
Full Name:

Andrew ID:

15-462/662, Fall 2017

Midterm Exam

October 18, 2017

Instructions:

• This exam is closed book, closed notes, closed neighbor, closed cell phone, closed telepathy, closed
internet.

• You may however use a single 3in x 3in sticky note (or piece of paper) with any information you like
written on both sides—-except for solutions to previous exams.

• If your work gets messy, please clearly indicate your final answer (by writing it in a box if possible).

• Partial credit will be awarded, but only if we can understand your work! So please try to write clearly,
especially if you are uncertain about the final answer.

Problem Your Score Possible Points

1 25

2 25

3 25

4 25

EC 20

Total 100

1

1 (25 points) Getting the Party Started: Miscellaneous Short Problems

A. (5 points) Consider a function f : Rm ! Rn. What does it mean for f to be a linear function? How can
you represent the affine function f (x, y) = ax + by + c as a linear function in homogeneous coordinates?

B. (5 points) In your own words, what is aliasing? Give two examples of aliasing that show up either in
graphics algorithms or in real life.

2

C. (5 points) Sampling the Topologist’s Sine Curve

0

f (x)

x
1/4 1/2 3/4 5/4 3/2 7/4 21

Consider the curve above, which is given by the function

f (x) := 2x cos(p/x) + p sin(p/x) + 4.

For each quarter-interval, roughly how many samples would you guess are needed to get an accurate
reconstruction of this function (e.g., using linear interpolation)? Why?
Suppose now that rather than linear interpolation, you want to generate a high-quality 1D texture
representing this function (i.e., a single strip of texels, with one texel per quarter interval). Other than
sampling, how could you obtain intensity values for these texels? Bonus points: give the exact value
for the first texel in this image (as a fraction).

D. (5 points) Describe in words any sequence of transformations whose composition produces the overall
transformation depicted in the figure below. The initial shape is an axis-aligned cube centered at the
origin with all side lengths equal to 1; the gray outline on the right indicates the location of the original
cube relative to the new cuboid.

x

y

z

3

E. (5 points) Suppose we have a surface with no boundary (i.e., no holes) described by an explicit triangle
mesh, and need to do many inside/outside tests. What is a simple implicit representation that makes
these queries more efficient, and how might we perform the conversion from explicit to implicit? There
are several reasonable solutions here; your solution should attempt to make the queries themselves as
efficient as possible, i.e., smallest amortized cost to do a single query. You do not need to write any
code; just give a high-level outline.

F. (5 pts — EXTRA CREDIT) Your solution to the previous question may not be exact for query points
very close to the original surface, i.e., it may classify points that are “inside” as “outside” and vice
versa. How can you modify your solution to provide exact queries near the surface? How can you
make this fallback efficient?

4

2 (25 points) TartanCraft

In the massively multiplayer online game of TartanCraft™, players create 3D worlds out of cubes textured
with lovely plaid patterns. Each cube is determined by a center location (i, j, k), as well as a index specifying
which pattern to use.

A. (5 points) Consider the difference between rendering this scene using a rasterizer and a ray tracer:
specifically think about the cost of determining which cube is visible at each screen sample in a
rasterizer, or along each camera ray in a ray tracer. Do you think determining occlusion using the
Z-buffer algorithm or via ray tracing is a better solution in this scenario? Why? You can assume that
in the case of a ray tracer, you have a prebuilt spatial acceleration hierarchy. Also assume that the
geometry is really a large collection of cubes (including those “deep inside” objects), rather than just
those on the outer boundary.

B. (5 points) His Imperial Majesty Andrew Carnegie, Emperor of the Tartan Realm, wants a panoramic
view of everything going on in the world of TartanCraft from a fixed viewpoint far above the ground.
Suppose that cubes from all players are being streamed over the network to his machine, and he wishes
to watch the world as it is being built. Cube data can arrive at any time, in any order. You can assume
that cubes are created, but never destroyed. What rendering strategy might Emperor Carnegie use to
render these millions of cubes: rasterization or ray tracing? Why? (Think again about how visibility
will be determined.)

