# Math (P)Review Part II: Vector Calculus 

Computer Graphics<br>CMU 15-462/662

## Last Time: Linear Algebra

- Touched on a variety of topics:
vectors \& vector spaces norm
$L^{2}$ norm/inner product span
Gram-Schmidt linear systems quadratic forms
vectors as functions inner product linear maps basis frequency decomposition bilinear forms matrices
- Don't have time to cover everything!
- But there are some fantastic lectures online:


3Blue1Brown - Essence of Linear Algebra
Robert Ghrist - Calculus Blue
(Let us know about others online!)

## Vector Calculus in Computer Graphics

- Today's topic: vector calculus.
- Why is vector calculus important for computer graphics?
- Basic language for talking about spatial relationships, transformations, etc.
- Much of modern graphics (physically-based animation, geometry processing, etc.) formulated in terms of partial differential equations (PDEs) that use div, curl, Laplacian...
- As we saw last time, vector-valued data is everywhere in graphics!


## Euclidean Norm

■ Last time, developed idea of norm, which measures total size, length, volume, intensity, etc.

- For geometric calculations, the norm we most often care about is the Euclidean norm
- Euclidean norm is any notion of length preserved by rotations/translations/reflections of space.
- In orthonormal coordinates:

$$
|\mathbf{u}|:=\sqrt{u_{1}^{2}+\cdots+u_{n}^{2}}
$$



WARNING: This quantity does not encode geometric length unless vectors are encoded in an orthonormal basis. (Common source of bugs!)

## Euclidean Inner Product / Dot Product

- Likewise, lots of possible inner products-intuitively, measure some notion of "alignment."
- For geometric calculations, want to use inner product that captures something about geometry!
- For n-dimensional vectors, Euclidean inner product defined as

$$
\langle\mathbf{u}, \mathbf{v}\rangle:=|\mathbf{u}||\mathbf{v}| \cos (\theta)
$$

- In orthonormal Cartesian coordinates, can be represented via the dot product

$$
\mathbf{u} \cdot \mathbf{v}:=u_{1} v_{1}+\cdots+u_{n} v_{n}
$$

- WARNING: As with Euclidean norm, no geometric meaning unless coordinates come from an orthonormal basis.


## Cross Product

- Inner product takes two vectors and produces a scalar
- In 3D, cross product is a natural way to take two vectors and get a vector, written as "u x v"
- Geometrically:
- magnitude equal to parallelogram area
- direction orthogonal to both vectors
- ...but which way?
- Use"right hand rule"

$\uparrow \mathbf{u} \times \mathbf{v}$
(Q: Why only 3D?)



## Cross Product, Determinant, and Angle

- More precise definition (that does not require hands):

$$
\sqrt{\operatorname{det}(\mathbf{u}, \mathbf{v}, \mathbf{u} \times \mathbf{v})}=|\mathbf{u}||\mathbf{v}| \sin (\theta)
$$

- $\theta$ is angle between $u$ and $v$
- "det" is determinant of three column vectors
- Uniquely determines coordinate formula:


$$
\mathbf{u} \times \mathbf{v}:=\left[\begin{array}{l}
u_{2} v_{3}-u_{3} v_{2} \\
u_{3} v_{1}-u_{1} v_{3} \\
u_{1} v_{2}-u_{2} v_{1}
\end{array}\right]
$$



■ Useful abuse of notation in 2D: $\mathbf{u} \times \mathbf{v}:=u_{1} v_{2}-u_{2} v_{1}$

## Cross Product as Quarter Rotation

- Simple but useful observation for manipulating vectors in 3D: cross product with a unit vector $N$ is equivalent to a quarterrotation in the plane with normal N :
- Q: What is $\mathrm{Nx}^{(\mathrm{Nxu})}$ ?
- Q: If you have und Nx u, how do you get a rotation by some arbitrary angle $\theta$ ?


