
Full Name:

Andrew Id:

0.1in

15-462/662, Fall 2015

Final Exam
Dec 14, 2015

Instructions:

• This exam is CLOSED BOOK, CLOSED NOTES (with the exception of your one post-it note).

• The exam has a maximum score of 100 points. Unlike your midterm, you should try to answer all
of the questions. Don’t worry if you can’t finish everything—keep in mind that everyone else is on
the same clock, and will be graded on the same curve as you.

• If your work gets messy, please clearly indicate your final answer.

Problem Your Score Possible Points

1 15

2 15

3 18

4 10

5 7

6 10

7 10

8 15

Total 100

Page 1

Getting the Party Started: Miscellaneous Short Problems

Problem 1. (15 points):

A. (2.5 pts) Give one reason why color representations that explicitly separate the luminance (bright-
ness) and chroma components of a color (e.g., YCbCr or hue-saturation-brightness (HSB)) can be
useful representations.

Solution:This representation is useful for compression since the human visual system is less sensitive to
spatial variation in chroma, allowing for lower-resolution sampling of these components. Another reason is
that these representations can be more intuitive when describing or selecting colors.

B. (2.5 pts) Imagine the human visual system could directly measure and interpret the full spectrum of
incident light. (That is, your brain received and used full spectral information L(λ) rather than just
the response of S,M,L-cones). How would this make recording and displaying digital images and
rendering pictures far more challenging?

Solution:Graphics would get tough. Computers would have to record, synthesize, or generate entire spec-
trums that match those encountered in the real world. Otherwise, the images produced by computers would
not be perceived by our brains to contain the same colors as what we see in the real world.

C. (2.5 pts) In class we discussed how the cosine basis was a very useful basis for compression for
real-world images since high-frequencies are less common in nature. Describe the properties of an
image that would be more amenable to compression when represented in the pixel basis than the
cosine basis. (Recall from the lecture 24 quiz that basis image Bij in the pixel basis is the image with
all pixels black except for pixel (i,j).)

Solution:We accepted solutions where non-zeros in the pixel basis were sparse. For example, an image with
only a few colored pixels and the rest black. We also accepted solutions that described large flat regions of
color, since they could easily be run-length encoded.

Page 2

D. (2.5 pts) Suppose you wanted to simulate a popcorn popping in a popcorn machine. What would
be a more appropriate spatial discretization: Lagrangian or Eulerian? Why?

Solution: I would probably track individual popcorn kernels as Lagrangian particles, so that I could track
their individual trajectories. However, for a truly massive amount of popcorn (e.g., filling up an entire house)
it might be useful to approximate the gross motion of the popcorn using some kind of continuum model. Also,
the popping of an individual popcorn kernel might be better simulated on an Eulerian grid. [Note to the
graders: any answer is good here as along as it is logical and thoughtful.]

E. (2.5 pts) What’s an example of a function that has infinitely many local minima but no global mini-
mum?

Solution: There are many possible answers here; one is f : R→ R; x 7→ cos x− x.

F. (2.5 pts) Label each of the following linear transformations, and justify your answer by saying which
quantity was preserved.

(Original)

Solution: From left to right: rotation (because angles, lengths, and orientation was preserved); linear iso-
morphism (because lines were preserved); uniform scale (because everything but scale was preserved).

Page 3

Making a Splash in Computer Graphics

Problem 2. (15 points):

KASPLOO
SHIE!

You are working on a key scene from the next Pixar movie, where in desperation the main character
chucks her favorite spherical rock into her favorite one-dimensional pond. The artists are gearing up
to animate each little splash by hand, but suddenly you remember all the amazing stuff you learned in
15-462. Give the artists a break by building the solver described below.

A. (2.5 pts) First, you need to animate the trajectory q(t) of the rock as it flies through space, starting at
a position q(0) = q0 with velocity q̇(0) = v0. The trajectory of a spherical rock with uniform mass
density is given by the 2nd-order ODE q̈ = g, where g is a downward-pointing vector giving the
acceleration due to gravity. Rewrite this equation as a pair of first-order ODEs, so that it can be more
easily integrated.

Solution: Letting v denote the velocity of the rock, we get q̇ = v and v̇ = g.