5

C. (5 points) Suppose that in one of the scenarios above we chose to use ray tracing rather than rasteriza-
tion. Given that we’re always rendering cubes, what’s a small optimization we can make that (slightly)
speeds up our ray intersection tests?

D. (5 points) Again suppose we’re using ray tracing, rather than rasterization. What kind (or kinds) of
spatial acceleration data structure(s) would you use for our little world made of cubes, and why?

E. (5 points) Finally, we have to gift-wrap our cubes with lovely plaid patterns (of the kind shown above).
Given that we’re rendering exclusively in plaid, what kind of texture magnification filter would you
use to nicely preserve the appearance of these textures?

6

3 (25 points) Validating Meshes

An important part of writing robust code is verifying the validity of the input. Suppose you are given an
adjacency list representation of a triangle mesh and are asked to convert it to a halfedge mesh. In particular,
you are provided with the data:

double pts[nVertices][3]; // coordinates (x,y,z) for each vertex
int tris[nTriangles][3]; // triangles as triples of 0-based indices into pts

A. (6 points) What must be true about the pts list in order to convert this data into a valid halfedge mesh?

B. (6 points) Outline a simple strategy for simultaneously verifying that (i) no edge in the given mesh is
nonmanifold, and (ii) all triangles have a consistent orientation (or “winding”). What is the cost of
your strategy, assuming you have an efficient data structure that can map a ordered pair of integers to a
stored integer value in O(1) time (i.e., a hash table / associative array)? You do not have to write any
code.

C. (7 points) Suppose now that your code is running on the deep space probe New Horizons II which has
been taking 3D scans of objects floating around in the Kuiper belt. You already have a nicely scanned
and reconstructed halfedge mesh, stored in the data structure below. However, in outer space it is
quite common for high-energy cosmic rays to hit the RAM of your machine, randomly invalidating
bits. Write a routine that does an exhaustive consistency check on your halfedge mesh—a mesh that
passes this test should describe a valid polygonal (though not necessarily triangular) surface. You may
assume that a preliminary check has already been run to ensure that all pointers point to some valid
element of the mesh, i.e., not NULL or some totally random address. (Note that you do not need to
check for non-manifoldness, since a halfedge mesh cannot represent a nonmanifold mesh!)

7

struct HalfedgeMesh struct Halfedge
{ {

vector<Halfedge> halfedges; Halfedge* t; // twin
vector<Vertex> vertices; Halfedge* n; // next
vector<Edge> edges; Vertex* v; // vertex
vector<Face> faces; Edge* e; // edge

}; Face* f; // face
};

struct Vertex struct Edge struct Face
{ { {

Halfedge* h; Halfedge* h; Halfedge* h;
Vector3D coords; } }

};

bool isValid(HalfedgeMesh* mesh)
{

8

}

9

D. (6 points) Sending data across outer space is expensive. Below you are given the bare minimum
encoding for the connectivity of two different meshes: one in adjacency list format, the other as the list
of “next” pointers for the halfedges in a halfedge mesh. The twin pointers are encoded by a simple
rule: the twin of a halfedge with even index i is i + 1; the twin of a halfedge with odd index j is j � 1 (so
that consecutive even and odd indices are paired). Draw a picture of each mesh, and indicate whether
each one is manifold (and why, in the case of a nonmanifold mesh). How many polygons does each
mesh encode? How much storage is needed for each mesh?

NEXT
0 1 2 0 ---> 2
3 1 4 1 ---> 11
1 3 5 2 ---> 4
6 7 8 3 ---> 7

4 ---> 0
5 ---> 9
6 ---> 1
7 ---> 8
8 ---> 3
9 ---> 10
10 ---> 5
11 ---> 6

10

4 (25 points) Generalized Sampling

Uh oh. Your beloved pet terrier (named “Scotty”, oddly enough) ate your most recent quiz for 15-462. To
recover the solution, you take Scotty to get a CT scan, which lets you peek inside your trusted companion.