## Matrix Representation of Dot Product

- Often convenient to express dot product via matrix product:

$$
\mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{\top} \mathbf{v}=\left[\begin{array}{lll}
u_{1} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]=\sum_{i=1}^{n} u_{i} v_{i}
$$

- By the way, what about some other inner product?
- E.g., <u,v>:=2 u1 v1 + u1 v2 + u2 v1 + $\mathbf{3} \mathbf{u} 2 \mathrm{v} 2$

$$
=\left(2 u_{1} v_{1}+u_{1} v_{2}\right)+\left(u_{2} v_{1}+3 u_{2} v_{2}\right)
$$

Q : Why is matrix representing inner product always symmetric ( $\mathrm{A}^{\top}=A$ )?

## Matrix Representation of Cross Product

- Can also represent cross product via matrix multiplication:

$$
\begin{gathered}
\mathbf{u}:=\left(u_{1}, u_{2}, u_{3}\right) \quad \Rightarrow \widehat{\mathbf{u}}:=\left[\begin{array}{rrr}
0 & -u_{3} & u_{2} \\
u_{3} & 0 & -u_{1} \\
-u_{2} & u_{1} & 0
\end{array}\right] \\
\mathbf{u} \times \mathbf{v}=\widehat{\mathbf{u}} \mathbf{v}=\left[\begin{array}{rrr}
0 & -u_{3} & u_{2} \\
u_{3} & 0 & -u_{1} \\
-u_{2} & u_{1} & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] \begin{array}{l}
\text { (Did we get } \\
\text { it right?) }
\end{array}
\end{gathered}
$$

- Q: Without building a new matrix, how can we express $\mathrm{v} x \mathrm{u}$ ?

■ A: Useful to notice that $\mathrm{v} u=-\mathrm{uxv}$ (why?). Hence,

$$
\mathbf{v} \times \mathbf{u}=-\widehat{\mathbf{u}} \mathbf{v}=\widehat{\mathbf{u}}^{\top} \mathbf{v}
$$

## Determinant

■ Q: How do you compute the determinant of a matrix?

$$
\mathbf{A}:=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

- A: Apply some algorithm somebody told me once upon a time:

$\operatorname{det}(\mathbf{A})=a(e i-f h)+b(f g-d i)+c(d h-e g)$

■ Q: No! What the heck does this number mean?!

## Determinant, Volume and Triple Product

- Better answer: det( $u, v, w)$ encodes (signed) volume of parallelepiped with edge vectors $u, v, w$.

$\operatorname{det}(\mathbf{u}, \mathbf{v}, \mathbf{w})=(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=(\mathbf{v} \times \mathbf{w}) \cdot \mathbf{u}=(\mathbf{w} \times \mathbf{u}) \cdot \mathbf{v}$
■ Relationship known as a "triple product formula"
- (Q:What happens if we reverse order of cross product?)


## Determinant of a Linear Map

■ Q: If a matrix A encodes a linear map f, what does det(A) mean?

## (First: need to recall how a matrix encodes a linear map!)

## Representing Linear Maps via Matrices

■ Key example: suppose I have a linear map
$f(\mathbf{u})=u_{1} \mathbf{a}_{1}+u_{2} \mathbf{a}_{2}+u_{3} \mathbf{a}_{3}$

- How do I encode as a matrix?


■ Easy: "a" vectors become matrix columns:

$$
A:=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} \\
\mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{lll}
a_{1, x} & a_{2, x} & a_{3, x} \\
a_{1, y} & a_{2, y} & a_{3, y} \\
a_{1, z} & a_{2, z} & a_{3, z}
\end{array}\right]
$$

- Now, matrix-vector multiply recovers original map:
$A\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]=\left[\begin{array}{l}a_{1, x} u_{1}+a_{2, x} u_{2}+a_{3, x} u_{3} \\ a_{1, y} u_{1}+a_{2, y} u_{2}+a_{3, y} u_{3} \\ a_{1, z} u_{1}+a_{2, z} u_{2}+a_{3, z} u_{3}\end{array}\right]=u_{1} \mathbf{a}_{1}+u_{2} \mathbf{a}_{2}+u_{3} \mathbf{a}_{3}$


## Determinant of a Linear Map

- Q: If a matrix A encodes a linear map f, what does $\operatorname{det}(A)$ mean?

