
Full Name:

Andrew ID:

15-462/662, Spring 2020

Final Exam

May 8, 2020

Instructions:

• This exam is closed book, closed notes, closed neighbor, closed cell phone, closed telepathy, closed
internet.

• You may however use a single 3in x 3in sticky note (or piece of paper) with any information you like
written on both sides—-except for solutions to previous exams.

• If your work gets messy, please clearly indicate your final answer (by writing it in a box if possible).

• Partial credit will be awarded, but only if we can understand your work! So please try to write clearly,
especially if you are uncertain about the final answer.

Problem Your Score Possible Points

1 24

2 30

3 21

4 25

Total XXX

1

1 (24 points) Getting Things Started

a. (4 points) The James Webb Space Telescope (JWST) will be launched in 2021, and is 100x more powerful
than Hubble—allowing us to see some of the very first galaxies in the universe. Suppose you point the
JWST at a small flat asteriod 1m in diameter, and get back a 10x10 pixel image with perfectly vertical
brown and beige stripes 1 pixel across. Without any further data, what can you conclude about the
appearance of the asteroid’s surface?

A. It has vertical stripes that are at least 10cm wide

B. It has vertical stripes that are exactly 10cm wide

C. It has vertical stripes that are at most 10cm wide

D. It has horizontal stripes that appear vertical due to aliasing.

E. The resolution is too low to say anything about the actual signal.

SOLUTION.

Solution: Stripes larger than 10cm would be directly resolved by the image, and would appear more
than 1 pixel wide. The stripes could be exactly 10cm wide, but they could also be even more narrow—
appearing as 1cm stripes only due to aliasing. Horizontal stripes could not appear vertical due to
aliasing; at worst they would be aliased to a constant signal. Finally, the image does contain some
information about the signal: it puts a lower bound on the frequency of oscillations in the horizontal
direction.

b. (4 points) Suppose you want to take a picture of a beautiful sunrise and reproduce it as accurately as
possible with your inkjet printer. However, when you print it out, it doesn’t look nearly as good as it
did in person. Which of the following is NOT responsible for degrading the perceived quality of the
color reproduction?

A. The fact that your digital camera stores gamma-encoded values.

B. The fact that your camera records values in the sRGB color space.

C. The color of the lights used to view the final image.

D. The color of the paper used by the printer.

E. The fact that inkjet printer inks are not spectrally accurate.

SOLUTION.

Solution: Gamma encoding of color values (i.e., applying a nonlinear remapping before storing) doesn’t
cause any harm; if anything it will yield better reproduction because the color intensities will be better
spread out over the available numerical range.

c. (4 points) Suppose you are trying to estimate the integral of a function f : [0, 1]→ R via Monte Carlo
integration. Let fi := f (Xi), where Xi are independent random samples drawn uniformly from the
interval [0, 1]. Suppose after taking 1024 samples you compute the variance

1
1024

1024

∑
i=1

(
fi − 1

1024

1024

∑
j=1

f j

)2

,

and discover that it is still a very large value. What does that tell you about the accuracy of your
estimator?

2

A. Floating point calculations are unreliable for this problem.

B. This is simply a tough function to integrate, and you should keep sampling.

C. Nothing, this is not the correct expression for variance.

D. Nothing, this is the variance of the function f .

E. Nothing, variance in general has nothing to do with accuracy.

SOLUTION.

Solution: The expression gives the (correct) variance for the integrand f itself; this quantity is fixed
and cannot be increased or decreased according to the number of Monte Carlo samples taken. For
measuring accuracy, the quantity of interest is the variance of the estimator, not the integrand.

d. (4 points) Suppose you are integrating an ODE for a double pendulum. You notice that after just a
short amount of time, the animation “blows up,” i.e., it rapidly gets faster, and produces ridiculous
values. What can you do to make the animation more stable?

A. Simply increase the time step until it stabilizes.

B. Nothing: the double pendulum is chaotic, hence any integrator will blow up.

C. Use stratified sampling to reduce the variance of the chaotic motion.

D. Evaluate the speed function at the current (known) time step.

E. Evaluate the speed function at the next (unknown) time step.

SOLUTION.

