
Computer Graphics
CMU 15-462/15-662

3D Rotations and Complex
Representations

 CMU 15-462/662

Rotations in 3D
What is a rotation, intuitively?
How do you know a rotation when you see it?
- length/distance is preserved (no stretching/shearing)
- orientation is preserved (e.g., text remains readable)
- origin is preserved (otherwise it’s a rotation + translation)

 CMU 15-462/662

3D Rotations—Degrees of Freedom
How many numbers do we need to specify a rotation in 3D?
 For instance, we could use rotations around X, Y, Z. But do we
need all three?
Well, to rotate Pittsburgh to another city (say, São Paulo), we
have to specify two numbers: latitude & longitude:
Do we really need both
latitude and longitude? Or will
one suffice?
Is that the only rotation from
Pittsburgh to São Paulo? (How
many more numbers do we
need?)

Pittsburgh

São Paulo
NO: We can keep São Paulo
fixed as we rotate the globe.

Hence, we MUST have three degrees of freedom.

 CMU 15-462/662

Commutativity of Rotations—2D
In 2D, order of rotations doesn’t matter:

Same result! (“2D rotations commute”)

rotate by 40° rotate by 20°

rotate by 20° rotate by 40°

 CMU 15-462/662

Commutativity of Rotations—3D
What about in 3D?
Try it at home—grab a water bottle!

- Rotate 90° around Y, then 90° around Z,
then 90° around X

- Rotate 90° around Z, then 90° around Y,
then 90° around X

- (Was there any difference?) X
Z

Y

CONCLUSION: bad things can happen if we’re not
careful about the order in which we apply rotations!

 CMU 15-462/662

Representing Rotations—2D
First things first: how do we get a rotation matrix in 2D?
(Don’t just regurgitate the formula!)
Suppose I have a function S(θ) that for a given angle θ gives
me the point (x,y) around a circle (CCW).
- Right now, I do not care how this function is expressed!*
What’s e1 rotated by θ?
What’s e2 rotated by θ?
How about ?

*I.e., I don’t yet care about sines and cosines and so forth.

What then must the matrix look like?

 CMU 15-462/662

Representing Rotations in 3D—Euler Angles
How do we express rotations in 3D?
One idea: we know how to do 2D rotations.
Why not simply apply rotations around the three axes? (X,Y,Z)
Scheme is called Euler angles
“Gimbal Lock”

 CMU 15-462/662

Gimbal Lock
When using Euler angles θx, θy, θz, may reach α configuration
where there is no way to rotate around one of the three axes!
Recall rotation matrices around three axes:

Product of these matrices represents rotation by Euler angles:

Consider special case θy = π/2 (so, cos θy =0, sin θy =1):

 CMU 15-462/662

Gimbal Lock, continued
Simplifying matrix from previous slide, we get

Q: What does this matrix do?

no matter how we adjust θx, θz,
can only rotate in one plane!

We are now “locked” into a single axis of rotation
Not a great design for airplane controls!

 CMU 15-462/662

Rotation from Axis/Angle
Alternatively, there is a general expression for a matrix that
performs a rotation around a given axis u by a given angle θ:

Just memorize this matrix! :-)

…we’ll see a much easier way, later on.

 CMU 15-462/662

Complex Analysis—Motivation
Natural way to encode geometric transformations in 2D
Simplifies code / notation / debugging / thinking
Moderate reduction in computational cost/bandwidth/storage
Fluency with complex analysis can lead into deeper/novel
solutions to problems…

Truly: no good reason to use 2D vectors instead of complex numbers…

COMPLEX

 CMU 15-462/662

DON’T: Think of these numbers as “complex.”

DO: Imagine we’re simply defining additional
operations (like dot and cross).

 CMU 15-462/662

Imaginary Unit

nonsense!

More importantly: obscures geometric meaning.

 CMU 15-462/662

Imaginary Unit—Geometric Description

Imaginary unit is just a quarter-turn
in the counter-clockwise direction.

 CMU 15-462/662

Complex Numbers
Complex numbers are then just 2-vectors
Instead of e1,e1, use “1” and “ι” to denote the two bases
Otherwise, behaves exactly like a real 2-dimensional space

…except that we’re also going to get a very useful
new notion of the product between two vectors.

REAL COMPLEX

 CMU 15-462/662

Complex Arithmetic
Same operations as before, plus one more:

scalar
multiplication

vector
addition

complex
multiplication

Complex multiplication:
angles add
magnitudes multiply

“POLAR FORM”*:
have to be more

careful here!

