
Computer Graphics
CMU 15-462/15-662

Meshes and Manifolds

 CMU 15-462/662

Last time: overview of geometry
Many types of geometry in nature
Demand sophisticated representations
Two major categories:
- IMPLICIT - “tests” if a point is in shape
- EXPLICIT - directly “lists” points
Lots of representations for both
Today:
- what is a surface, anyway?
- nuts & bolts of polygon meshes
- geometry processing / resampling

Geometry

 CMU 15-462/662

Manifold Assumption
Today we’re going to introduce the idea of manifold geometry
Can be hard to understand motivation at first!
So first, let’s revisit a more familiar example...

u

v

 CMU 15-462/662

Bitmap Images, Revisited
To encode images, we used a regular grid of pixels:

 CMU 15-462/662

But images are not fundamentally
made of little squares:

Goyō Hashiguchi, Kamisuki (ca 1920)

photomicrograph of paint

 CMU 15-462/662

So why did we choose a square grid?

…rather than dozens of possible alternatives?

 CMU 15-462/662

Regular grids make life easy
One reason: SIMPLICITY / EFFICIENCY
- E.g., always have four neighbors
- Easy to index, easy to filter…
- Storage is just a list of numbers
Another reason: GENERALITY
- Can encode basically any image
Are regular grids always the best choice for bitmap images?
- No! E.g., suffer from anisotropy, don’t capture edges, ...
- But more often than not are a pretty good choice
Will see a similar story with geometry...

(i,j)(i-1,j) (i+1,j)

(i,j-1)

(i,j+1)

 CMU 15-462/662

So, how should we encode surfaces?

 CMU 15-462/662

Smooth Surfaces
Intuitively, a surface is the boundary or “shell” of an object
(Think about the candy shell, not the chocolate.)
Surfaces are manifold:
- If you zoom in far enough, can draw a regular coordinate grid
- E.g., the Earth from space vs. from the ground

 CMU 15-462/662

Isn’t every shape manifold?
No, for instance:

Can’t draw ordinary 2D grid at center, no matter how close we get.

 CMU 15-462/662

Examples—Manifold vs. Nonmanifold
Which of these shapes are manifold?

❌

❌

✔

✔

✔

 CMU 15-462/662

A manifold polygon mesh has fans, not fins
For polygonal surfaces just two easy conditions to check:
1. Every edge is contained in only two polygons (no “fins”)
2. The polygons containing each vertex make a single “fan”

NO

YES

NO

YES

 CMU 15-462/662

What about boundary?
The boundary is where the surface “ends.”
E.g., waist & ankles on a pair of pants.
Locally, looks like a half disk
Globally, each boundary forms a loop

Polygon mesh:
- one polygon per boundary edge
- boundary vertex looks like “pacman”

YES

 CMU 15-462/662

Ok, but why is the manifold
assumption useful?

 CMU 15-462/662

Keep it Simple!
Same motivation as for images:
- make some assumptions about our geometry to keep data

structures/algorithms simple and efficient
- in many common cases, doesn’t fundamentally limit what

we can do with geometry

(i,j)(i-1,j) (i+1,j)

(i,j-1)

(i,j+1)

 CMU 15-462/662

How do we actually encode all this data?

 CMU 15-462/662

Warm up: storing numbers
Q: What data structures can we use to store a list of numbers?
One idea: use an array (constant time lookup, coherent access)

Alternative: use a linked list (linear lookup, incoherent access)

Q: Why bother with the linked list?
A: For one, we can easily insert numbers wherever we like...

1.7 2.9 0.3 7.5 9.2 4.8 6.0 0.1

1.7

2.9

0.3
7.5

9.2
4.8

6.0

0.1

 CMU 15-462/662

Polygon Soup
Most basic idea:

- For each triangle, just store
three coordinates

- No other information about
connectivity

- Not much different from point
cloud! (“Triangle cloud?”)