Solution: Increasing the time step generally makes ODE integrators less stable. Chaotic motion cannot
be resolved accurately over long time scales, but it can still be integrated in a way that doesn’t cause
the energy to blow up (e.g., using implicit or symplectic Euler). Stratified sampling is not a relevant
quantity for ODE integrators; there are no random variables involved. Evaluating the speed function at
the current step yields forward Euler integration, which is unconditionally unstable. Evaluating it at
the next time step yields backward Euler integration, which is unconditionally stable.

e. (4 points) Suppose you’re trying to minimize a function f (x1, . . . , xn) to discover the most realistic
parameters for a chocolate cake BRDF (yummmmm. . .). You start with a random set of parameters
x0 ∈ Rn, and apply a very simple gradient descent scheme xk+1 = xk − τ∇ f (xk), for some fixed step
size τ > 0. Your stopping condition is that the norm of the gradient |∇ f (x)| must fall below some
threshold ε > 0. However, after 1,000,000 gradient descent iterations, your code is still running. Which
of the following could NOT be the source of the problem? You may assume that your implementation
uses fixed-precision floating point (say, all 64-bit/double precision).

A. The step size τ is too big.

B. The tolerance ε is too small.

C. The objective is not bounded from below.

D. The objective is not coercive.

E. Any of them could be the problem.

3

SOLUTION.

Solution: If the step size is too big, you could bounce around forever and never find a local minimum.
If the tolerance is too small (say, floating point zero) then in finite precision there may not be any points
where the gradient is sufficiently small. If the objective is not bounded from below, you could keep
decreasing the objective forever without ever finding a local minimum; likewise if the objective is not
coercive. Hence, any of them could be the problem (and which one cannot be determined purely by the
fact that you don’t find a local minimum).

f. (4 points) During quarantine you decided to try your hand at baking sourdough bread. To make a
sourdough starter, you usually have to wait several days for yeasts and lactic acid bacteria (LAB)
to overtake other competing microbes. But you had a brilliant idea, based on your knowledge of
radiometry from 15-462: if you can expose the starter to just enough UV radiation, you can keep
the yeasts and LAB alive, while killing off some of their competitors. In particular, suppose that the
maximum dose of radiation they can withstand is 25 J/cm2. Assume that you have a 25W area light
source of total area 50cm2. What’s the maximum amount of time you can shine this light on your
sourdough starter without killing off the “good microbes” (i.e., the yeast and LAB)? You can assume
the light is shining directly down on the starter (i.e., the light has a Dirac delta-like distribution in the
downward direction).

A. 12.5 seconds

B. 20 seconds

C. 50 seconds

D. 100 seconds

E. Cannot be determined without knowing the shape of the light source.

SOLUTION.

Solution: 25W of power spread over 50cm2 has an irradiance of 0.5W/cm2. Recall that one Watt is
equal to one Joule per second. So if you run the light for 50s, you get 50s × 0.5 J s−1 cm−2 = 25 J/cm2,
which is just enough to start killing the good microbes.

4

2 (30 points) Modern Font Rendering

Something we take for granted is how modern computers display beautiful, high-quality typography at
blazing fast speeds. How do they do it? An old-fashioned approach is to use an incremental algorithm
somewhat like Bresenham’s line algorithm, but this approach isn’t well-matched to real graphics architectures
like GPUs. In this question, we’ll compare and contrast several more modern approaches, and you’ll
implement (part of) one that provides a good speed/quality tradeoff.

Many modern fonts, such as TrueType fonts, are made up of quadratic Bézier curves (whereas others, like
OpenType fonts are made of cubic Béziers). Consider the letter ‘e’ below, from the Helvetica typeface. Its
boundary consists of a sequence of either quadratic Bézier curves, or straight line segments.

triangle

Bézier wedge

Our basic strategy for rendering this glyph is to break up the shape into two kinds of triangles: ordinary
triangles, that fill in the interior, and what we’ll call “Bézier wedges,” which are used to draw the nice
smooth outline. In particular, the three vertices of a triangle will be interpreted as three control points for a
quadratic Bézier curve, and we’ll want to fill in the region of the triangle to the “left” of the curve (assuming
all curves have a consistent, counter-clockwise orientation).

5

p0=(0,0) p1=(1,0)

f

u

v

φ > 0

φ < 0

q0

q1

q2 q

To fill in an individual Bézier wedge, we’ll do something similar to texture mapping:

• First, we’ll rasterize the triangle as usual, i.e., for each fragment, we’ll check if it’s inside or outside the
triangle made by the three control points q0, q1, q2 ∈ R2.

• If it’s inside, we’ll compute barycentric coordinates (b0, b1, b2) ∈ R3.

• We’ll use these barycentric coordinates to interpolate texture coordinates (ui, vi) ∈ R2 stored at the
three vertices.

• Finally, we’ll use these texture coordinates to fill in the Bézier wedge. But with a twist! Rather than
looking up into a texture image, we’ll evaluate an implicit function φ(u, v) that has a closed-form
definition.

