
Full Name:

Andrew ID:

15-462/662, Fall 2018

Midterm Exam

October 17, 2018

Instructions:

• This exam is closed book, closed notes, closed neighbor, closed cell phone, closed telepathy, closed
internet.

• You may however use a single 3in x 3in sticky note (or piece of paper) with any information you like
written on both sides—-except for solutions to previous exams.

• If your work gets messy, please clearly indicate your final answer (by writing it in a box if possible).

• Partial credit will be awarded, but only if we can understand your work! So please try to write clearly,
especially if you are uncertain about the final answer.

Problem Your Score Possible Points

1 30

2 25

3 33

4 12

EC 5

Total 100

1

1 (30 points) Sampling and Aliasing

A. (5 points) In your own words, what is aliasing? How does it relate to sampling and reconstruction?

SOLUTION.

In general, aliasing is a catch-all term describing any situation where the way a signal is perceived or
interpreted provides a false impression of what that signal really looks like. Aliasing can occur both
due to undersampling (e.g., sampling far below the Nyquist frequency), and reconstruction (e.g., using a
box filter to reconstruct a smooth function).

B. (5 points) Give an example of aliasing found in computer graphics. (This example must be different
from the “jagged edges” that occur in line rasterization.)

SOLUTION.

One (of many) examples of aliasing in computer graphics is texture magnification: when we’re sampling
the texture at a higher rate than the finest level of the MIP map hierarchy, we’re very likely missing out
on high-frequency features, causing the resulting image to look “blurry.” (Consider for instance using a
tiny 32× 32 image to texture map a whole zebra—you’ll definitely miss some stripes, and just end up
with a blurry mess!)

C. (5 points) Give an example of aliasing found outside of computer graphics/computer science. (This
example must be different from the “wagon wheel” effect described in class.)

SOLUTION.

One (of many) examples of aliasing outside computer graphics is the moiré pattern seen when two regular
patterns cross, such as the front and back of a wire wastebasket. We perceive bands of darker/lighter
stripes, even though they’re not really there. This phenomenon has to do with human perception, and
nothing to do with computers or computer graphics.

2

D. (5 points) You’ve been hired to work on the next generation of video distribution software for YouTube.
The iPhone XII has just been released, and by default records video at 480Hz. However, having taken
15-462 you know that most video will look good if played back at 60Hz—in fact, the new YouTube
player you’re designing only supports 60Hz playback, independent of the original source rate. Taking
both bandwidth and amortized computational effort into account, what is a more appropriate strategy
for the software you’re writing: supersampling or prefiltering? Why?

SOLUTION.

I would definitely use prefiltering; specifically, I would just downsample all the users’ videos to 60Hz
before uploading them to the YouTube servers, by doing some kind of time-averaging of video frames.
Doing so will save on bandwidth (less data to transmit to viewers over the network), and also will save
dramatically on overall computational cost: by downsampling the video ahead of time, each viewer
won’t have to perform this downsampling on their own machine.

E. (5 points) In the YouTube scenario described in the previous question, why isn’t subsampling a good
strategy? What kinds of videos will look particularly bad if you use subsampling?

SOLUTION.

Subsampling, i.e., just dropping 7 out of every 8 frames, is a bad idea because it will lead to aliasing.
This effect will be especially bad when there is fast motion (e.g., a video of an extreme snowboarder
being chased by a snow leopard).

F. (5 points) Since you were hired at YouTube, personal assistants like Alexa, Siri, and Cortana have been
adding robotic legs and low-quality surveillance cameras. Scary. Since these cameras record video
at only 24Hz, how could you generate 60Hz video that could be played back in the YouTube video
player? Try to be specific about your strategy. (Deep learning is not allowed.)

SOLUTION.

I would upsample the video to 60Hz by using linear interpolation. In particular, for a given time T
where I want to generate a frame, I would find the nearest frames at times t0 < T < t1 and compute the
value t := (T − t0)/(t1 − t0). I would then use this t value to linearly interpolate between pixels in the
two frames.

