Meshes and Manifolds

Computer Graphics
(MU 15-462/15-662

Last time: overview of geometry

m Many types of geometry in nature Geometry
m Demand sophisticated representations |
m Two major categories:

- IMPLICIT - “tests” if a point is in shape
- EXPLICIT - directly “lists” points

m Lots of representations for both

m Today:
- what s a surface, anyway?

- nuts & bolts of polygon meshes

- geometry processing / resampling

(MU 15-462/662

Manifold Assumption

m Today we're going to introduce the idea of manifold geometry
m (an be hard to understand motivation at first!
m So first, let’s revisit a more familiar example...

(MU 15-462/662

Bitmap Images, Revisited

To encode images, we used a regular grid of pixels:

r

® File Edit Goodies Font FontSize Style &)
> = untitled
Q| G
L |/ (e,
) ‘M.\. -
- . = /
= .
» .':;E-‘ '.’S
@)
._x’w : A ;
" .
Yo, Sfs

o B B o o B N B O B B B N B S S
e
o o o O o o o o S S AN,
L o e o o o o o o o o o o o o e o o o o e o o o o o o o o o o e o e e o o o e o e o o e o e e e S S
B R R R R R R s

(MU 15-462/662

But images are not fundamentally
made of little squares:

Goyo Hashiguchi, Kamisuki (ca 1920)

TR, Ak IS § TP I e A 3
» 2% -*.." ."...\ S .-' “ NS Paxt . ,'; "‘.-
_» .“.‘ ~‘ %” ~...CY - . .o' ~
.~.‘ .'~ . & - ." ‘.1 ". e .‘ - .' ""\ .7» .
. ‘.o' * v, T I 'y Ao ’ \' "1 ho - ~ e

- » g - a . 0 » ey oL "

- Qo A "._ e N "‘. s "v.' ,. '.~ "i’

. > » “.l - o .‘o ’ ;.“ . 4 ’ &
™ MU LR Y B S a" e
4 o ’ s .'-' L v S T

2 G IR IR

> LR ".. ‘ .'. B (et " "‘~ ,. :.:' e

Pl o ol Lol A NER N ke B 5575
-’- :‘ : . “. .'. - .. .’. ’ \. d{ R > .'v
) s B Y o el : 4 »
%" ‘,’\7‘,, S S, ", " ‘ﬁ’ ~

. - v - ’
e r‘.‘. ~ "3 "‘. . ‘ ' 5 ." . .
: . . o \ - SEVE 5 s

LA s AT I Y
> o 3P L TR pea "0,
‘..’Q.“' ".d.o : .. ”..'t’ ‘.'-o._-.‘-‘. ’q

- - : '.v{ r v ?‘ '“‘ £ e .'
Bt L, Proa e, 3 5 & B9 . Y ’
. - ’ s < ; .' v«‘ -
‘ *n ’ A "?'~' ad o MR
Fs few o . ’.} ‘. ' N L ‘ .. \‘Q". ’. N |
» o b . "
L - . ‘.'.“‘i‘ . .. 'ts * .o. . -.
. | e " :l * » .‘. » ..,« ’ ’ |
> d " - . . .’0 " . ’ n
> ~ ’ . " P O~~’ a NV -~ .I, .
.'-‘ » 3 0 9 * »
- ‘. .- - A BT o . . ‘ u' ‘.

photomicrograph of paint

(MU 15-462/662

S0 why did we choose a square grid?

...rather than dozens of possible alternatives?

(MU 15-462/662

Reqular grids make life easy

m Onereason: SIMPLICITY / EFFICIENCY
- E.g., always have four neighbors
- Easy to index, easy to filter...
- Storageis just a list of numbers

m Another reason: GENERALITY
- (an encode basically any image

(ilj_l)

(i_llj)

(1,3)

(1+1,3)

(1,]+1)

m Are reqular grids always the best choice for bitmap images?

- No! E.g., suffer from anisotropy, don’t capture edges, ...

- But more often than not are a pretty good choice

m Will see asimilar story with geometry...

(MU 15-462/662

S0, how should we encode surfaces?

(MU 15-462/662

Smooth Surfaces
m Intuitively, a surface is the boundary or “shell” of an object

m (Think about the candy shell, not the chocolate.)

m Surfaces are manifold.
- If you zoom in far enough, can draw a reqular coordinate grid

- E.g., the Earth from space vs. from the ground

(MU 15-462/662

Isn’t every shape manifold?

m No, forinstance:

Can’t draw ordinary 2D grid at center, no matter how close we get.

(MU 15-462/662

Examples—Manifold vs. Nonmanifold

m Which of these shapes are manifold?

(MU 15-462/662

1. Every edge is contained in only two polygons (no “fins”)
2. The polygons containing each vertex make a single “fan”

YES

YES

A manifold polygon mesh has fans, not fins

m For polygonal surfaces just two easy conditions to check:

(MU 15-462/662

What about boundary?

m The boundary is where the surface “ends.”
m E.g., waist & ankles on a pair of pants.

m Locally, looks like a half disk

m Globally, each boundary forms a loop

V

e

m Polygon mesh:
- one polygon per boundary edge
- boundary vertex looks like “pacman”

(MU 15-462/662

Ok, but why is the manifold
assumption useful?