Pros:

- Really stupidly simple

Cons:

- Redundant storage

- Hard to do much beyond simply
drawing the mesh on screen

- Need spatial data structures
(later) to find neighbors

(x0,y0,z0)

(x1,y1,z1)

(x2,y2,z2)

(x3,y3,z3)

x0,y0,z0 x1,y1,z1 x3,y3,z3
x1,y1,z1 x2,y2,z2 x3,y3,z3

 CMU 15-462/662

Adjacency List (Array-like)
Store triples of coordinates (x,y,z), tuples of indices
E.g., tetrahedron:

0

1

2

3

 x y z
0: -1 -1 -1
1: 1 -1 1
2: 1 1 -1
3: -1 1 1

VERTICES
i j k
0 2 1
0 3 2
3 0 1
3 1 2

POLYGONS

Q: How do we find all the polygons touching vertex 2?
Ok, now consider a more complicated mesh:

Very expensive to find the neighboring polygons! (What’s the cost?)

~1 billion polygons

 CMU 15-462/662

Incidence Matrices
If we want to know who our neighbors are, why not just store a list of
neighbors?

Can encode all neighbor information via incidence matrices

E.g., tetrahedron:

e2

v0

v1

v2

v3

e0

e1

e3
e4

f0

f3

f1

f2

e5

 v0 v1 v2 v3
e0 1 1 0 0
e1 0 1 1 0
e2 1 0 1 0
e3 1 0 0 1
e4 0 0 1 1
e5 0 1 0 1

VERTEX⬌EDGE
 e0 e1 e2 e3 e4 e5
f0 1 0 0 1 0 1
f1 0 1 0 0 1 1
f2 1 1 1 0 0 0
f3 0 0 1 1 1 0

EDGE⬌FACE

1 means “touches”; 0 means “does not touch”

Instead of storing lots of 0’s, use sparse matrices

Still large storage cost, but finding neighbors is now O(1)

Hard to change connectivity, since we used fixed indices

Bonus feature: mesh does not have to be manifold

 CMU 15-462/662

Aside: Sparse Matrix Data Structures
Ok, but how do we actually store a “sparse matrix”?

Lots of possible data structures:

- Associative array from (row, column) to value

- easy to lookup/set entries, fast (e.g., hash table)

- harder to do matrix operations (e.g., multiplication)

- Array of linked lists (one per row)

- conceptually simple

- slow access time, incoherent memory access

- Compressed column format—pack entries in list

- hard to add/modify entries

- fast for actual matrix operations

In practice: often build up entries using an “easier” data
structure, convert to compressed format for computation

0
0 1 2

1
2

(0,0) -> 4
(0,1) -> 2
(1,2) -> 3
(2,1) -> 7

(row,col) val

(0,4) (1,2)

(2,3)

(1,7)

0:

1:

2:

(col,val)

row

(col,val)

4,2,7,3

0,0,2,1

1,3,4

values

row indices

cumulative
entries
by column

Store some information about neighbors
Don’t need an exhaustive list; just a few key pointers
Key idea: two halfedges act as “glue” between mesh elements:

Each vertex, edge face points to just one of its halfedges.
 CMU 15-462/662

Halfedge Data Structure (Linked-list-like)

H
a
l
f
e
d
g
e

twin

e
d
g
e

next

vertex

face

struct Halfedge
{
 Halfedge* twin;
 Halfedge* next;
 Vertex* vertex;
 Edge* edge;
 Face* face;
};

struct Vertex
{
 Halfedge* halfedge;
};

halfedge

vertex

struct Edge
{
 Halfedge* halfedge;
};ha

lf
ed
ge

ed
ge

struct Face
{
 Halfedge* halfedge;
};

ha
lf
ed
ge

Face

Use “twin” and “next” pointers to move around mesh
Use “vertex”, “edge”, and “face” pointers to grab element
Example: visit all vertices of a face:

Example: visit all neighbors of a vertex:

Note: only makes sense if mesh is manifold!
 CMU 15-462/662

Halfedge makes mesh traversal easy

ha
lf
ed
ge

next

next

Face

Halfedge* h = f->halfedge;
do {
 h = h->next;
 // do something w/ h->vertex
}
while(h != f->halfedge);

ha
lf
ed
ge

twin

twin

next

next
Vertex

Halfedge* h = v->halfedge;
do {
 h = h->twin->next;
}
while(h != v->halfedge);

 CMU 15-462/662

Halfedge connectivity is always manifold
Consider simplified halfedge data structure
Require only “common-sense” conditions

struct Halfedge {
 Halfedge *next, *twin;
};

Keep following next, and you’ll get faces.
Keep following twin and you’ll get edges.
Keep following next->twin and you’ll get vertices.