• The final color and alpha value for the fragment will be determined by whether the implicit function is
positive or negative.

a. (5 points) Let f be the map that takes any point q in the triangle to its corresponding barycentric coor-
dinates (b0, b1, b2), and let g be the map that uses these barycentric coordinates to find the interpolated
texture coordinates (u, v). What kind of map is h := g ◦ f ? Why is this fact important for ensuring that
our rasterization scheme actually draws the correct Bézier curve?

SOLUTION.

The map h is affine, which is important because it means that testing whether points are inside/outside
the reference curve is equivalent to testing whether a point is inside/outside the actual curve. In
particular, a Bézier curve is an affine combination of control points, hence it doesn’t matter whether we
evaluate a Bézier curve in the plane and then apply an affine map, or apply the same affine map to the
control points and then evaluate the Bézier curve.

b. (6 points) Consider a quadratic Bézier curve γ(t) : [0, 1] → R2 in texture space with control points
p0 = (0, 0), p1 = (1, 0), and p2 = (1, 1). Give an explicit expression for γ involving just t and no other
variables.

6

SOLUTION.

In general, a quadratic Bézier curve has the form

γ(t) = ∑
i=02

B2,i(t)pi, (1)

where B2,i are the quadratic Bernstein polynomials. In particular,

B2,0(t) = (1− t)2,
B2,1(t) = 2t(1− t),
B2,2(t) = t2.

Expanding Equation 1 yields

γ(t) = (1− t)2(0, 0) + 2t(1− t)(1, 0) + t2(1, 1) = (2t(1− t) + t2, t2),

which simplifies to
γ(t) = (t(2− t), t2).

c. (6 points) So far, we have an explicit description of the curve. To be able to evaluate whether we’re
inside/outside a Bézier wedge, we’ll need an implicit expression that can be evaluated at any point.
Give an expression for a function φ(u, v) that is negative inside the Bézier curve, and positive outside.
“Inside” means in the grey shaded region, as depicted above; you do not need to worry about what
happens for (u, v) values outside the triangle (p0, p1, p2). [Hint: in general, how would you test if a point
(u, v) is above the graph of a function v = f (u)?]

SOLUTION.

In general, to test if a point (u, v) is above the graph of a function v = f (u), you can just check if
v > f (u), or equivalently, you can check if v− f (u) > 0. To rewrite γ(t) = (t(2− t), t2) in the form
(u, f (u)), we can first solve the equation u = t(2 − t) for t. Using the quadratic formula, we get
t = 1±

√
1− u, and since in our case u ∈ [0, 1], we want the root t = 1−

√
1− u, which also has values

in [0, 1] (i.e., in the domain of our curve γ). Substituting this expression into our original expression for
γ(t) gives γ(u) = (u, (1−

√
1− u)2). Hence, the function

φ(u, v) = (1−
√

1− u)2 − v

will be negative when (u, v) is above the curve.

d. (7 points) Let’s put it all together, and write a routine that determines whether a given sample point q
is covered by a given primitive, which can be either a triangle or a Bézier wedge. You can assume that
you are given a function

double phi(Vec2 uv);

which returns the correct value for the function φ(u, v) (whether or not you got the correct answer to
the previous question). You can also assume you are given a function

Vec3D barycentric coordinates(Vec2 q, Vec2 q0, Vec2 q1, Vec2 q2);

which returns the barycentric coordinates of q relative to a triangle with vertices q0, q1, q2; more
precisely, it gives the normalized signed triangle areas (whether or not q is in the triangle). You should
implement the routine fragment color below, which takes the sample point and the three vertices
as input, as well as a flag isBezier which is true if the triangle should be drawn as a Bezier wedge,
and is false if the triangle should be drawn as just an ordinary triangle. The return value color of

7

any sample point q covered by the primitive should be bright orange (using an RGB color model with
values in the range [0, 1]), and have an alpha value of 1. If q is not covered by the primitive, it should
have an alpha value of 0 (and the color does not matter).

void fragment_color(Vec2D q, // sample point
Vec2D q0, Vec2D q1, Vec2D q2, // vertices
bool isBezier, // true if it’s a Bezier wedge
Vec4D& color) output color and alpha

{
// By default, set the output color to orange, 100% opaque
color[0] = 1.0;
color[1] = 0.5;
color[2] = 0.0;
color[3] = 1.0;

// Get the barycentric coordinates at the sample point
Vec3D b = barycentric_coordinates(q, q0, q1, q2);

// First check if we’re inside the triangle; if not, then
// we don’t need to draw the triangle or the Bezier wedge,
// and can just set the alpha to zero.
for(int k = 0; k < 3; k++) {

if(b[k] < 0. || b[k] > 1.) {
color[4] = 0.;
return;

