
Full Name:

Andrew Id:

15-462/662, Fall 2016

Midterm Exam
Oct 19, 2016

Instructions:

• This exam is CLOSED BOOK, CLOSED NOTES. If your work gets messy, please clearly indicate
your final answer.

Problem Your Score Possible Points

1 20

2 20

3 22

4 18

5 20

Total 100
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Getting the Party Started: Miscellaneous Short Problems

Problem 1. (27 points):

A. (3 pts) In your own words, what is aliasing? Give two examples of aliasing that show up either in
algorithms or in real life.

B. (4 pts) Do affine transformations map lines to lines? Do they preserve parallel lines? For each
question, if yes, explain why, if not, give a counter-example.
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C. (5 pts) Meshes are made of polygons, which can be split up into triangles, which each have three
edges. Suppose we want to compute the distance to a mesh. Get things started by implementing
a method that computes the distance (in 2D, not 3D) from a query point q ∈ R2 to a segment with
endpoints a, b ∈ R2. You may assume that a 6= b, and that Vec2D has all the usual 2D vector
operations (addition, subtraction, normalization, dot product, etc.). (Hint: compute the components of
the vector r := q− a in the orthonormal basis e1, e2 depicted below. How do each of the two components help
you determine the distance to the segment?)

double segmentDist( Vec2D a, Vec2D b, Vector2D q )
{

}
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D. (4 pts) Now that you can compute the distance to a segment, finding the distance to a triangle
should be relatively easy. However, the routine you implemented above always returns a positive
value (or at least, it should!), which makes it difficult to determine whether a point is inside or
outside a triangle. What’s a tiny change you can make to your segment routine to make it easy to
determine whether a point is inside a triangle? Assuming you’ve made this change, implement the
distance-to-triangle method below. This method should return zero for points inside the triangle.

double triDist( Vec2D a, Vec2D b, Vector2D c, Vector2D q )
{

}

E. (4 pts) What is the 2D affine transformation matrix that first translates points by (2, 1), then rotates
them by 90 degrees counterclockwise?
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Return to the Planet of Trees

Problem 2. (20 points):

up

forward

normal target

A. (4 points) In your homework, we asked you to “plant” trees all over a planet by finding any rotation
that took a tree from one triangle to another. In this case, which rotation didn’t matter, as long as the
new tree still pointed “up” relative to the new triangle. Sometimes, though, the particular choice
of rotation does matter. Suppose, for instance, that we want to plant sunflowers all over a planet,
rather than trees. In this case, we want the flowers to face the “sun,” which is specified by some
point p in space. Assuming that we have a vector that gives us the “up” and “forward” directions
for the flower, as well as the normal of the target triangle, explain how you would go about finding
a rotation where:

• the new up vector is oriented along the normal, and

• the new forward vector points—as closely as possible—toward the target point.

(You do not have to write any equations or code, but you do have to give a crystal-clear explanation!)
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B. (3 points) Ok, let’s finally plant some trees (or flowers). Suppose you are given a list of vertex
positions for the flower (with the root at the origin), a rotation (already computed for you using the
method described in the previous part), and the three vertices q1, q2, q3 of the target triangle. Your
task is to calculate new vertex positions which “transplant” the tree to the new triangle, replacing the
old vertex positions. You should make sure the root ends up at a reasonable place (e.g., somewhere
inside the triangle). Note that you can get the size of a vector by calling vector::size(), and
you can access the ith element of a vector v via v[i].

void transplantTree( vector<Vec3D>& vertices,
Matrix3x3 rotation,
Vec3D q1, Vec3D q2, Vec3D q3 )