- A: It measures the change in volume.
- Q: What does the sign of the determinant tell us, in this case?
- A: It tells us whether orientation was reversed $(\operatorname{det}(A)<0)$
(Do we really need a matrix in order to talk about the determinant of a linear map?)


## Other Triple Products

- Super useful for working w/ vectors in 3D.

■ E.g., Jacobi identity for the cross product:

$$
\begin{array}{lll}
\mathbf{u} \times(\mathbf{v} \times \mathbf{w}) & + \\
\mathbf{v} \times(\mathbf{w} \times \mathbf{u}) & + \\
\mathbf{w} \times(\mathbf{u} \times \mathbf{v}) & = & 0
\end{array}
$$

- Why is it true, geometrically?

- There is a geometric reason, but not nearly as obvious as det: has to do w/ fact that triangle's altitudes meet at a point.
- Yet another triple product: Lagrange's identity

$$
\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=\mathbf{v}(\mathbf{u} \cdot \mathbf{w})-\mathbf{w}(\mathbf{u} \cdot \mathbf{v})
$$

(Can you come up with a geometric interpretation?)

## Differential Operators - Overview

- Next up: differential operators and vector fields.
- Why is this useful for computer graphics?
- Many physical/geometric problems expressed in terms of relative rates of change (ODEs, PDEs).
- These tools also provide foundation for numerical optimization-e.g., minimize cost by following the gradient of some objective.



## Derivative as Slope

- Consider a function $f(x): R \rightarrow R$
- What does its derivative $f^{\prime}$ mean?
- One interpretation "rise over run"

■ Corresponds to standard definition:

$$
f^{\prime}\left(x_{0}\right):=\lim _{\varepsilon \rightarrow 0} \frac{f\left(x_{0}+\varepsilon\right)-f\left(x_{0}\right)}{\varepsilon}
$$

- Careful! What if slope is different when we walk in opposite direction?

$$
\begin{aligned}
f^{+}\left(x_{0}\right) & :=\lim _{\varepsilon \rightarrow 0} \frac{f\left(x_{0}+\varepsilon\right)-f\left(x_{0}\right)}{\varepsilon} \\
f^{-}\left(x_{0}\right) & :=\lim _{\varepsilon \rightarrow 0} \frac{f\left(x_{0}\right)-f\left(x_{0}-\varepsilon\right)}{\varepsilon}
\end{aligned}
$$

- Differentiable at $\mathbf{x 0}$ if $\mathbf{f}^{+}=\mathbf{f}$.




## Derivative as Best Linear Approximation

- Any smooth function $\mathrm{f}(\mathrm{x})$ can be expressed as a Taylor series:
$\left.f(x)=\begin{array}{c}\text { constant } \\ = \\ f\left(x_{0}\right)\end{array}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2!} f^{\prime \prime}\left(x_{0}\right)+\cdots$

- Replacing complicated functions with a linear (and sometimes quadratic) approximation is a powerful trick in graphics algorithms-we'll see many examples.


## Derivative as Best Linear Approximation

■ Intuitively, same idea applies for functions of multiple variables:


# How do we think about derivatives for a function that has multiple variables? 

## Directional Derivative

- One way: suppose we have a function $\mathrm{f}(\mathrm{x} 1, \mathrm{x} 2)$
- Take a "slice" through the function along some line
- Then just apply the usual derivative!
- Called the directional derivative



## Gradient

- Given a multivariable function $f(\mathbf{x})$, gradient $\nabla f(\mathbf{x})$ assigns a vector at each point:

- (Ok, but which vectors, exactly?)


## Gradient in Coordinates

- Most familiar definition: list of partial derivatives
- I.e., imagine that all but one of the coordinates are just constant values, and take the usual derivative

$$
\nabla f=\left[\begin{array}{c}
\partial f / \partial x_{1} \\
\vdots \\
\partial f / \partial x_{n}
\end{array}\right]
$$

- Two potential problems:
- Role of inner product is not clear (more later!)
- No way to differentiate functions of functions $\mathrm{F}(\mathrm{f})$ since we don't have a finite list of coordinates $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$
- Still, extremely common way to calculate the gradient...