B. (2.5 pts) Now you need to convert your two differential equations into a finite procedure that can be
executed on the compute farm. Pick a time discretization scheme (forward Euler, backward Euler,
or symplectic Euler), and write down the corresponding update rule for your rock. Make sure
you specify how all your variables are initialized. Give some justification for why you picked this
particular scheme for this animation shot.

Solution: I chose to use symplectic Euler, because I wanted the artists to have predictable control over how
big the splash is—therefore, I don’t want the rock to gain or lose energy due to numerical integration. Let v(t)
be the velocity of the particle as a function of time. Then symplectic Euler yields the update rule

vk+1 = vk + τg,
qk+1 = qk + τvk+1,

where τ is the time step, and the second equation is evaluated after the first one. The initial values of q and v
are simply given by the initial conditions q0 and v0. [NOTE: Any choice of integrator is fine here as long as
the answer is meaningfully justified.]

Page 4

C. (2.5 pts) Now you hit “play” and the rock flies beautifully through the air. Sadly, the animation lacks
a climax because the rock simply passes through the surface of the pond, which remains calm and
placid. Next, you will need to solve for the height u(x, t) of the water as a function of space and
time. The first question to answer, though, is: where and when does the rock impact the water? You
may assume that the rock always starts out above the water, which initially sits at a constant height
u(x, 0) = H0. It may help to work things out in terms of coordinates q = (x, y). Your answer should
provide both the location and time of impact, and should depend only on values that come out of
the numerical integrator. 1 Try to be as accurate as possible—this is Pixar, after all.

Solution: Since we only have samples of the trajectory, we need to interpolate it somehow to find where it
intersects the water surface. The simplest scheme is linear interpolation. In particular, we’re looking for the
moment at which a line segment from qk to qk+1 intersects a horizontal line with height H0. We first need
to find the index k such that yk > H0 and yk+1 ≤ 0, which we can simply run as a check during our ODE
integration. Next, we need to find the point along this segment that intercepts the line y = H0. If we write
the height of the segment as

y(α) = (1− α)yk + αyk+1,

then we just have to solve y(α) = H0 for α, which yields

α =
yk − H0

yk − yk+1 .

The point of impact is then q∗ = (1− α)qk + αqk+1, and the time of impact is t∗ = tk + ατ.

D. (2.5 pts) Now that we know where and when the rock hits the pond, it needs to somehow affect
the motion of the water. Suppose that we use an Eulerian discretization, i.e., we have a fixed grid
at positions x0, x1, . . . , xn, and at each point we keep track of the corresponding height of the water
uk

0, uk
1, . . . , uk

n, where the subscript denotes the grid point, and the superscript k denotes the time step.
Roughly sketch out some way we might set the values of u such that it looks like our rock is hitting
the water. You do not have to give a precise mathematical/algorithmic description here. There are
several possibilities; any solution is ok as long as you can provide a compelling justification.

Solution: The simplest thing we might do is simply find the nearest time step k and the nearest grid point
i, and change the value of the corresponding height uk

i ; for instance, we could set it to something like half the
rest height H0. However, this scheme would not be particularly accurate (especially on a very coarse grid),
because we are rounding to the nearest location in space/time. Instead, we might find, say, the two closest
nodes on the grid, and adjust both of their heights. Still, this scheme leaves something to be desired since it
does not account for the velocity of the rock. So, we might do something like (i) grab the velocity of the rock
from our ODE integrator, and (ii) set the difference of heights over time to be proportional to this velocity.
If we really wanted to get fancy, we could try deriving a scheme based on conservation of momentum, i.e.,
making sure that the total momentum of the rock-water system before and after impact is preserved. Lots of
possibilities.

1In other words: for those of you more comfortable with ODEs, do not simply use the analytical solution, because in general
analytic solutions cannot be computed! This approach is therefore forbidden.