{

}

C. (4 points) Suppose that you want to ray trace a planet with millions of trees on it, and your tree
model contains millions of polygons. Assuming you’ve already built bounding volume hierarchy
(BVH) for the tree, what’s a good strategy for doing this kind of “ray-forest intersection?” Describe,
at a high level, your algorithm for intersecting a given ray with the scene, assuming that the ray
is given to you in world coordinates, and you also want the final hit point in world coordinates
(rather than model coordinates). What geometric transformations would you have to apply to which
objects, in which order? How do you make it efficient to determine which tree was hit (and not just
which polygon in the tree was hit)? Assume that you can only compute intersections with axis-
aligned bounding boxes; also assume you care about both speed and storage. (Hint: a really fast
strategy may involve more than one BVH...)
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D. (4 points) Ray tracing a planet of trees sounds hard! Can’t we just rasterize it instead? Suppose
you are given a method depthCount( Mesh& m ) that tries drawing a mesh and returns the
number of fragments that passed the depth test, without actually writing any values to the depth
buffer. Using these routines, describe a strategy for reducing the amount of draw that has to happen.
Describe how you can further improve performance by drawing the trees in a special order. (Hint:
the bounding box around a mesh can itself be described as a mesh...)
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E. (5 points) Suppose we now want to make the leaves of our trees translucent. With ray tracing, deal-
ing with transparency is easy: we just compute all the hits along a ray, and accumulate the values
appropriately. What about rasterization? In class, we briefly discussed the order-independent trans-
parency: rather than store a single color value per pixel, we temporary store a list of color and depth
values. Once rasterization is finished, we blend these values together to get the final color values.
However, since this scheme is not supported by modern graphics hardware, you will implement it
in software below! You may assume that both samples and finalColor have already been allo-
cated to hold width*height elements, and that there is a method sort(vector<Sample>) that
will sort a list of samples by depth, from furthest to nearest.

struct Sample
{

double depth;
double alpha;
Vec3D color;

};

void computeFinalColor( int width, int height,
vector<vector<Sample>> samples,
vector<Vec3D> finalColor )

{

}
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Flipping Houses in Pittsburgh

Problem 3. (22 points):

After graduating from CMU, you get a terrific-sounding job offer from a hot young tech company in the
San Francisco bay area. Unfortunately, as you begin looking at housing options, you discover this offer is
actually not so good after all: the average purchase price of a one-bedroom dwelling in San Francisco is
$1.2 million, which comes with a monthly mortgage payment of $5,143! 1 This situation makes you take a
second look at beautiful Pittsburgh, PA, where the sale prices for a three-bedroom house average a much
more affordable $152k. On the downside, many of these houses are in very poor condition. So, using your
mad geometry skills from 15-462/662, you decide to write some software for “flipping” a dilapidated old
house in Pittsburgh.

A. (2 points) Your first task is to digitize the blueprints you obtained from the Pittsburgh Department
of City Planning. (What a mess!) Just to get some data in the system, you first encode the geometry
using the simplest possible data structure: polygon soup. A basic polygon soup data structure is just
a list of lists, where each element of the outer list is a polygon, and each element of an inner list is
the index of some vertex (for instance, a triangle with vertices 2, 7, and 8 would be {2, 7, 8}. Encode
the figure below using this data structure, giving the vertices of each polygon in counter-clockwise
order. Throughout this entire problem you do not need to worry about the vertex positions (you can assume
they are already stored somewhere in memory).

v0

f0

f1

v1

v2 v3

v4

1Believe it or not, these are all real prices, as of October 2015.
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B. (4 points) To do any kind of sophisticated repairs on your home, you will need to convert the data
to a more sophisticated data structure. Fill out the vertex-edge and edge-face adjacency matrix cor-
responding to the polygon soup you defined in the previous part, using the edge indices indicated
in the figure below.

v0

f0

e0 e4

e1

e2

e3e5

f1

v1

v2 v3

v4

AVE =



0 1 2 3 4
0
1
2
3
4
5



AEF =

( 0 1 2 3 4 5
0
1

)
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C. (6 points) Using the intuition you built in the previous part, write a method that extracts the vertex-
edge adjacency matrix for any given polygon soup. You can access the list of lists via a pair of indices
(e.g., soup[i][p] yields the pth vertex of the ith polygon); the size of any array a (whether inner
or outer) can be obtained by calling a.size(). Throughout, you should assume that all indices
start at zero. You can also assume that you have a data structure Set that has only two methods:
add(i,j), which adds an ordered pair to the set, and contains(i,j), which returns true if and
only if an ordered pair is included in the set. Finally, you are given a Matrix data structure; the
entries of a matrix A can be set via A(row,column) = value. You can assume the matrix will
automatically grow to accommodate the largest row/column index.