}
}

// If we’re drawing an ordinary triangle, we can just stop
// here since we know all fragments inside the triangle
// should be shaded.
if(!isBezier) return;

// To rasterize a Bezier wedge, we first interpolate the
// texture coordinates. Then we check if the point where
// we land in texture space is covered by the standard
// Bezier wedge.
Vec2D uv = b[0] + Vec2D(0,0) +

b[1] + Vec2D(1,0) +
b[2] + Vec2D(1,1) ;

if(phi(uv) > 0.) color[3] = 0.;

return;
}

e. (6 points) There are other ways we could shade in a Bézier wedge. For instance, rather than evaluating
an implicit function (as above), we could precompute a texture that is negative only inside the shaded
region, and just look up into this texture. Or, we could simply approximate the shaded region by
tessellating it into a collection of ordinary triangles. Give at least one pro and one con for each approach.

implicit function

8

SOLUTION.

PRO: You’ll get exactly the right (analytical) solution at any resolution.

CON: You can’t apply prefiltering; instead, you have to anti-alias using supersampling (or some
specialized technique for the implicit function).

texture map

SOLUTION.

PRO: You can apply prefiltering to avoid aliasing.

CON: You incur significant use of texture bandwidth, which is probably a much bigger bottleneck than
the arithmetic needed to evaluate the implicit function.

tessellation

SOLUTION.

PRO: Rasterization is simple, because you can just use existing routines.

CON: You get geometric aliasing, or else have to use a huge number of triangles adapted to the screen
resolution.

9

3 (21 points) Sampling a Capsule

(0,0,0)

(0,0,3)

(0,0,-3)

r=1

r=1

In your renderer, you want to add a capsule-shaped area light source. To do this, you’ll need to be able to
sample the surface of the capsule uniformly at random. We can break this down into a few easier pieces.

Throughout, you can assume that the light source is made of a cylinder of radius 1 and length 6, centered
around the origin and lying along the z-axis; the ends of the cylinder are therefore at (0, 0,±3), as depicted
in the illustration above. At each end of this cylinder there is a hemispherical cap, also of radius 1.

For the code, you can assume that you have any standard math functions (sine, cosine, etc.), and any of
the usual operations on 3D vectors (dot, cross, etc.); basically anything you had available in the Scotty3D
skeleton code. You may assume that you have a function random(a,b) that returns a random value
sampled uniformly from the range [a, b].

a. (7 points) Let’s start out easy: just write a little piece of code that takes a uniform random sample from
the cylindrical piece. Your implementation must use an explicit (i.e., parametric) representation of the
cylinder. The return value should be a point in R3, sitting somewhere on the surface of the cylinder.

Vec3D sampleCylinder()
{

double theta = random(0,2*pi);
double h = random(-3,3);

return Vec3D(cos(theta), sin(theta), h);
}

10

b. (7 points) Next, write a piece of code that samples one of the two hemispherical caps. It doesn’t
matter which one, but the points should land on one of the two caps (not just an arbitrary hemisphere
somewhere in space). Here, your implementation must use rejection sampling.

Vec3D sampleCap()
{

Vec3D p;

do {
p = Vec3D(random(-1,1),

random(-1,1),
random(-1,1));

}
while(p.norm() > 1)

p /= p.norm();
p.z = 3 + fabs(p.z);
return p;

}

c. (7 points) Now let’s put the pieces together into a single routine that samples uniformly from the whole
surface. Your implementation should basically be a wrapper around your two previous routines, with
a little logic and (biased) coin flipping to decide which routine to call. Be careful here: you don’t want
to sample the cylindrical piece too much relative to the hemispherical caps, and vice versa. [Hint:
what’s the area of each piece?]

Vec3D sampleCapsule()
{

if(random(0.,1.) > 4./16.)
return sampleCylinder();

Vec3D p = sampleCap();
if(random(0.,1) < .5)

p.z = -p.z;
return p;

}

11

4 (25 points) Spline Canyon

t

h(t)

h1(t)

h2(t)

0 1 2

hstart

hend

You have been tasked with building a bridge across Spline Canyon. The challenge is that the two sides of
the canyon are at very different heights. So, to make the ride as smooth as possible, you will design a spline
that has some nice geometry. However, you only get to work with two cubic segments—so you really need
to be sure to pick your constraints carefully! In particular, you will design a piecewise cubic height function

h(t) =

{
h1(t), 0 ≤ t < 1
h2(t− 1), 1 ≤ t ≤ 2,

where both h1 and h2 are cubic splines expressed in the cubic Bézier basis. In particular, we’ll say that

h1(t) = a0B3,0(t) + a1B3,1(t) + a2B3,2(t) + a3B3,3(t)

and
h2(t) = a4B3,0(t) + a5B3,1(t) + a6B3,2(t) + a7B3,3(t),

where B3,i is the ith cubic Bernstein polynomial (which is defined over the interval [0, 1]), and a1, . . . , a7 ∈ R

are as-of-yet undetermined coefficients that determine the shape of the spline.

a. (6 points) First, we need to figure out what constraints will actually work. Which of the following
conditions determine the spline?