Page 5

E. (2.5 pts) I like to move it! Move it! ...Whoops, wrong studio. Anyway, it’s time to add some motion to
your pond. At this point, everything is pretty much in place: you have a grid with water height uk

i
for the ith grid point at the kth time step, and some of these values have already been set according
to where and when the rock makes an impact. The only thing left to do is to update the grid locations
at all subsequent points in time so that you get beautiful rippling motion. For this, you’ll want to
integrate the wave equation, which in 1D amounts to just

∂2u
∂t2 = c2 ∂2u

∂x2 ,

where the constant c is the wave speed, i.e., how fast the wave moves outward from the point of
impact. Because film runs at only 24 frames per second, you’ll want to take pretty big time steps.
Therefore, you decide to discretize this equation using the backward Euler method. But rather than
split this equation into two pieces that are first-order in time (as we did with the rock), you’re going
to simply use second-order finite differences for each of the second derivatives (in space and time).
Write down the backward Euler update rule at grid node i and time k, assuming a fixed time step
τ and a fixed grid spacing h. You do not have to solve for the new variables; you just have to write
down the rule. (Hint: if you can’t remember the rule for a second-order finite difference, just try
taking the first-order difference of a first-order difference!)

Solution: The first-order finite difference in time is

uk+1
i − uk

i
τ

,

which means the second-order difference in time is

uk+1
i −uk

i
τ − uk

i
uk−1

i

τ
=

uk+1
i − 2uk

i + uk−1
i

τ2 .

Likewise, the second-order difference in space is

uk
i+1 − 2uk

i + uk
i−1

h2 .

For backward Euler, we want to evaluate the velocity function at the next point in time (k + 1), which means
our update rule is

uk+1
i − 2uk

i + uk−1
i

τ2 = c2 uk+1
i+1 − 2uk+1

i + uk+1
i−1

h2 .

which we want to solve for the unknown variables uk+1
i at all grid notes i at time step k + 1.

F. (2.5 pts) We now have a big system of linear equations (one for each grid node) that we want to
solve for all the unknown variables uk+1

i at the next time step k + 1. The artists at Pixar are pretty
bad at solving linear equations, so instead you’re going to just call a routine in a numerical linear
algebra library. Question: should you use a dense matrix or a sparse matrix for this system, and
why?

Solution: A sparse matrix is most appropriate here, because each of our linear equations involves just a few
variables—therefore, the corresponding matrix will contain mostly zeros.

Page 6

Mesh-Spring System

Problem 3. (18 points):
Your startup is building a cutting-edge platform for vir-
tual try-on: slip on a VR helmet, and you can visualize
yourself wearing all the latest fashionable hoodies. The
great part about this system is that the customer can buy
clothes from the comfort of their own home, without hav-
ing to put on anything at all—kind of a modern version
of The Emperor’s New Clothes. Your job is to build a fast,
stable system for virtual cloth that meets the low-latency
demands of modern VR. Since clothing can come in many
shapes and sizes your basic idea is to turn any polygon
mesh with vertices V, edges E, and faces F into a dynamic
piece of cloth, by treating each edge as a spring in a giant
mass-spring system. In other words, between each pair of
neighboring vertices, there is a force preventing the edge
from getting compressed or stretched-out too much. Your
task will be fleshing out this basic idea into a dynamic simulation algorithm.

A. (2 pts) From your intro physics class, you probably remember that the potential energy of a spring
is 1

2 αx2, where x is the displacement of the spring from its rest length, i.e., x is negative when the
spring is compressed, positive when the spring is stretched-out, and zero when it is at its rest length.
The constant α > 0 determines the spring stiffness. Let `ij be the rest length for the edge between
vertices i and j of your mesh (corresponding to the edge length in the original file), and use qi, qj to
denote the position of the vertices. What is the spring potential energy for edge ij? What then is the
total spring potential energy Uspring for the entire mesh?

Solution: For a given edge ij ∈ E, the displacement x is just the difference between the current length and
the rest length: |qj − qi| − `ij. The total spring potential energy is then just the sum of 1

2 αx2 over all edges:
Uspring = α

2 ∑ij∈E(|qj − qi| − `ij)
2.

B. (2 pts) Most of your customers will be wearing their clothes on a planet with gravity. What is the
total gravitational potential Ugravity of the cloth in terms of the vertex positions qi? You may assume
that each vertex has mass m and that the gravitational constant is g; the springs connecting vertices
can be assumed to be massless. You should also assume that the user provides an arbitrary unit
vector w corresponding to the “up” direction, the direction along which gravitational acceleration
is applied. (Hint: think carefully about how to measure the “height” along an arbitrary direction.)