## Example: Gradient in Coordinates

$$
\begin{aligned}
& f(\mathbf{x}):=x_{1}^{2}+x_{2}^{2} \\
& \frac{\partial f}{\partial x_{1}}=\frac{\partial}{\partial x_{1}} x_{1}^{2}+\frac{\partial}{\partial x_{1}} x_{2}^{2}=2 x_{1}+0 \\
& \frac{\partial f}{\partial x_{2}}=\frac{\partial}{\partial x_{2}} x_{1}^{2}+\frac{\partial}{\partial x_{2}} x_{2}^{2}=0+2 x_{2}
\end{aligned}
$$

$$
\nabla f(\mathbf{x})=\left[\begin{array}{l}
2 x_{1} \\
2 x_{2}
\end{array}\right]=2 \mathbf{x}
$$



## Gradient as Best Linear Approximation

Another way to think about it: at each point $\mathbf{x 0}$, gradient is the vector $\nabla f\left(\mathbf{x}_{0}\right)$ that leads to the best possible approximation

$$
f(\mathbf{x}) \approx f\left(\mathbf{x}_{0}\right)+\left\langle\nabla f\left(\mathbf{x}_{0}\right), \mathbf{x}-\mathbf{x}_{0}\right\rangle
$$



Starting at $\mathrm{x}_{0}$, this term gets: -bigger if we move in the direction of the gradient,
-smaller if we move in the opposite direction, and
-doesn't change if we move orthogonal to gradient.

## The gradient takes you uphill...

- Another way to think about it: direction of "steepest ascent"
- l.e., what direction should we travel to increase value of function as quickly as possible?
- This viewpoint leads to algorithms for optimization, commonly used in graphics.



## Gradient and Directional Derivative

At each point $\mathbf{x}$, gradient is unique vector $\nabla f(\mathbf{x})$ such that

$$
\langle\nabla f(x), \mathbf{u}\rangle=D_{\mathbf{u}} f(\mathbf{x})
$$

for all u. In other words, such that taking the inner product w/ this vector gives you the directional derivative in any direction $u$.

Can't happen if function is not differentiable!

(Notice: gradient also depends on choice of inner product...)

## Example: Gradient of Dot Product

- Consider the dot product expressed in terms of matrices:

$$
f:=\mathbf{u}^{\top} \mathbf{v}
$$

- What is gradient of $f$ with respect to u?
- One way: write it out in coordinates:

$$
\begin{aligned}
& \mathbf{u}^{\top} \mathbf{v}=\sum_{i=1}^{n} u_{i} v_{i} \quad \text { (equals zero unless } \mathbf{i}=\mathrm{k} \text { ) } \\
& \frac{\partial}{\partial u_{k}} \sum_{i=1}^{n} u_{i} v_{i}=\sum_{i=1}^{n} \frac{\partial}{\partial u_{k}}\left(u_{i} v_{i}\right)=v_{k}
\end{aligned}
$$

In other words:
$\Rightarrow \nabla_{\mathbf{u}} f=\left[\begin{array}{c}v_{1} \\ \cdots \\ v_{n}\end{array}\right]$

$$
\nabla_{\mathbf{u}}\left(\mathbf{u}^{\top} \mathbf{v}\right)=\mathbf{v}
$$

Not so different from $\frac{d}{d x}(x y)=y$ !

## Gradients of Matrix-Valued Expressions

- EXTREMELY useful in graphics to be able to differentiate expressions involving matrices
- Ultimately, expressions look much like ordinary derivatives

For any two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ :

| MATRIX DERIVATIVE | LOOKS LIKE |
| :--- | :--- |
| $\nabla_{\mathbf{x}}\left(\mathbf{x}^{T} \mathbf{y}\right)=\mathbf{y}$ | $\frac{d}{d x} x y=y$ |
| $\nabla_{\mathbf{x}}\left(\mathbf{x}^{T} \mathbf{x}\right)=2 \mathbf{x}$ | $\frac{d}{d x} x^{2}=2 x$ |
| $\nabla_{\mathbf{x}}\left(\mathbf{x}^{T} A \mathbf{y}\right)=A \mathbf{y}$ | $\frac{d}{d x} a x y=a y$ |
| $\nabla_{\mathbf{x}}\left(\mathbf{x}^{T} A \mathbf{x}\right)=2 A \mathbf{x}$ | $\frac{d}{d x} a x^{2}=2 a x$ |
| $\ldots$ | $\cdots$ |

Excellent resource: Petersen \& Pedersen, "The Matrix Cookbook"

- At least once in your life, work these out meticulously in coordinates (to convince yourself they're true).
- Then... forget about coordinates altogether!