12

A. Fix the two endpoints h(0) and h(2) to hstart and hend (respectively), set the 1st derivatives at these
same two endpoints to zero, and make sure the heights as well as the 1st, 2nd, and 3rd derivatives of
the two segments agree at the midpoint t = 1.

B. Fix the two endpoints as in (A), set the 1st and 2nd derivatives at these same two endpoints to zero,
and make sure the heights as well as the 1st and 2nd derivatives of the two segments agree at the
midpoint t = 1.

C. Fix the two endpoints as in (A), set the 1st and 2nd derivatives at these same two endpoints to zero,
and make sure the heights agree at the midpoint t = 1.

D. Let the heights of the two endpoints be free, but require that the 1st and 2nd derivatives at endpoints
be equal to zero, and the heights as well as the 1st, 2nd, and 3rd derivatives of the two segments agree
at the midpoint.

E. A and C.

SOLUTION.

Only A works, because the number of constraints (8) is equal to the number of degrees of freedom (8). B
has one too many constraints; C has one too few constraints (7) and hence does not determine the curve.
Likewise, although there are 8 constraints in D, they don’t uniquely determine the curve: any curve
satisfying these constraints can be shifted up and down by a constant without violating the constraints
(which just means that the constraints are not linearly independent).

b. (7 points) Suppose you choose the set of constraints given in answer A from the previous problem.
Write these constraints out explicitly, i.e., write the equations that would have to be satisfied in terms of
the variables ai, and the constants hstart, hend.

SOLUTION.

a0 = hstart
a7 = hend

−3a0 + 3a1 = 0
−3a6 + 3a7 = 0

a3 = a4
−3a2 + 3a3 = −3a4 + 3a5

6a1 − 12a2 + 6a3 = 6a4 − 12a5 + 6a6
−6a0 + 18a1 − 18a2 + 6a3 = −6a4 + 18a5 − 18a6 + 6a7

c. (6 points) Now write the equations from the previous question as a matrix equation. Is this system of
linear equations overdetermined, underdetermined, or uniquely determined? (You should assume
that hstart and hend are known, constant values.)

13

SOLUTION.

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
−3 3 0 0 0 0 0 0

0 0 0 0 0 0 −3 3
0 0 0 1 −1 0 0 0
0 0 −3 3 −3 3 0 0
0 6 −12 6 −6 12 −6 0
−6 18 −18 6 6 −18 18 −6

a0
a1
a2
a3
a4
a5
a6
a7

=

hstart
hend

0
0
0
0
0
0

The system is uniquely determined, which can be discovered by inspecting the matrix, or by simply
noting that the geometric problem is well-posed: there are 8 constraints for 8 degrees of freedom; fixing
the endpoints avoids a freedom by a constant shift, and none of the constraints are in conflict (since
they pertain to different derivatives).

d. (6 points) Suppose you now want to solve the linear system you setup in the previous problem, but
don’t have a linear solver library available. A very simple-to-implement (but slow!) algorithm for
solving it is to apply gradient descent to the norm of the residual. More explicitly, suppose that the
equation you want to solve is

Ma = b,

where M and b are the matrix and right-hand side you setup in the previous problem, and a is the vector
of unknown coefficients a1, . . . , an. The residual r is the difference between the left- and right-hand side:

r = Ma− b.

The linear system will therefore be satisfied when the residual is zero (r = 0). So, to find a solution, we
can just minimize the function f (a) = ||r||2 with respect to a, via gradient descent. Letting τ > 0 be a
fixed time step, and using ak to denote the guess at step k of gradient descent, write down the update
rule for gradient descent on f . I.e., write down what you would compute each time to take a gradient
step.

SOLUTION.

The gradient of f with respect to a is

∇a f = ∇ar
Tr

= ∇a(aTMTMa− 2aT + bTMa+ bTb)
= 2MTMa− 2MTb.

So, to move in the direction opposite the gradient by a distance τ, we’d just have an update

ak+1 = ak − 2τMT(Ma− b),

or equivalently,
ak+1 = ak − 2τMTr.

14