3

2 (25 points) Quadsterization

a

x

b

c

d

a

b

c

d

a

b

c
d

quadVidia has decided that triangles are no longer cool, and quads are the next big thing1. Your graphics
consulting company, PinkFongGFX, has been hired to develop the rasterization algorithms for quadVidia’s
next-generation architecture. The basic setup is that you’re given four vertices a, b, c, d ∈ R2, in any order.
quadVidia has asked that your algorithms correctly rasterize any convex quad, but may cull (reject) nonconvex
quads, which are not considered to be valid input.

A. (5 points) To simplify assumptions at later stages of the pipeline, the first thing you want to implement
is the culling stage. How would you test that the four given points describe a convex quad?

SOLUTION.

I would simply check if any vertex is inside the triangle made by the other three, by doing three
half-plane tests for each triangle. If so, these points don’t describe a convex quad, and can be culled.

B. (5 points) Now that you know the points define a convex quad, how would you test whether they’re in
a consistent counter-clockwise order? If they’re not, how would you fix the ordering so that they are?

SOLUTION.

I’d first verify that triangle abc has counter-clockwise orientation, by checking that the sign of the cross
product (b− a)× (c− a) is positive. If not, I would swap b and c. I would then repeat this procedure
for triangle acd.

1Historical aside: the original NVIDIA graphics chip, the NV1, actually did rasterize quads... nobody bought it!

4

C. (5 points) Now that you know you have a convex quad with points a, b, c and d in counter-clockwise
order, how would you test that a given sample point x is inside the quad?

SOLUTION.

I would perform four half-plane tests, one for each edge, and return true if and only if all four tests pass.
In particular, for an edge with vertices p, q, I would compute the vector u := (q− p)/|q− p|, rotate it
by 90 degrees in the counter-clockwise direction (by swapping its two components and negating the
first one), and then check whether 〈u, x〉 > 〈u, p〉 to see if x is inside this half plane.

D. (5 points) Finally, quadVidia wants your algorithm to provide coordinates for interpolating vertex
attributes like colors and texture coordinates. Why might splitting the quad into two triangles and
using barycentric interpolation in each triangle be a bad idea?

SOLUTION.

You’ll get noticeable artifacts along the diagonal, since you’re using two different linear functions (with
different slopes) to interpolate; this is especially problematic, since there’s not one “correct” diagonal
to split along. The effect will look like the errors we saw in barycentric interpolation when you don’t
correctly account for perspective.

E. (5 points) Since barycentric coordinates are no good, you’ve decided to use bilinear coordinates, i.e., the
coordinates such that x is a bilinear interpolation of the four corner vertex coordinates. Write down the
system you would have to solve in order to obtain these coordinates. How many equations are there,
and how many unknowns? Extra credit (5 points): solve it!

SOLUTION.

I would simply need to look for two values s, t ∈ R that satisfy the equation

(1− s)((1− t)a + tb) + s((1− t)c + td) = x.

Since each of the corners is a point in R2, this equation actually describes two real equations in two
unknowns. However, these equations are not linear; they are bilinear, but can still be solved (as described
below).
Extra credit: To solve for the bilinear coordinates, I would rearrange the equation above as

a− x + t(b− a) + s(d− a) + st(a− b + c− d) = 0

to isolate the powers of s and t. Letting P := a− x, Q := b− a, R := d− a, and S := a− b + c− d, we
get P + tQ + sR + stS = 0. Letting x1 and x2 denote the first and second component of any vector x, I
would then solve the first scalar equation for s:

s = (−P1 −Q1t)/(R1 + S1t).

Plugging this value into the second scalar equation yields

(P2R1 − P1R2 + (Q2R1 −Q1R2 + P2S1 − P1S2)t + (Q2S1 −Q1S2)t2)/(R1 + S1t) = 0,

and if the denominator is nonzero (which it should be for any point inside the quad) then the numerator
is a quadratic equation which can be solved for t. This t value can then be plugged back in to the
expression for s.

5

3 (33 points) Converting Geometry

c a

b

c a

b

f (x) = 0

f (a) > 0 f (a), f (b) < 0

f (x) = 0

In class we spent a lot of time talking about various explicit and implicit representations of geometry. Of
course, no one representation will work well for all algorithms, and so in practice you’ll have to convert
between the two. Here we’ll run through a few exercises where we translate between representations.