## Advanced*: L² Gradient

- Consider a function of a function $F(f)$
- What is the gradient of F with respect to f ?
- Can't take partial derivatives anymore!
- Instead, look for function VF such that for all functions u,

$$
\langle\langle\nabla F, u\rangle\rangle=D_{u} F
$$

- What is directional derivative of a function of a function??
- Don't freak out—just return to good old-fashioned limit:

$$
D_{u} F(f)=\lim _{\varepsilon \rightarrow 0} \frac{F(f+\varepsilon u)-F(f)}{\varepsilon}
$$

- This strategy becomes much clearer w/ a concrete example...


## Advanced Visual Example: L² Gradient

■ Consider function $F(f):=\langle\langle f, g\rangle\rangle$ for $\mathbf{f}, \mathbf{g}:[0,1] \rightarrow \mathbf{R}$

- I claim the gradient is: $\nabla F=g$
- Does this make sense intuitively? How can we increase inner product with g as quickly as possible?
- inner product measures how well functions are "aligned"
- $g$ is definitely function best-aligned with g!
- so to increase inner product, add a little bit of g to f




## Advanced Example: [² Gradient

- Consider function $F(f):=\|f\|^{2}$ for arguments $\mathrm{f}:[0,1] \rightarrow \mathbf{R}$
- At each "point" f0, we want function $\nabla \mathrm{F}$ such that for all functions u

$$
\left\langle\left\langle\nabla F\left(f_{0}\right), u\right\rangle\right\rangle=\lim _{\varepsilon \rightarrow 0} \frac{F\left(f_{0}+\varepsilon u\right)-F\left(f_{0}\right)}{\varepsilon}
$$

■ Expanding 1st term in numerator, we get

$$
\left\|f_{0}+\varepsilon u\right\|^{2}=\left\|f_{0}\right\|^{2}+\varepsilon^{2}\|u\|^{2}+2 \varepsilon\left\langle\left\langle f_{0}, u\right\rangle\right\rangle
$$

- Hence, limit becomes

$$
\lim _{\varepsilon \rightarrow 0}\left(\varepsilon\|u\|^{2}+2\left\langle\left\langle f_{0}, u\right\rangle\right\rangle\right)=2\left\langle\left\langle f_{0}, u\right\rangle\right\rangle
$$

- The only solution to $\left\langle\left\langle\nabla F\left(f_{0}\right), u\right\rangle\right\rangle=2\left\langle\left\langle f_{0}, u\right\rangle\right\rangle$ for all $\mathbf{u}$ is

$$
\nabla F\left(f_{0}\right)=2 f_{0} \longleftarrow \text { not much different from } \frac{d}{d x} x^{2}=2 x!
$$

## Key idea:

Once you get the hang of taking the gradient of ordinary functions, it's (superficially) not much harder for more exotic objects like matrices, functions of functions, ...

## Vector Fields

- Gradient was our first example of a vector field
- In general, a vector field assigns a vector to each point in space
- E.g., can think of a 2 -vector field in the plane as a map

$$
X: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

- For example, we saw a gradient field

$$
\nabla f(x, y)=(2 x, 2 y)
$$

(for the function $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{\mathbf{2}}+\mathrm{y}^{\mathbf{2}}$ ) $\qquad$

# Q: How do we measure the change in a vector field? 

## Divergence and Curl

- Two basic derivatives for vector fields: "How much is field shrinking/expanding?"
"How much is field spinning?"

