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15-462/662, Spring 2020

Midterm Exam

March 4, 2020

Instructions:

• This exam is closed book, closed notes, closed neighbor, closed cell phone, closed telepathy, closed
internet.

• You may however use a single 3in x 5in sticky note (or piece of paper) with any information you like
written on both sides—-except for solutions to previous exams.

• If your work gets messy, please clearly indicate your final answer (by writing it in a box if possible).

• Partial credit will be awarded, but only if we can understand your work! So please try to write clearly,
especially if you are uncertain about the final answer.

Problem Your Score Possible Points

1 25

2 20

3 25

4 30

Total 100
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1 (25 points) Warm-up

(a) (6 points) Let f : R4 → R4 be the transformation that takes a point p = (x, y, z, 1) expressed in
homogeneous coordinates to a point f (p) that is the translation of p by a distance u, also expressed in
homogeneous coordinates. Is f a:

A. constant function

B. linear function

C. affine function

D. neither linear nor affine

E. translation cannot be expressed this way

(b) (6 points) Suppose you use a laser scanner to measure points on a person’s face, connect these points
up to form triangles, and then rasterize the triangles to generate a synthetic image of the face. Which
of the following is a potential source of aliasing?

A. the spatial resolution of the laser scanner

B. the use of triangles to describe the surface of the face

C. the fact that pixels are not perfect squares of color

D. all of the above

E. none of the above

(c) (6 points) Suppose you’ve rasterized some polygons, and now have a supersample buffer containing
both color and depth values. You now want to generate a MIP map of the depth buffer, so that you can
do occlusion tests at a variety of resolutions. What operation is probably most natural when combining
depth samples to form the next smallest level of the MIP map pyramid?

A. sum

B. average

C. max

D. min

E. none of the above

(d) (7 points) Which of the following strategies will produce the correct image when rasterizing semi-
transparent triangles in 3D?

A. For each pixel, store a list of color and depth values. After all triangles have been drawn, sort color
values from largest to smallest depth and apply the “over” operator in this order to get the final color
value.

B. Draw all the opaque triangles (in any order), using a depth buffer to keep track of the smallest depth at
each pixel. Now sort the semi-transparent triangles from largest to smallest depth and rasterize them
in this order, using the “over” operator to blend color values.

C. First draw all the semi-transparent triangles from largest to smallest depth using the “over” operator,
and without writing any depth values. Now enable depth testing and draw all the opaque triangles,
again from largest to smallest depth.

D. Both a and b will work.

E. They will all work.
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2 (20 points) Rasterizing an Ellipse a
s

b

(cx, cy)

The standard rasterization pipeline is designed for drawing triangles really, really fast. Consider a
different architecture where we instead want to draw little oriented ellipses, which will help us draw 3D
point clouds from various points of view. We’ll break our rasterizer down into two subroutines: one that
does the inside-outside test for an ordinary circle, and another that transforms our query points in order to
draw ellipses.

(a) (5 points) First, we just need to write a routine that returns true if the given point is inside a circle
of the given radius, centered at the origin (or exactly on its boundary), and false if not. Fill out the
function below; you may assume that standard library/math functions are available.

bool inside_circle(
float r, // circle radius
float x, y // query point ) {

}

(b) (15 points) Now suppose we want to use the routine above to draw ellipses. An ellipse is given
by a center (cx, cy), two radii a, b, and a counter-clockwise angle of rotation. Write a routine that
tests whether the given query point is inside an ellipse. This routine must call inside circle (in a
nontrivial way), but cannot make any modification to inside circle.

bool inside_ellipse( float cx, float cy, // ellipse center
float a, b, // ellipse radii
float s, // ellipse rotation
float x, y // query point ) {

}
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3 (25 points) A Bug-Eyed Display
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In class we talked about the fact that some high-end displays use hexagonal pixels instead of square
pixels in order to reduce aliasing.

(a) (8 points) Compared to an ordinary (square pixel) display with the same pixel density (i.e., pixels per
square inch), what benefit will a hexagonal display provide?