A. (5 points) Suppose we’re given a curve represented as the zero set of a function f (x), and want to
convert this zero set into a polygon. Are each of these representations explicit or implicit, and why?

SOLUTION.

The set f (x) = 0 is an implicit representation of shape, since we don’t have an explicit list of points that
belong to the shape; just a “test” we can run to check if a given point is included. The polygon, on the
other hand, is an explicit representation, since we have an explicit list of points (the vertices), and an
explicit map taking any parameter value t ∈ [0, 1] along an edge to a point on the polygon (via linear
interpolation).

B. (6 points) One algorithm for approximating a zero level set by a polygon is called “marching triangles.”
The idea is to lay down a grid of triangles over space, and evaluate the function f at each vertex. If
the sign of f is different on two neighboring vertices a and b (e.g., positive at one end; negative at the
other end), then the zero set must cross the edge somewhere between a and b. In this situation, the
marching triangles algorithm inserts a crossing at the location where the linearly interpolated value of
f is equal to zero. Write a simple routine that computes the crossing location, given the locations of the
two endpoints, and the values of f at the two endpoints. This method should store the solution in p,
and return false if and only if there is no crossing along the edge.

bool crossing(Vector2D a, Vector 2D b,
double fa, double fb,
Vector2D& p)

{

SOLUTION.

double t = -fa/(fb-fa); // t value where interpolated function equals zero
if(t < 0 || t > 1) return false;
p = (1-t)*a + t*b; // interpolate endpoints

}

6

C. (6 points) Now that we know how to find the crossing point for a single edge, we just have to connect
up crossings within each triangle. (Think: how many different ways can this happen, given that we’re
only sampling f at the vertices?) Implement a routine that takes as input the three vertex coordinates
a, b, c, and the three function values f (a), f (b), f (c), and appends any segments passing through this
triangle to a list of pairs. You can initialize a pair by writing P = pair(p,q), and you can append
a pair P to a list by writing list.append(P). Note that your routine should call the crossing()
method (even if you did not implement it).

bool marchTriangle(Vector2D a, Vector2D b, Vector2D c,
double fa, double fb, double fc,
list<pair>& segments)

{

SOLUTION.

Vector p, q;
if(fa<0 && fb<0 && fc<0) return;
if(fa>0 && fb>0 && fc>0) return;
if(fa*fb>0) {

crossing(c, a, fc, fa, p);
crossing(c, b, fc, fb, q);

}
if(fb*fc>0) {

crossing(a, b, fa, fb, p);
crossing(a, c, fa, fc, q);

}
if(fc*fa>0) {

crossing(b, c, fb, fc, p);
crossing(b, a, fb, fa, q);

}
segments.append(pair(p, q));

}

D. (5 points) If we run marchTriangle on every triangle in our grid, we get a list of segments that make
up our polygon. At this point, however, we really just have “segment soup”: we don’t know which
segments are connected to which other segments. What data structure might you use to quickly locate
segments with equal endpoints? Why?

SOLUTION.

Any spatial data structure would help with this task. Since we know our crossing points are regularly
sampled, a regular grid could be a good choice for this task. If our zero level set occupies a very small
or irregular region of the overall grid, it may be better to use something spatially adaptive (e.g., BVH,
kd-tree, or octree). In practice, of course, there’s a much simpler solution: since there’s at most one
crossing per edge, we can assign a unique index to each edge with a crossing, and then store segments
as pairs of indices rather than pairs of crossing locations; this way we don’t have to “glue together”
segments after the fact.

7

E. (5 points) Suppose we want to go the other direction: we have a polygon, and want to compute a
signed distance value f (a for every vertex a of a regular triangular grid. What data structure would
you use to accelerate computation of these values? If there are m total vertices on the grid, and n total
vertices on the polygon, what would be the total cost of computing the signed distance function (using
your chosen data structure)? You should assume that m is much larger than n, and give the amortized
asymptotic cost.

SOLUTION.

Again, any spatial data structure would help—here something spatially adaptive like a BVH or kd-tree
might make most sense, since the polygon can in general be irregularly sampled and have irregular
shape. The cost of building one of these data structures would depend only on the size of the polygon,
asymptotically O(n log n). Assuming each leaf node contains a constant number of segments, the cost
of each subsequent distance query is O(log n). Since there are m nodes on the grid the overall amortized
cost of distance evaluation would be O(m log n). (Since m is much larger than n, the cost of building the
tree doesn’t contribute to the amortized cost.)