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15
16 17 18 19
20 21 22 23

dim[0]

dim[1]

dim[2]

s[0]

s[1]

s[2]

A. (5 points) Your first task is to implement a routine that simply looks up the sample value stored at
a given integer index. In particular, the data is given as a linear array data of scalar (i.e., grayscale)
values. The main challenge here is translating a requested 3D index (i, j, k) into a single index I
corresponding to the location of the requested sample value. The dimensions of the data are specified
by the array dim[3], which gives the number of samples along the x, y, and z axes, respectively. The
data itself is packed into the linear array in x-minor order. In other words, incrementing by 1 moves
along the x-axis; incrementing by dim[0] moves along the y-axis, and so forth (see the figure above
for an example). For indices outside the array dimensions, you should just return zero. All indices
start at zero (not one).

double lookup3D(double* data, // sample values
int dim[3], // number of samples along each axis
int i, int j, int k) // requested sample index

{

}

11

B. (6 pts) Since the CT scan is fairly low-resolution, you will need to upsample it using trilinear sampling.
However, due to the nature of the hardware that measured this signal, the data is sampled at equal-size
intervals in x and y, but at much coarser intervals in z. In other words, the distance between samples
is NOT the same along all three axes—these distances are provided in the array s[3]. Your routine
should take a sample location (x, y, z) and return the interpolated value at this point. You must make
use of the routine lookup3D from the previous part (whether or not you completed this question).
Since this routine returns zero for values outside the domain, you do not need to worry too much
about special handling of values near the boundary. The center of grid cell (0, 0, 0) is at the origin.

double sampleTrilinear(double* data, // sample values
int dim[3], // number of samples along each axis
int s[3], // spacing between samples along each axis
double p[3]) // coordinates of the sample point

{

12

}

13

C. (4 pts) Based on the current treatment of values near the boundary, what will the edges of the interpo-
lated signal look like? How might the interpolation strategy be modified to avoid this behavior?

D. (4 pts) Suppose that instead of a static 3D scan you now have a movie showing the CT scan over time,
stored as a 4D grid (3D + time). How many samples would you need to evaluate quadrilinear sampling
of this data, and what would your basic strategy be? (You do not need to write any code here.)

14

E. (6 pts) Implement a method which, given a query point p, interpolates the three values u, v, w at the
corners a, b, c (respectively) of a triangle in 2D using barycentric interpolation. If the query point is
outside the triangle, you should return zero. All coordinates are specified via a Vector2D, which has
coordinates p.x and p.y, as well as all the usual vector operations (addition, subtraction, dot product,
cross product, etc.). You may use whatever names you like for these methods, as long as the meaning
is clear.

double sampleBarycentric(Vector2D p, // sample point
Vector2D a, Vector2D b, Vector2D c, // triangle corners
double u, double v, double w) // values at corners

{

}

15

EXTRA CREDIT: This final question is challenging and should be completed for extra credit only (you are not
required to answer it in order to get full points. You may wish to try it after completing the others.

p=(0,0)

[2][0][1][0][0][0] [3][0]

[2][1][1][1][0][1] [3][1]

[2][3][1][3][0][3] [3][3]

[2][2][1][2][0][2] [3][2]

1.5

√3

(15 pts) Once the homework was located inside your dog, the doctor took a high-resolution image of
your quiz solution using a special, high-res 2D camera. To reduce directional aliasing, this 2D sensor
has pixels arranged in a regular hexagonal grid rather than a rectangular grid. The grid is comprised
of equilateral triangles with unit side length, which means the horizontal spacing between sample
centers is

p
3 and the vertical spacing is 1.5; the center of grid cell (0, 0) is at the origin. To reconstruct

the image, you must now interpolate values on this grid. To do so, you will perform barycentric
interpolation using the three sample values closest to a given point (marked by an “X” in the image
above). This time, you may assume that a method lookup2DHex(data, i, j) has already been
defined, which returns the value of data at index (i, j)—cells are indexed as indicated in the example
above. You do not need to worry about the width or height of the grid; values outside the valid range
will just return zero. You may use the method sampleBarycentric defined in the previous question,
though you may find it easier to just compute the interpolation directly.

double sampleHexGrid(double** data, // sample values
int nCols, // number of horizontal samples
int nRows, // number of vertical samples
Vector2D p) // sample point

{

16

}

17