A. better overall resolution

B. better color contrast

C. more efficient supersampling

D. less jagged line rendering

E. none of the above

(b) (9 points) The high-level strategy for rasterization onto a hexagonal grid is very similar to rasterization
onto a square grid: loop over all the pixels, and test if the pixel center is covered by the primitive.
Assume you are given a hexagonal grid with R rows and C columns, the horizontal distance between
columns is 1, and the horizontal distance between rows is h, and the upper-left pixel has a center
at (0, 0). Also assume that you are given a function is covered( float x, float y ) which
returns 1 if the point (x, y) is covered by a primitive, and 0 otherwise. Write a routine that rasterizes
this primitive onto a hexagonal grid, i.e., that sets the value of each pixel to 1 if it’s covered, and 0 if it’s
not. You can assume that the pixels array has already been allocated, and stores grayscale values in
row-major column-minor order (i.e., moving one column is an increment of 1).
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void rasterize_hexagonal(
int R, // number of rows
int C, // number of columns
float h, // vertical distance between rows
float* pixels // array of pixel values

)
{

}

(c) (8 points) Of course, to really build a rasterizer we need to implement the method is covered.
Suppose we’ve already implemented a version of this method that tests coverage for a triangle at the
given point (x, y). To adapt this method to the hexagonal pixel grid we need to:

A. Do nothing. The method already works as-is.

B. Modify the method to do half-plane tests for each of the 6 sides of the hexagon.

C. Modify the method to account for the vertical extent of the hexagonal pixels.

D. Modify the method to account for the horizontal shift of alternating rows.

E. Both c and d.
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4 (30 points) Meshing Around

Let’s consider a simplified halfedge data structure that stores only the twin and next pointers for each
halfedge. To keep things simple, we’ll assume we have a fixed number of halfedges, and the “pointers” are
implemented as just indices into an array. For instance, if twin[3] = 7 it means that halfedge 7 is the twin
of halfedge 3. Likewise, if next[9] = 2, it means that halfedge 2 follows halfedge 9.

(a) (8 points) In class we talked about the fact that the connectivity of a halfedge mesh is valid as long as
some basic invariants are preserved. Which of the invariants I1–I4 are sufficient to ensure that the two
arrays (twin and next) describe a valid manifold polygon mesh?

I1. there are an even number of halfedges
I2. the twin of the twin of every halfedge is itself
I3. no halfedge is its own twin
I4. every halfedge points to some “next” halfedge

A. I1, I2, and I4 are enough

B. I1, I3, and I4 are enough

C. I2, I3, and I4 are enough

D. all four are needed

E. no combination of I1–14 is sufficient

(b) (10 points) We can simplify our halfedge data structure even more by assigning consecutive indices to
the two halfedges of each edge. For instance, the first edge has halfedges 0 and 1, the next edge has
halfedges 2 and 3 and so forth. This way, we do not have to actually store the twin array: we know
that twin[i] is always equal to i+1 if i is even, and i-1 if i is odd. Given this setup, which of the
following halfedge meshes have valid connectivity (even if they might have crazy ugly geometry)?

M1:
i 0 1 2 3

next[i] 1 2 0 3 M2:
i 0 1 2 3 4 5

next[i] 5 0 3 1 5 2

M3:
i 0 1 2 3 4 5

next[i] 3 2 1 0 5 4

A. Only M1 and M2 are valid

B. Only M2 and M3 are valid

C. Only M1 and M3 are valid

D. All of them are valid

E. None of them are valid

(c) (12 points) One way to think about an edge flip in a triangle mesh is that in the original configuration
you’re looking at a tetrahedron from the front; in the new configuration you’re looking at the same
tetrahedron from the back. This perspective can be used to generalize the notion of a triangle-triangle
edge flip to other types of polygons—for instance, if three quads meet at a vertex, we can flip them to
three different quads meeting at the same vertex by viewing these configurations as the front and back
of a cube. Implement this operation by making the minimal number of assignments to the next array,
of the form next[i] = j. The initial state of next is given.
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flip

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
next[i] 5 6 1 10 3 14 8 17 2 7 12 9 4 11 16 13 0 15
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