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Last time: overview of geometry
Many types of geometry in nature 
Demand sophisticated representations 
Two major categories: 
- IMPLICIT - “tests” if a point is in shape 
- EXPLICIT - directly “lists” points 
Lots of representations for both 
Today: 
- what is a surface, anyway? 
- nuts & bolts of polygon meshes 
- geometry processing / resampling

Geometry
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Manifold Assumption
Today we’re going to introduce the idea of manifold geometry 
Can be hard to understand motivation at first! 
So first, let’s revisit a more familiar example...

u

v



 CMU 15-462/662

Bitmap Images, Revisited
To encode images, we used a regular grid of pixels:
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But images are not fundamentally 
made of little squares:

Goyō Hashiguchi, Kamisuki (ca 1920)

photomicrograph of paint
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So why did we choose a square grid?

…rather than dozens of possible alternatives?
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Regular grids make life easy
One reason: SIMPLICITY / EFFICIENCY 
- E.g., always have four neighbors 
- Easy to index, easy to filter… 
- Storage is just a list of numbers 
Another reason: GENERALITY 
- Can encode basically any image 
Are regular grids always the best choice for bitmap images? 
- No!  E.g., suffer from anisotropy, don’t capture edges, ... 
- But more often than not are a pretty good choice 
Will see a similar story with geometry...

(i,j)(i-1,j) (i+1,j)

(i,j-1)

(i,j+1)
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So, how should we encode surfaces?



 CMU 15-462/662

Smooth Surfaces
Intuitively, a surface is the boundary or “shell” of an object 
(Think about the candy shell, not the chocolate.) 
Surfaces are manifold: 
- If you zoom in far enough, can draw a regular coordinate grid 
- E.g., the Earth from space vs. from the ground
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Isn’t every shape manifold?
No, for instance:

Can’t draw ordinary 2D grid at center, no matter how close we get.
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Examples—Manifold vs. Nonmanifold
Which of these shapes are manifold?

❌

❌

✔

✔

✔
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A manifold polygon mesh has fans, not fins
For polygonal surfaces just two easy conditions to check: 
1. Every edge is contained in only two polygons (no “fins”) 
2. The polygons containing each vertex make a single “fan”

NO

YES

NO

YES
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What about boundary?
The boundary is where the surface “ends.” 
E.g., waist & ankles on a pair of pants. 
Locally, looks like a half disk 
Globally, each boundary forms a loop 

Polygon mesh: 
- one polygon per boundary edge 
- boundary vertex looks like “pacman”

YES
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Ok, but why is the manifold 
assumption useful?
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Keep it Simple!
Same motivation as for images: 
- make some assumptions about our geometry to keep data 

structures/algorithms simple and efficient 
- in many common cases, doesn’t fundamentally limit what 

we can do with geometry

(i,j)(i-1,j) (i+1,j)

(i,j-1)

(i,j+1)
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How do we actually encode all this data?
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Warm up: storing numbers
Q: What data structures can we use to store a list of numbers? 
One idea: use an array (constant time lookup, coherent access) 

Alternative: use a linked list (linear lookup, incoherent access) 

Q: Why bother with the linked list? 
A: For one, we can easily insert numbers wherever we like...

1.7 2.9 0.3 7.5 9.2 4.8 6.0 0.1

1.7

2.9

0.3
7.5

9.2
4.8

6.0

0.1
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Polygon Soup
Most basic idea: 

- For each triangle, just store 
three coordinates 

- No other information about 
connectivity 

- Not much different from point 
cloud! (“Triangle cloud?”) 