Keep it Simple!

m Same motivation as for images:

- make some assumptions about our geometry to keep data
structures/algorithms simple and efficient

- inmany common cases, doesn’t fundamentally limit what
we can do with geometry

(ilj_l)

(i_llj) (ilj) (i+1lj) ?

(1,j+1)

(MU 15-462/662

How do we actually encode all this data?

(MU 15-462/662

Warm up: storing numbers

m Q: What data structures can we use to store a list of numbers?
m Oneidea: use an array (constant time lookup, coherent access)

17]29]03[75]02 |48 60|01

m Alternative: use a linked list (linear lookup, incoherent access)
7] =R [
» /
-
l

m Q: Why bother with the linked list?
m A:Forone, we can easily insert numbers wherever we like...

(MU 15-462/662

Polygon Soup

m Mostbasicidea:

- For each triangle, just store
three coordinates

- No other information about
connectivity

- Not much different from point
cloud! (“Triangle cloud?”

m Pros:

(x0,y0,20)

- Really stupidly simple (x2,y2,22)

m (Cons:

- Redundant storage

(x3,¥3,23)

- Hard to do much beyond simply
drawing the mesh on screen

x0,y0,z0 'x1,yvl,zl1l x3,vy3,23

- Need spatial data structures xl,yl,21 x2,y2,22 x3,y3,23
(later) to find neighbors I

(MU 15-462/662

u T iy A ~

- -

memmmaneeT . w

T+ .01“&.&3.. b
2 1 4 ﬂm. TR ..u.ﬂﬁ”u.} W.T.H
I AT -;.n...ru.oj‘:_ﬂf.wimﬁni.rﬁ.t..ﬂ,
4 .Q.V..)b.bkl»ocaot..-v .QA.r‘O.b..HVoo r'
" AT LAY T IBRRERRS S S e
o » - ﬂ R WAV CEAREN| $.H. I e

1 Lt A T * AN

..
|
—

: Ll 11
'0|H|01A >t 7T
P

14
11

L

—d

.
~—-
.
.o :
)y * 4
4+ <..~ s
. . R
. , T
Al -
HHHH
¥ , memeny ™

?

! THY bt

4t et oor,H.
ooo+r.r0
bl

san URARAS

™

~1 billion polygons

tex 2

ST

ing ver

WV
—
<
‘T AN ™M O
=
(=
Q.

,¥,2), tuples of indices

Z
-1
1
1
1

VERTICES
y
-1
1
1
1

X
-1
1
1
1

0
1
2
3

der a more complicated mesh

, NOW consi

iples of coordinates (x
How do we find all the polygons touch

g., tetrahedron

m E
m Q
m Ok

Adjacency List (Array-like)

m Storetr

(MU 15-462/662

Very expensive to find the neighboring polygons! (What’s the cost?)

Incidence Matrices

m [f we want to know who our neighbors are, why not just store a list of
neighbors?

m (anencode all neighbor information via incidence matrices

B E,g,,tetrahedron; VERTEX = EDGE EDGE~FACE
vO vl v2 v3 el el e2 e3 e4
e0 1 1 0 O £fO01 O O 1 O
el 0 1 1 £1 0 1 O O 1
e21 0 1 O £2 1 1 1 0 O
e3 1 0 0 1 £330 0 1 1 1
ed 0 0 1 1
e5 0 1 0 1

m 1 means“touches”: 0 means “does not touch”

m Instead of storing lots of 0’s, use sparse matrices
m Still large storage cost, but finding neighbors is now 0(1) .
m Hard to change connectivity, since we used fixed indices

m Bonus feature: mesh does not have to be manifold

(MU 15-462/662

Aside: Sparse Matrix Data Structures -

4 2 0
m Ok, but how do we actually store a “sparse matrix”? 0O 0 3
m Lots of possible data structures: 070
- Associative array from (row, column) tovalue
- easy to lookup/set entries, fast (e.g., hash table) 2 8 (1) ; :i g
- harder to do matrix operations (e.g., multiplication) 2 ; i ; :i 3
- Array of linked lists (one per row)
- conceptually simple (0,4) —» |(1,2)
- slow access time, incoherent memory access (2/3)
- Compressed column format—pack entries in list)
- hard to add/modify entries 212,743
- fast for actual matrix operations 0,9,2,1
1,3,4

m In practice: often build up entries using an “easier” data
structure, convert to compressed format for computation

(MU 15-462/662

Halfedge Data Structure (Linked-list-like)

m Store some information about neighbors

m Don't need an exhaustive list; just a few key pointers

m Keyidea: two halfedges act as “glue” between mesh elements:

struct Halfedge

{
Halfedge* twin;
Halfedge* next;
Vertex* vertex;

Edge* edge;
Face* face;
L& next

face

vertex

Halfedge
edge
r'.
g
|_|
5

struct Edge

Hal fedge

* halfedge;

struct Face

{
Halfedge* halfedge;

};

halfedge

vertex

struct Vertex

{
};

Halfedge* halfedge;

m Each vertex, edge face points to just one of its halfedges.