*Not quite how it really works, but basic idea is right.

 CMU 15-462/662

Complex Product—Rectangular Form
Complex product in “rectangular” coordinates (1, ι):

two quarter turns—
same as -1

“real part” “imaginary part”

We used a lot of “rules” here. Can you
justify them geometrically?
Does this product agree with our
geometric description (last slide)?

 CMU 15-462/662

Complex Product—Polar Form
Perhaps most beautiful identity in math:

Specialization of Euler’s formula:

Can use to “implement” complex product:

(as with real exponentiation, exponents add)

Q: How does this operation differ from our earlier, “fake” polar multiplication?

Leonhard Euler
(1707–1783)

 CMU 15-462/662

2D Rotations: Matrices vs. Complex
Suppose we want to rotate a vector u by an angle θ, then by
an angle ϕ.

REAL / RECTANGULAR COMPLEX / POLAR

 CMU 15-462/662

Pervasive theme in graphics:

Sure, there are often many
“equivalent” representations.

…But why not choose the one
that makes life easiest*?

*Or most efficient, or most accurate…

 CMU 15-462/662

(Not Hamilton)

Quaternions
TLDR: Kind of like complex numbers but for 3D rotations
Weird situation: can’t do 3D rotations w/ only 3 components!

William Rowan Hamilton
(1805-1865)

 CMU 15-462/662

Quaternions in Coordinates
Hamilton’s insight: in order to do 3D rotations in a way that
mimics complex numbers for 2D, actually need FOUR coords.
One real, three imaginary:

Quaternion product determined by

together w/ “natural” rules (distributivity,
associativity, etc.)

WARNING: product no longer commutes!

(Why might it make sense that it doesn’t commute?)

“H” is for Hamilton!

 CMU 15-462/662

Quaternion Product in Components
Given two quaternions

…fortunately there is a (much) nicer expression.

Can express their product as

 CMU 15-462/662

Quaternions—Scalar + Vector Form
If we have four components, how do we talk about pts in 3D?
Natural idea: we have three imaginary parts—why not use
these to encode 3D vectors?

Alternatively, can think of a quaternion as a pair

Quaternion product then has simple(r) form:

For vectors in R3, gets even simpler:

 CMU 15-462/662

3D Transformations via Quaternions
Main use for quaternions in graphics? Rotations.
Consider vector x (“pure imaginary”) and unit quaternion q:

always expresses
some rotation

 CMU 15-462/662

Rotation from Axis/Angle, Revisited
Given axis u, angle θ, quaternion q representing rotation is

Much easier to remember (and manipulate) than matrix!

axis
angle

 CMU 15-462/662

Interpolating Rotations
Suppose we want to smoothly interpolate between two
rotations (e.g., orientations of an airplane)
Interpolating Euler angles can yield strange-looking paths,
non-uniform rotation speed, …
Simple solution* w/ quaternions: “SLERP” (spherical linear
interpolation):

*Shoemake 1985, “Animating Rotation with Quaternion Curves”

 CMU 15-462/662

Where else are (hyper-)complex numbers
useful in computer graphics?

 CMU 15-462/662

Generating Coordinates for Texture Maps
Complex numbers are natural language for
angle-preserving (“conformal”) maps

Preserving angles in texture well-tuned to human perception…

 CMU 15-462/662

Useless-But-Beautiful Example: Fractals
Defined in terms of iteration on (hyper)complex numbers:

(Will see exactly how this works later in class.)

 CMU 15-462/662

Not Covered: Lie algebras/Lie Groups
Another super nice/useful perspective
on rotations is via “Lie groups” and “Lie
algebras”
More than we have time to cover!
Many benefits similar to quaternions
(easy axis/angle representation, no
gimbal lock, …)
Nice for encoding angles bigger than
2π
Also very useful for taking averages of
rotations
(Very) short story:
- exponential map takes you from

axis/angle to rotation matrix
- logarithmic map takes you from

rotation matrix to axis/angle

 CMU 15-462/662

Rotations and Complex Representations—Summary

Rotations are surprisingly complicated in 3D!
Today, looked at how complex representations
help understand/work with rotations in 3D (& 2D)
In general, many possible representations:

- Euler angles

- axis-angle

- quaternions

- Lie group/algebra (not covered)

- geometric algebra (not covered)
There’s no “right” or “best” way—the more you
know, the more you’ll be able to do!

 CMU 15-462/662

Next time: Perspective & Texture Mapping