Solution: Since the potential for a single vertex is mgh, where h is the height along the direction w, the total
potential is Ugravity = mg ∑i∈V〈qi, w〉, where the inner product extracts the height.

C. (2 pts) At this point, you might be able to build a system that shows how cloth drapes over the
body: just find the configuration of the mesh that minimizes potential energy, keeping some of the
vertices fixed (e.g., those that come into contact with the body). However, most customers also care
about how the cloth moves. Therefore, you will also need an expression for the total kinetic energy
K. Again you may assume that each vertex has mass m; use q̇i to denote the velocity of vertex i.

Solution: The kinetic energy for a single vertex is 1
2 m|q̇i|2, so the total kinetic energy is K = m

2 ∑i∈V |q̇i|2.

D. (2 pts) Now that you have the kinetic and potential energy, you can easily formulate the Lagrangian
L(q, q̇). Write out an expression for L using the energies you derived above.

Page 7

Solution: The Lagrangian is just the total kinetic energy minus the total potential energy, which we can
write as

L = K−U = K− (Uspring + Ugravity) = m ∑
i∈V

(1
2 |q̇i|2 − g〈qi, w〉)− α

2 ∑
ij∈E

(|qj − qi| − `ij)
2.

E. (2 pts) Now that you have the Lagrangian, you can just “plug and chug” to get the equations of
motion for our cloth. In particular, you have to evaluate the Euler-Lagrange equation

d
dt

∂L
∂q̇i

=
∂L
∂qi

,

which gives an implicit description of the motion of any vertex i ∈ V. First work out an explicit
expression for the left-hand side, i.e., take the derivative of L with respect to the velocity q̇k of some
particular vertex k ∈ V, then take the time derivative.

Solution: The partial derivative of the Lagrangian with respect to the velocity of vertex k is given by

∂L
∂q̇k

=
∂

∂q̇k
∑
i∈V

m
2 |q̇i|2 = mq̇k,

since only the velocity of vertex k affects the kinetic energy of vertex k. The time derivative is then just

d
dt

∂L
∂q̇k

=
d
dt
(mq̇k) = mq̈k.

Page 8

F. (2 pts) Next, you will need to work out an explicit expression for the right-hand side of the Euler-
Lagrange equation for vertex k. Start by taking the derivative of the gravitational potential Ugravity
with respect to qk.

Solution: The derivative of the gravitational potential with respect to qk yields

∂

∂qk
Ugravity =

∂

∂qk
∑
i∈V

mg〈qi, w〉 = mgw,

since only one of the terms in the sum involves qk.

G. (2 pts) Finally, to complete the right-hand side of the Euler-Lagrange equation, take the derivative
of the elastic potential energy with respect to the position qk of vertex k. Be careful to think about
which edges from the potential energy affect the motion of vertex k. The key geometric question
to think about here is: what is the gradient of the norm |qj − qi| with respect to, say, qj? In other
words, if we want to increase this norm as quickly as possible, in which direction should we move
qj? And if we move qj a unit distance in that direction, how much will the norm change? These two
questions should quickly lead you to an expression for the gradient (though you are free to grind it
out algebraically if you prefer!). From there, everything else is just careful application of the chain
rule. (Hint: in 1D, the gradient of spring energy 1

2 kx2 with respect to the displacement x yields the
spring force kx. In 3D the force will now be a vector rather than a scalar, but this 1D expression can
help you check if you’re on the right track.)

Solution: First, let’s think about the gradient of the norm |qj − qi| with respect to qj. The gradient will move
qj away from qi as quickly as possible, i.e., along the direction qj − qi. Moreover, moving a unit distance
along this direction will yield a unit change in the norm. Therefore, the gradient is just the corresponding
unit vector

qj − qi

|qj − qi|
.

The derivative of the spring potential is then just an application of the chain rule, using the expression above:

∂

∂qk
Uspring = α

2
∂

∂qk
∑

ij∈E
(|qj − qi| − `ij)

2 = α ∑
kj∈E

(|qj − qk| − `kj)
qj − qk

|qj − qk|
.

In other words, we just sum up the unit edge vectors “sticking out of” vertex k, multiplied by the spring
stiffness and the displacement relative to the rest length—this quantity is just like the 1D case, except that
our force vectors now have a direction, given by the direction of the edges.