void soupToEdgeIncidence( vector<vector<int>> soup, Matrix& VE )
{

}
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D. (3 points) In Scotty3D you’ve been using a sophisticated halfedge data structure that keeps track of
vertices, edges, faces, and halfedges. But a much simpler way to encode a halfedge mesh is by just
storing the halfedges! In particular, we can just store an array T of “twin” indices and an array N of
“next” indices. For instance, here’s what that looks like for a single triangle:

10

4

5
3

2

int T[6] = { 1, 0, 3, 2, 5, 4 };  // twin
int N[6] = { 2, 5, 4, 1, 0, 3 };  // next

We can make this data structure even simpler by always labeling twins in even/odd pairs, as in the
figure above: the halfedges of the first edge are 0 and 1, the halfedges of the second edge are 2 and 3,
and so on. This way, we can always find the twin by finding the next-largest odd number (for even
halfedges) or the next-smallest even number (for odd halfedges). In other words, the connectivity of a
polygon mesh can be encoded purely by an array of “next” indices! Write the “next array” N for the figure
below.

10

2

4

6

8

9

10 11

7
5

3

k 0 1 2 3 4 5 6 7 8 9 10 11
N[k]
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E. (4 points) Suppose someone hands you a list of integers that is supposed to be the “next” array for a
polygon mesh. What are two basic invariants that must hold in order for this list to be valid? How
can you efficiently check each of these properties?

F. (3 points) Ok, finally time to flip this house! You call up Chip and Joanna Gaines and get to
work on the roof, which has almost completely collapsed. Your job is to fix it by applying the
edge flip depicted below. However, to ensure the list remains valid at all times, the only opera-
tion you’re allowed to perform is a swap of two elements of the N array, which you can write as
swap(N[i],N[j]). This way, you can’t possibly get any of the crashes you probably experienced
in your assignment! (Hint: your solution should not require more than the provided space.)
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Melting Snow

Problem 4. (18 points):

Winter is coming. Fortunately, using the power of computer graphics, you can turn any snow you might
encounter into a warm, wet puddle. But first, we have to make the snow! The Koch snowflake is a recursive
fractal, much like the tree you visualized in Quiz 4. This time, though, rather than repeatedly applying
transformations, you will repeatedly split two sides of an equilateral triangle into thirds, placing the base
of a new, smaller equilateral triangle along the middle third. Several steps of this process are depicted
above. To get a “melted” snowflake, we will then compute the (approximate) distance φ(q) to this fractal
set. By drawing the implicit curve φ(q)− c = 0 for increasing values of c (starting at c = 0) we get the
animation of a melting snowflake shown below.

A. (4 pts) Given the endpoints a, b ∈ R2 of a segment, give expressions for c, d, and e. These expres-
sions must be valid for any given endpoints a, v—not just a horizontal segment as depicted above! If you
like, you may use the imaginary unit ı to denote a 90-degree counter-clockwise rotation. Alterna-
tively, if you are uncomfortable with complex numbers, you may use Rot90 to denote a 90-degree
counter-clockwise rotation. (Hint: what is the height of an equilateral triangle with base length r? Use the
Pythagorean theorem!)