Pros: 

- Really stupidly simple 

Cons: 

- Redundant storage 

- Hard to do much beyond simply 
drawing the mesh on screen 

- Need spatial data structures 
(later) to find neighbors

(x0,y0,z0)

(x1,y1,z1)

(x2,y2,z2)

(x3,y3,z3)

x0,y0,z0  x1,y1,z1  x3,y3,z3
x1,y1,z1  x2,y2,z2  x3,y3,z3
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Adjacency List (Array-like)
Store triples of coordinates (x,y,z), tuples of indices 
E.g., tetrahedron:

0

1

2

3

    x  y  z
0: -1 -1 -1
1:  1 -1  1
2:  1  1 -1
3: -1  1  1

VERTICES
i  j  k
0  2  1
0  3  2
3  0  1
3  1  2

POLYGONS

Q: How do we find all the polygons touching vertex 2? 
Ok, now consider a more complicated mesh: 

Very expensive to find the neighboring polygons!  (What’s the cost?) 

~1 billion polygons
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Incidence Matrices
If we want to know who our neighbors are, why not just store a list of 
neighbors? 

Can encode all neighbor information via incidence matrices 

E.g., tetrahedron:

e2

v0

v1

v2

v3

e0

e1

e3
e4

f0

f3

f1

f2

e5

  v0 v1 v2 v3
e0 1  1  0  0
e1 0  1  1  0
e2 1  0  1  0
e3 1  0  0  1
e4 0  0  1  1
e5 0  1  0  1

VERTEX⬌EDGE
  e0 e1 e2 e3 e4 e5
f0 1  0  0  1  0  1
f1 0  1  0  0  1  1
f2 1  1  1  0  0  0
f3 0  0  1  1  1  0

EDGE⬌FACE

1 means “touches”; 0 means “does not touch” 

Instead of storing lots of 0’s, use sparse matrices 

Still large storage cost, but finding neighbors is now O(1) 

Hard to change connectivity, since we used fixed indices 

Bonus feature: mesh does not have to be manifold
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Aside: Sparse Matrix Data Structures
Ok, but how do we actually store a “sparse matrix”? 

Lots of possible data structures: 

- Associative array from (row, column) to value

- easy to lookup/set entries, fast (e.g., hash table) 

- harder to do matrix operations (e.g., multiplication)

- Array of linked lists (one per row) 

- conceptually simple 

- slow access time, incoherent memory access 

- Compressed column format—pack entries in list 

- hard to add/modify entries 

- fast for actual matrix operations 

In practice: often build up entries using an “easier” data 
structure, convert to compressed format for computation

0
0 1 2

1
2

(0,0) -> 4
(0,1) -> 2
(1,2) -> 3
(2,1) -> 7

(row,col) val

(0,4) (1,2)

(2,3)

(1,7)

0:

1:

2:

(col,val)

row

(col,val)

4,2,7,3

0,0,2,1

1,3,4

values

row indices

cumulative
# entries
by column



Store some information about neighbors 
Don’t need an exhaustive list; just a few key pointers 
Key idea: two halfedges act as “glue” between mesh elements: 

Each vertex, edge face points to just one of its halfedges.
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Halfedge Data Structure (Linked-list-like)

H
a
l
f
e
d
g
e

twin

e
d
g
e

next

vertex

face

struct Halfedge
{
   Halfedge* twin;
   Halfedge* next;
   Vertex* vertex;
   Edge* edge;
   Face* face;
};

struct Vertex
{
   Halfedge* halfedge;
};

halfedge

vertex

struct Edge
{
   Halfedge* halfedge;
};ha

lf
ed
ge

ed
ge

struct Face
{
   Halfedge* halfedge;
};

ha
lf
ed
ge

Face



Use “twin” and “next” pointers to move around mesh 
Use “vertex”, “edge”, and “face” pointers to grab element 
Example: visit all vertices of a face: 

Example: visit all neighbors of a vertex: 

Note: only makes sense if mesh is manifold!
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Halfedge makes mesh traversal easy

ha
lf
ed
ge

next

next

Face

Halfedge* h = f->halfedge;
do {
   h = h->next;
   // do something w/ h->vertex
}
while( h != f->halfedge );

ha
lf
ed
ge

twin

twin

next

next
Vertex

Halfedge* h = v->halfedge;
do {
   h = h->twin->next;
}
while( h != v->halfedge );
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Halfedge connectivity is always manifold
Consider simplified halfedge data structure 
Require only “common-sense” conditions

struct Halfedge {
   Halfedge *next, *twin;
};

Keep following next, and you’ll get faces. 
Keep following twin and you’ll get edges. 
Keep following next->twin and you’ll get vertices.