Q: Why, therefore, is it impossible to encode the red figures?

twin->twin == this
twin != this
every he is someone’s “next”

(pointer to yourself!)

Connectivity vs. Geometry
Recall manifold conditions (fans not fins):
- every edge contained in two faces
- every vertex contained in one fan

These conditions say nothing about vertex
positions! Just connectivity

Hence, can have perfectly good (manifold)
connectivity, even if geometry is awful

In fact, sometimes you can have perfectly
good manifold connectivity for which any
vertex positions give “bad” geometry!

Can lead to confusion when debugging: mesh
looks “bad”, even though connectivity is fine

non manifold
connectivity?

…or just a really
skinny triangle?

same connectivity,
random vertex positionscube (manifold)

 CMU 15-462/662

Halfedge meshes are easy to edit
Remember key feature of linked list: insert/delete elements
Same story with halfedge mesh (“linked list on steroids”)
E.g., for triangle meshes, several atomic operations:

b

c

a d

b

c

a d

!ip

b

m

c

a d

b

c

a d

split

a

b

c d

a

b

m

collapse

How? Allocate/delete elements; reassigning pointers.
Must be careful to preserve manifoldness!

 CMU 15-462/662

Edge Flip (Triangles)
Triangles (a,b,c), (b,d,c) become (a,d,c), (a,b,d):

Long list of pointer reassignments (edge->halfedge = ...)
However, no elements created/destroyed.
Q: What happens if we flip twice?
Challenge: can you implement edge flip such that pointers are
unchanged after two flips?

b

c

a d

b

c

a d

!ip

 CMU 15-462/662

Edge Split (Triangles)
Insert midpoint m of edge (c,b), connect to get four triangles:

This time, have to add new elements.
Lots of pointer reassignments.
Q: Can we “reverse” this operation?

b

m

c

a d

b

c

a d

split

 CMU 15-462/662

Edge Collapse (Triangles)
Replace edge (b,c) with a single vertex m:

Now have to delete elements.
Still lots of pointer assignments!
Q: How would we implement this with an adjacency list?
Any other good way to do it? (E.g., different data structure?)

a

b

c d

a

b

m

collapse

Paul Heckbert (former CMU prof.)
quadedge code - http://bit.ly/1QZLHosMany very similar data structures:

- winged edge

- corner table

- quadedge

- ...
Each stores local neighborhood information
Similar tradeoffs relative to simple polygon list:

- CONS: additional storage, incoherent memory access

- PROS: better access time for individual elements, intuitive
traversal of local neighborhoods

With some thought*, can design halfedge-type data structures with
coherent data storage, support for non manifold connectivity, etc.

 CMU 15-462/662

Alternatives to Halfedge

*see for instance http://geometry-central.net/

http://geometry-central.net/

 CMU 15-462/662

Comparison of Polygon Mesh Data Strucutres

Adjacency List
Incidence
Matrices Halfedge Mesh

constant-time
neighborhood access? NO YES YES

easy to add/remove
mesh elements? NO NO YES

nonmanifold
geometry? YES YES NO

Conclusion: pick the right data structure for the job!

 CMU 15-462/662

Ok, but what can we actually do with our
fancy new data structures?

 CMU 15-462/662

Subdivision Modeling

 CMU 15-462/662

Subdivision Modeling
Common modeling paradigm in modern 3D tools:
- Coarse “control cage”
- Perform local operations to control/edit shape
- Global subdivision process determines final surface

 CMU 15-462/662

Subdivision Modeling—Local Operations
For general polygon meshes, we can dream up lots of local
mesh operations that might be useful for modeling:

…and many, many more!

 CMU 15-462/662

Next Time: Digital Geometry Processing
Extend traditional digital signal processing (audio, video, etc.)
to deal with geometric signals:
- upsampling / downsampling / resampling / filtering ...
- aliasing (reconstructed surface gives “false impression”)

