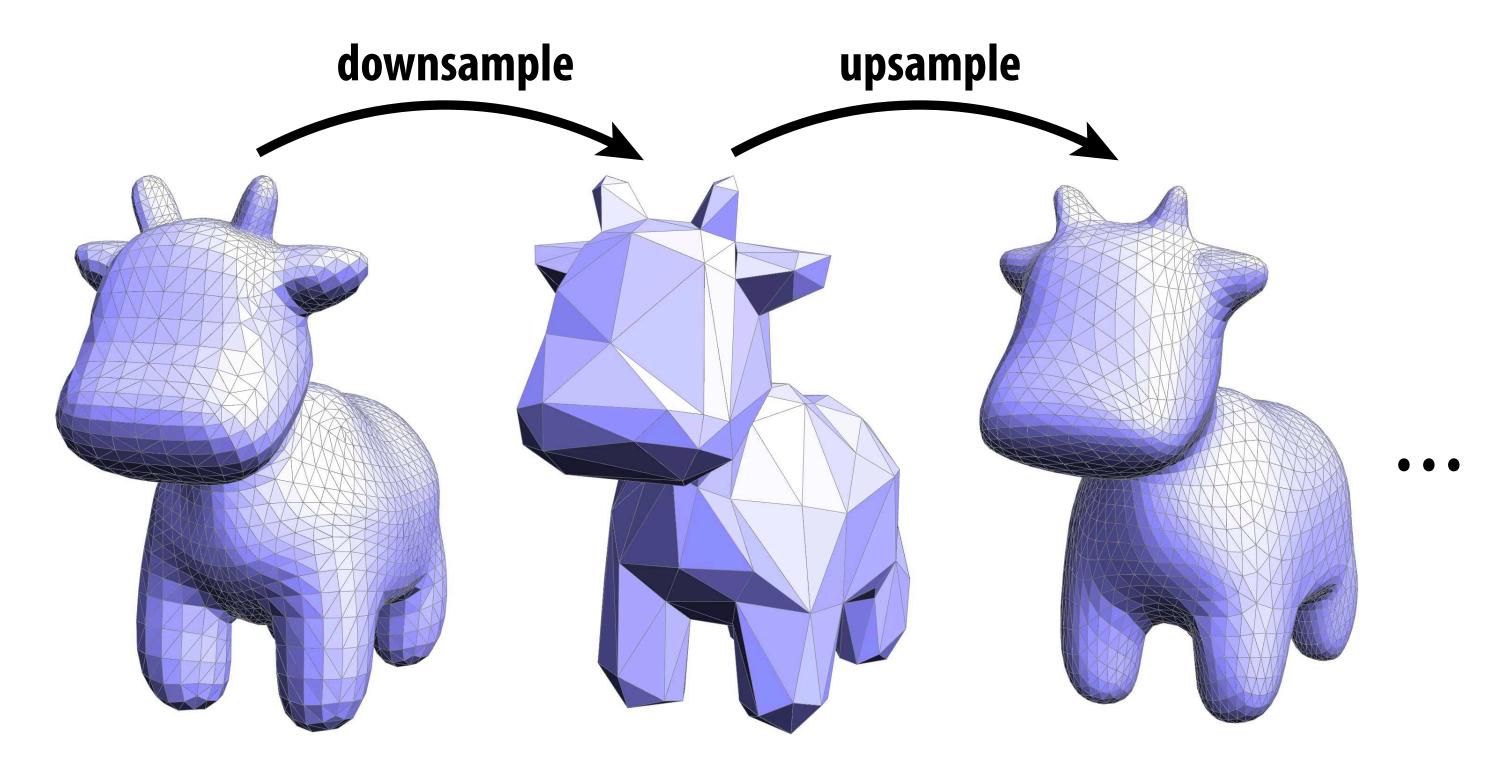
Danger of Resampling Q: What happens if we repeatedly resample an image?



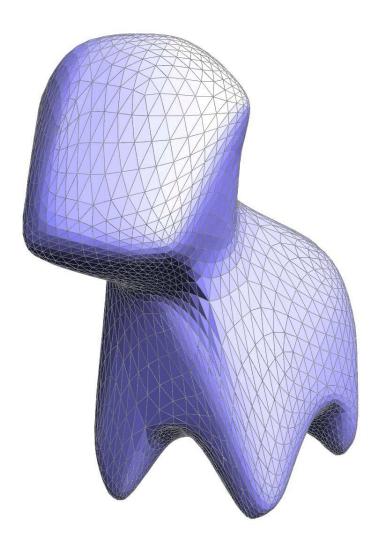
A: Signal quality degrades!

Danger of Resampling

Q: What happens if we repeatedly resample a mesh?



A: Signal also degrades!



But wait: we have the original signal (mesh). Why not just project each new sample point onto the closest point of the original mesh?

Next Time: Geometric Queries

- Q: Given a point, in space, how do we find the closest point on a surface? Are we inside or outside the surface? How do we find intersection of two triangles? Etc.
- Do implicit/explicit representations make such tasks easier?
- What's the cost of the naïve algorithm, and how do we <u>accelerate</u> such queries for large meshes?