Q: Why, therefore, is it impossible to encode the red figures?

twin->twin == this
twin != this
every he is someone’s “next”

(pointer to yourself!)



Connectivity vs. Geometry
Recall manifold conditions (fans not fins): 
- every edge contained in two faces 
- every vertex contained in one fan 

These conditions say nothing about vertex 
positions!  Just connectivity 

Hence, can have perfectly good (manifold) 
connectivity, even if geometry is awful  

In fact, sometimes you can have perfectly 
good manifold connectivity for which any 
vertex positions give “bad” geometry! 

Can lead to confusion when debugging: mesh 
looks “bad”, even though connectivity is fine

non manifold 
connectivity?

…or just a really 
skinny triangle?

same connectivity, 
random vertex positionscube (manifold)
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Halfedge meshes are easy to edit
Remember key feature of linked list: insert/delete elements 
Same story with halfedge mesh (“linked list on steroids”) 
E.g., for triangle meshes, several atomic operations:

b

c

a d

b

c

a d

!ip

b

m

c

a d

b

c

a d

split

a

b

c d

a

b

m

collapse

How?  Allocate/delete elements; reassigning pointers. 
Must be careful to preserve manifoldness!



 CMU 15-462/662

Edge Flip (Triangles)
Triangles (a,b,c), (b,d,c) become (a,d,c), (a,b,d): 

Long list of pointer reassignments (edge->halfedge = ...) 
However, no elements created/destroyed. 
Q: What happens if we flip twice? 
Challenge: can you implement edge flip such that pointers are 
unchanged after two flips?

b

c

a d

b

c

a d

!ip
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Edge Split (Triangles)
Insert midpoint m of edge (c,b), connect to get four triangles: 

This time, have to add new elements. 
Lots of pointer reassignments. 
Q: Can we “reverse” this operation?

b

m

c

a d

b

c

a d

split
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Edge Collapse (Triangles)
Replace edge (b,c) with a single vertex m: 

Now have to delete elements. 
Still lots of pointer assignments! 
Q: How would we implement this with an adjacency list? 
Any other good way to do it?  (E.g., different data structure?)

a

b

c d

a

b

m

collapse



Paul Heckbert (former CMU prof.) 
quadedge code - http://bit.ly/1QZLHosMany very similar data structures: 

- winged edge 

- corner table 

- quadedge 

- ... 
Each stores local neighborhood information 
Similar tradeoffs relative to simple polygon list: 

- CONS: additional storage, incoherent memory access 

- PROS: better access time for individual elements, intuitive 
traversal of local neighborhoods 

With some thought*, can design halfedge-type data structures with 
coherent data storage, support for non manifold connectivity, etc.
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Alternatives to Halfedge

*see for instance http://geometry-central.net/

http://geometry-central.net/
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Comparison of Polygon Mesh Data Strucutres

Adjacency List
Incidence 
Matrices Halfedge Mesh

constant-time 
neighborhood access? NO YES YES

easy to add/remove 
mesh elements? NO NO YES

nonmanifold 
geometry? YES YES NO

Conclusion: pick the right data structure for the job!
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Ok, but what can we actually do with our 
fancy new data structures?
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Subdivision Modeling
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Subdivision Modeling
Common modeling paradigm in modern 3D tools: 
- Coarse “control cage” 
- Perform local operations to control/edit shape 
- Global subdivision process determines final surface
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Subdivision Modeling—Local Operations
For general polygon meshes, we can dream up lots of local 
mesh operations that might be useful for modeling:

…and many, many more!
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Next Time: Digital Geometry Processing
Extend traditional digital signal processing (audio, video, etc.) 
to deal with geometric signals: 
- upsampling / downsampling / resampling / filtering ... 
- aliasing (reconstructed surface gives “false impression”)