Note: In the exercises that follow, you may assume that these expressions have been implemented in
a method splitSnowflakeEdge( Vec2D a, Vec2D, Vec2D& c, Vec2D& d, Vec2D& e );
However, you do not have to implement this method yourself!
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B. (5 pts) Now write a recursive method that, given any query point q, computes the distance to all
triangles generated by a single edge of a snowflake (up to a certain depth). The input to this method
is a segment, a query point, the target depth, and a pointer to the smallest distance value observed
so far. You can assume this method will initially be executed for the three edges (p1, p2), (p2, p3),
(p3, p1) depicted above. Your implementation may call the splitSnowflakeEdge method from
the previous part, and the triDist method from the warmup. Points inside the snowflake should
return a distance value of zero; you may assume that all points in triangle (p1, p2, p3) will already
be assigned a zero distance value.

void kochDist( const Vec2D a, const Vec2D b, // input segment
const Vec2D q, // query point
int depth, // target depth
double* distance ) // smallest depth so far

{

}
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C. (5 pts) The distance function you computed in the previous part is an implicit description: any
points with distance value φ(q) = 0 are contained in the snowflake. We can also use this function
to compute a “smoothed” version of the snowflake by visualizing sets of points with distance val-
ues greater than zero. Rather than drawing a filled region, you will draw a thin curve around a
target distance value. You can assume you already have a method snowflakeDist( Vec2D q
) that returns the distance between a Koch snowflake and the given query point q. The first in-
put to drawMeltedSnowflake is the target distance; to draw a curve, you want to turn on any
pixel whose distance value equal to this target distance, plus or minus the given range. Pixels in
this band should get a value of 0; pixels outside this band should get a value of 1. You can as-
sume that the array pixels has already been allocated, and has size w*h. (By varying the value of
targetDistance, you can create a “melting” animation of the kind depicted below.)

void drawMeltedSnowflake( double targetDistance, double range,
int w, int h, double* pixels )

{

}

Page 16



D. (4 pts) Repeatedly evaluating the distance to a fractal structure is quite expensive, especially if you
want to produce a lot of detail or many frames of an animation. How might you modify your
distance evaluation code to accelerate the process? You do not need to write any code. (Hint: looking
at the first figure in this problem, how can you easily get a lower bound on the distance to one “branch” of the
snowflake?)
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Raytracing

Problem 5. (20 points):

The k-d-tree shown below is used to partition the space occupied by seven triangles. The (2D) splitting
planes are identified by upper-case letters, and lower-case letters are used to denote the areas of space
occupied by each leaf of the k-d-tree.

AD

B

1

2
3

4
5

6 7

C

a
b

c

d

e

A

CB

D

a b

c d e

A. (3 pts) Write down the list of triangles associated with each leaf node.

B. (4 pts) It is obvious to us that the camera ray shot into the scene intersects triangle 1. Nevertheless, a
computer program would have to do some work to figure that out. Assuming front-to-back traver-
sal ordering and early termination, list the order in which the nodes of the tree are visited (use the
upper and lower case labels shown in the figure on the right).

C. (3 pts) Which triangles need to be explicitly checked for intersection against the ray? You can assume
that each triangle will be checked at most once.

Page 18



D. (5 pts) Suppose that triangle 1 has vertices p1 = (0, 0), p2 = (1, 0) and p3 = (0, 2), and that a
ray shot from outside the plane intersects the triangle at p = (2/5, 4/5). What are its barycentric
coordinates?

E. (5 pts) A different ray now hits the same triangle. Suppose that you repeat the procedure above,
and determine that the barycentric coordinates of the new point are 0.3, 0.3, and 0.4. If the texture
coordinates of the three triangle vertices are t1 = (0, 0.2), t2 = (0.6, 0.8), t3 = (1, 0.4), what color
value will be assigned to the point hit by this ray if we sample from the texture below? You may
assume that we are using nearest neighbor interpolation.

.3 .3.2 .3.2 .3.1  0

.3 .3.3 .3.3 .3.3 .3.4 .3.4 .3.3 .3.3 .1

.3 .3.3 .3.3 .3.3 .3.3 .3.4 .3.5 .3.3 .2

.3 .3.3 .3.3 .3.3 .3.2 .3.3 .3.4 .3.4 .3

.1 .3.2 .3.3 .3.4 .3

u

0 1

1

v
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