CMU 15-462/662

Halfedge makes mesh traversal easy

m Use“twin” and “next” pointers to move around mesh

/]

m Use“vertex’, “edge”, and “face” pointers to grab element

m Example: visit all vertices of a face:

Halfedge* h = f->halfedge;
do {

h = h->next;

// do something w/ h->vertex

}
while(h != f->halfedge);

m Example: visit all neighbors of a vertex:

next
Halfedge* h = v->halfedge; /,////)>

do { twin
h -_— h—>tWin—>neXt ; vertex ext

halfedge \

}
while(h != v->halfedge);

m Note: only makes sense if mesh is manifold!

(MU 15-462/662

Halfedge connectivity is always manifold

m Consider simplified halfedge data structure
(pointer to yourself!)

m Require only “common-sense” conditions

struct Halfedge { twin->twin == this
Halfedge *next, *twin; twin != this
}; every he 1is someone’s “next”

m Keep following next, and you'll get faces.
m Keep following twin and you'll get edges.
m Keep following next->twin and you'll get vertices.

ik

Q: Why, therefore, is it impossible to encode the red figures?

(MU 15-462/662

Connectivity vs. Geometry

m Recall manifold conditions (fans not fins):
- every edge contained in two faces
- every vertex contained in one fan

m These conditions say nothing about vertex
positions! Just connectivity

m Hence, can have perfectly good (manifold)
connectivity, even if geometry is awful

m Infact, sometimes you can have perfectly
good manifold connectivity for which any
vertex positions give “bad” geometry!

m (Can lead to confusion when debugging: mesh

looks “bad”, even though connectivity is fine

l

i

Halfedge meshes are easy to edit

m Remember key feature of linked list: insert/delete elements
m Same story with halfedge mesh (“linked list on steroids”)
m E.g., for triangle meshes, several atomic operations:

c /ﬂl'k c

- 4 P

b

a

m How? Allocate/delete elements; reassigning pointers.

m Must be careful to preserve manifoldness!

(MU 15-462/662

Edge Flip (Triangles)

m Triangles (a,b,¢), (b,d,c) become (a,d,c), (a,b,d):

< flip

a d a d
b b

Long list of pointer reassignments (edge->halfedge = ...)

However, no elements created/destroyed.
Q: What happens if we flip twice?

Challenge: can you implement edge flip such that pointers are
unchanged after two flips?

(MU 15-462/662

Edge Split (Triangles)

m Insert midpoint m of edge (¢,b), connect to get four triangles:

split <

m This time, have to add new elements.
m Lots of pointer reassignments.
m (Q: Can we“reverse” this operation?

(MU 15-462/662

Edge Collapse (Triangles)

m Replace edge (b,c) with a single vertex m:

collapse

7

C e |
b

Now have to delete elements.

Still lots of pointer assignments!

Q: How would we implement this with an adjacency list?
Any other good way to do it? (E.g., different data structure?)

CMU 15-462/662

m Many very similar data structures:

Alternatives to Halfedge

Paul Heckbert (former CMU prof.)
quadedge code - http://bit.ly/1QZLHos

- winged edge ot | .
- corner table ° %
- quadedge -

= eee Wenke Cubv,eod'

dodec <> 10S

Each stores local neighborhood information
Similar tradeoffs relative to simple polygon list:
- (CONS: additional storage, incoherent memory access

- PROS: better access time for individual elements, intuitive
traversal of local neighborhoods

With some thought*, can design halfedge-type data structures with
coherent data storage, support for non manitold connectivity, etc.

(MU 15-462/662

http://geometry-central.net/

Comparison of Polygon Mesh Data Strucutres

: : Incidence
Adjacency List . Halfedge Mesh
Matrices
constant-time
neighborhood access? NO 13 13
easy to add/remove NO NO YES
mesh elements?
nonmanifold YES YES NO
geometry?

(MU 15-462/662

Ok, but what can we actually do with our
fancy new data structures?

~N
O
O
S~
(o]
O
hd
L
1
-
=
J

ing

ion Modeli

IVIS

Subd

Subdivision Modeling

m Common modeling paradigm in modern 3D tools:
- Coarse “control cage”
- Perform local operations to control/edit shape
- Global subdivision process determines final surface

CMU 15-462/662

Subdivision Modeling—Local Operations

m For general olygon meshes, we can dream up lots of local
mes opera ions that mlght be useful for modeling:

@ llllll ANd e

...and many, many more!

(MU 15-462/662

Next Time: Digital Geometry Processing

m Extend traditional digital signal processing (audio, video, etc.
to deal with geometric signals:

upsampling / downsampling / resampling / filtering ...

- aliasing (reconstructed surface gives “false impression”)

(MU 15-462/662