F. (6 points) Suppose we start with a function f (x) = 0, run marching triangles to get a polygon, and
then sample the distance to this polygon back onto the original grid to get values f ′(a) at each vertex a.
Are these distance values the same as the original ones? In other words, does f ′(a) = f (a) for all a?
What if we run through this whole loop one more time, i.e., we run marching triangles on the function
f ′, then compute the distance f ′′ to the resulting polygon. Does f ′(a) = f ′′(a)? If there is any loss of
information, at which step(s) does it occur, and what name would you give to this phenomenon?

SOLUTION.

The values change both times, i.e., f 6= f ′, and f ′ 6= f ′′. In the first loop, the polygon generated by
marching triangles will not (in general) exactly match the zero level set of the distance function f . In
the second loop, the polygon we get exactly represents the zero set of the function f ′; however, the
distance to this polygon is not a piecewise linear function (consider what it looks like in the vicinity of a
convex vertex), hence the sampled function f ′′ will not be the same as f ′. The name I would give to this
phenomenon is aliasing: we are getting a false impression of what the original signal looks like (i.e., the
original function f) due to issues of sampling and reconstruction.

8

4 (12 points) Transformations

A. (6 points) Of the five sequences of 3D transformations listed below, two pairs are equivalent. Which
pairs are the same, and which one is different from the other four?

(a) Rotate by 90 degrees around the z-axis, then translate by a distance 2 along the y-axis, then scale
by a factor 2.

(b) Rotate by 90 degrees around the z-axis, then scale by a factor 2, then translate by a distance −2
along the x-axis.

(c) Translate by a distance 2 along the y axis, then rotate by 90 degrees around the z-axis, then scale
by a factor 2.

(d) Rotate by -270 degrees around the z-axis, then translate by a distance 2 along the x-axis, then scale
by a factor 2, then translate by a distance -8 along the x-axis.

(e) Scale by a factor 2, then rotate by 90 degrees around the z-axis, then translate by a distance 4 along
the y-axis.

SOLUTION.

Transformations (a) and (e) are the same; transformations (c) and (d) are the same; transformation (b) is
different from the rest.

B. (6 points) Write down a 4× 4 matrix that encodes transformation (a) from the previous question in
homogeneous coordinates. Apply it to the three points p := (0, 0, 0), q = (1, 0, 0), r := (0, 1, 0), and to
the unit normal N of the triangle made by points p, q, and r. You should assume this normal points in
the same direction as the vector (q− p)× (r− p).

SOLUTION.

Note that rotating by 90 degrees around the z-axis, then translating by a distance 2 along the y-axis,
then scaling by a factor 2 is the same as first rotating by 90-degrees around the z-axis, then scaling by 2,
then translating by a distance 4 along the y-axis. Therefore, we can write the whole transformation as a
single matrix

2 cos 90◦ 2 sin 90◦ 0 0
−2 sin 90◦ 2 cos 90◦ 0 4

0 0 2 0
0 0 0 1

 =

0 2 0 0
−2 0 0 4

0 0 2 0
0 0 0 1

 .

Notice that what we’ve done here is put the usual 2D rotation matrix in the upper-left 2x2 block, which
keeps the z coordinate fixed while rotating the x and y coordinates; the factor 2 in front of cos and sin
applies the desired scaling, and the rightmost column applies a translation by 4 in the y direction.
To apply this transformation to our data, we just give the points a homogeneous coordinate 1 and
the normal vector, N = (0, 0, 1), a homogeneous coordinate of zero since it should be rotated but not
translated. For brevity, we can encode all four homogeneous vectors in a single matrix and perform a
matrix-matrix multiplication:

0 2 0 0
−2 0 0 4

0 0 2 0
0 0 0 1

0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0

 =

0 0 2 0
4 2 4 0
0 0 0 2
1 1 1 0

After homogeneous division, we get rotated coordinates p′ = (0, 4, 0), q′ = (0, 2, 0), and r′ = (2, 4, 0);
the direction of the normal is unchanged (and we don’t care about its magnitude).

9