$\operatorname{div} X$
curl $Y$


## Divergence

- Also commonly written as $\nabla \cdot X$
- Suggests a coordinate definition for divergence
- Think of $\nabla$ as a "vector of derivatives"

$$
\nabla=\left(\frac{\partial}{\partial u_{1}}, \cdots, \frac{\partial}{\partial u_{n}}\right)
$$

- Think of $X$ as a"vector of functions"

$$
X(\mathbf{u})=\left(X_{1}(\mathbf{u}), \ldots, X_{n}(\mathbf{u})\right)
$$

- Then divergence is

$$
\nabla \cdot X:=\sum_{i=1}^{n} \partial X_{i} / \partial u_{i}
$$



## Divergence - Example

■ Consider the vector field $X(u, v):=(\cos (u), \sin (v))$

- Divergence is then

$$
\nabla \cdot X=\frac{\partial}{\partial u} \cos (u)+\frac{\partial}{\partial v} \sin (v)=-\sin (u)+\cos (v)
$$



X

$\nabla \cdot X$

## Curl

- Also commonly written as $\nabla \times X$
- Suggests a coordinate definition for curl
- This time, think of $\boldsymbol{\nabla}$ as a vector of just three derivatives:

$$
\nabla=\left(\frac{\partial}{\partial u_{1}}, \frac{\partial}{\partial u_{2}}, \frac{\partial}{\partial u_{3}}\right)
$$

■ Think of $X$ as vector of three functions:

$$
X(\mathbf{u})=\left(X_{1}(\mathbf{u}), X_{2}(\mathbf{u}), X_{3}(\mathbf{u})\right)
$$

■ Then curl is

$$
\nabla \times X:=\left[\begin{array}{l}
\partial X_{3} / \partial u_{2}-\partial X_{2} / \partial u_{3} \\
\partial X_{1} / \partial u_{3}-\partial X_{3} / \partial u_{1} \\
\partial X_{2} / \partial u_{1}-\partial X_{1} / \partial u_{2}
\end{array}\right]
$$

(2D"curl": $\left.\nabla \times X:=\partial X_{2} / \partial u_{1}-\partial X_{1} / \partial u_{2}\right) \quad \nabla \times X$

## Curl-Example

- Consider the vector field $X(u, v):=(-\sin (v), \cos (u))$
- (2D) Curl is then
$\nabla \times X=\frac{\partial}{\partial u} \cos (u)-\frac{\partial}{\partial v}(-\sin (v))=-\sin (u)+\cos (v)$.


X

$\nabla \times X$


# Notice anything about the relationship between curl and divergence? 

## Divergence vs. Curl (2D)

- Divergence of $X$ is the same as curl of 90 -degree rotation of $X$ :


X


- Playing these kinds of games w/ vector fields plays an important role in algorithms (e.g., fluid simulation)

■ (Q: Can you come up with an analogous relationship in 3D?)

## Example: Fluids w/ Stream Function



Single-phase Pressure solver

$$
\begin{array}{cc}
\min _{\Psi}\left\|u^{*}-\nabla \times \Psi\right\|^{2} & \Delta p=\nabla \cdot u^{*} \\
u=\nabla \times \Psi & u=u^{*}-\nabla p
\end{array}
$$

## Laplacian

- One more operator we haven't seen yet: the Laplacian
- Unbelievably important object in graphics, showing up across geometry, rendering, simulation, imaging
- basis for Fourier transform / frequency decomposition
- used to define model PDEs (Laplace, heat, wave equations)
- encodes rich information about geometry



## Laplacian—Visual Intuition



Likewise, Laplacian measures "curvature" of a function.

## Laplacian—Many Definitions

■ Maps a scalar function to another scalar function (linearly!)

- Usually* denoted by $\Delta$ - "Delta"
- Many starting points for Laplacian:
- divergence of gradient $\Delta f:=\nabla \cdot \nabla f=\operatorname{div}(\operatorname{grad} f)$
- sum of 2nd partial derivatives $\Delta f:=\sum_{i=1}^{n} \partial^{2} f / \partial x_{i}^{2}$
- gradient of Dirichlet energy $\Delta f:=-\nabla_{f}\left(\frac{1}{2}\|\nabla f\|^{2}\right)$
- by analogy: graph Laplacian
- variation of surface area
- trace of Hessian ...

*Or by $\nabla^{2}$, but we'll reserve this symbol for the Hessian


## Laplacian-Example

- Let's use coordinate definition: $\Delta f:=\sum_{i} \partial^{2} f / \partial x_{i}^{2}$
- Consider the function $f\left(x_{1}, x_{2}\right):=\cos \left(3 x_{1}\right)+\sin \left(3 x_{2}\right)$

■ We have
$\frac{\partial^{2}}{\partial x_{1}^{2}} f=\frac{\partial^{2}}{\partial x_{1}^{2}} \cos \left(3 x_{1}\right)+\frac{\partial^{2}}{\partial x_{1}^{2}} \sin \left(3 \widehat{\left.x_{2}\right)}{ }^{0}=\right.$

$$
-3 \frac{\partial}{\partial x_{1}} \sin \left(3 x_{1}\right)=-9 \cos \left(3 x_{1}\right)
$$

and


$$
\frac{\partial^{2}}{\partial x_{2}^{2}} f=-9 \sin \left(3 x_{2}\right)
$$

Hence,

$$
\begin{aligned}
\Delta f & =-9\left(\cos \left(3 x_{1}\right)+\sin \left(3 x_{2}\right)\right) \\
& =-9 f \longleftarrow \text { Interesting! Does this always happen? }
\end{aligned}
$$



## Hessian

- Our final differential operator-Hessian will help us locally approximate complicated functions by a few simple terms
- Recall our Taylor series
- How do we do this for multivariable functions?
- Already talked about best linear approximation, using gradient:

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2!} f^{\prime \prime}\left(x_{0}\right)+\cdots
$$


$f(\mathbf{x}) \uparrow \quad f(\mathbf{x}) \approx f\left(\mathbf{x}_{0}\right)+\left\langle\nabla f\left(\mathbf{x}_{0}\right), \mathbf{x}-\mathbf{x}_{0}\right\rangle$

Hessian gives us next, "quadratic" term.

## Hessian in Coordinates

- Typically denote Hessian by symbol $\nabla^{2}$
- Just as gradient was "vector that gives us partial derivatives of the function," Hessian is "operator that gives us partial derivatives of the gradient":

$$
\left(\nabla^{2} f\right) \mathbf{u}:=D_{\mathbf{u}}(\nabla f)
$$

- For a function $f(x): R^{n} \rightarrow R$, can be more explicit:

$$
\nabla^{2} f:=\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{1} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}}
\end{array}\right] \quad \text { Q:Why is this matrix } \quad \text { always symmetric? }
$$

## Taylor Series for Multivariable Functions

- Using Hessian, can now write 2nd-order approximation of any smooth, multivariable function $f(x)$ around some point $x_{0}$ :

$$
f(\mathbf{x}) \approx \underbrace{\substack{\text { constant } \\ f\left(\mathbf{x}_{0}\right)}}_{c \in \mathbb{R}}+\underbrace{\left\langle\nabla f\left(\mathbf{x}_{0}\right), \mathbf{x}\right.}_{\mathbf{b} \in \mathbb{R}^{n}}-\mathbf{x}_{0}\rangle+\underbrace{\left\langle\nabla^{2} f\left(x_{0}\right)\right.}_{\mathbf{A} \in \mathbb{R}^{n \times n}}\left(\mathbf{x}-\mathbf{x}_{0}\right), \mathbf{x}-\mathbf{x}_{0}\rangle / 2
$$

- Can write this in matrix form as

$$
f(\mathbf{u}) \approx \frac{1}{2} \mathbf{u}^{\top} \mathbf{A} \mathbf{u}+\mathbf{b}^{\top} \mathbf{u}+c, \quad \mathbf{u}:=\mathbf{x}-\mathbf{x}_{0}
$$



## Next time: Rasterization

- Next time, we'll talk about how to draw triangles
- A lot more interesting (and difficult!) than it might seem...
- Leads to a deep understanding of modern graphics hardware