Page 9

H. (2 pts) Combine the answers to your previous solutions to get the equations of motion for a single
vertex. To make the next step easier, isolate the acceleration q̈k on the left-hand side of your final
answer. Note that this question continues on the next page!

Solution: Overall, the equations of motion at vertex k are given by

q̈k = −gw− α

m ∑
kj
(|qj − qk| − `kj)

qj − qk

|qj − qk|
.

Page 10

I. (2 pts) You’ve done the hard work of deriving the equations of motion. Now for the payoff: plug
them into your code, and see the clothing flap around! You can assume that someone else at your
VR startup is responsible for actually implementing the time integrator; the only thing you’ll need
to do is implement the method Vertex::acceleration(), which provides the acceleration of a
vertex in a halfedge mesh. Note that you will not be penalized for getting the equations of motion
wrong on this question, as long as your implementation matches the acceleration you derived the
(possibly incorrect) in the previous part. 2 You should explicitly define any of the constants you need
(α, w, etc.), but are free to set these constants to arbitrary values (these values will probably have to
be tuned anyway, depending on the type of garment). The method should return the acceleration
as a Vector3D. Remember that in a halfedge mesh, each halfedge knows about its next and twin
halfedge, and each vertex, edge, and face points to a single halfedge; the vertex position is stored
in Vertex::position, and the rest edge length is stored in Edge::length.

Vector3D Vertex::acceleration(void)
{

const double m = 1.;
const double g = 9.81;
const double alpha = 1.23;
const Vector3D w(0., 1., 0.);

Vector3D qk = position;
Vector3D a(0., 0., 0.); // acceleration

a -= g * w; // add contribution due to gravity

HalfedgeCIter h = halfedge(); // loop over incident edges
do
{

double lkj = h->edge()->length;
Vector3D qj = h->twin()->vertex()->position;
Vector3D rkj = qj - k;

// add spring acceleration for this edge
a -= (alpha/m) * (rkj.norm() - lkj) * rkj / rkj.norm();

h = h->twin()->next();
}
while(h != halfedge());

return a;

}

2For you jokers in the crowd: we will not accept an answer where you write something obviously bogus for the acceleration
in the previous part, like q̈ = 0.

Page 11

A Highly Irregular Rasterizer

Problem 4. (10 points):
Imagine that you have a special kind of rasterizer which doesn’t evaluate depth/coverage at uniformly
spaced screen sample points, instead it evaluates depth/coverage at a list of arbitrary 2D screen sample
points provided by the application. An example of using this rasterizer is given below. In this problem
you should assume that depths returned by fancyRasterize are in WORLD SPACE UNITS.

vector<Point2D> myPoints; // list of points to eval coverage in [-1,1]ˆ2
vector<Triangle> geometry; // list of triangles
Transform perspProj; // perspective projection from camera space

// to [-1,1]ˆ3 cube

// this call returns the distance of the closest hit (assume infinity if no hit)
vector<float> depths = fancyRasterize(geometry, myPoints, perspProj);

You are now going to use FancyRasterize to render images with shadows. Consider the setup of a
camera, scene objects, and a light source as illustrated below.

P0

P1

P2

P3

P4

P5

P6

PC

PL

Camera

Light

Dlight

Dcamera

Page 12

A. (4 pts) You use a traditional rasterizer to compute the depth of the closest point of the scene at each
screen sample point. In the figure, the closest point visible under each sample when the camera is
placed at position PC and looking in the direction Dcamera is given by Pi. All points in the figure are
given in world space!

Assume you are given a world space to light space transform world2Light and a perspective
projection transform lightProj that performs perspective projection of points in light space into
the canonical [−1, 1]3 cube in which FancyRasterize performs coverage testing. (Light space is
the coordinate space whose origin in world space is PL and whose -Z axis is in the direction Dlight.)

Provide pseudocode for an algorithm that computes, for each point Pi, if the point is in shadow from
a point light source located at PL. The algorithm should call fancyRasterize only once. (No, you
are not allowed to just implement a ray tracer from scratch.) Your algorithm accepts as input an
array of points Pi, and also has access to points PC, Pl , and transforms world2Light, lightProj.

Hint: Be careful, fancyRasterize wants points in 2D (represented in a space defined by the
[−1, 1]2 “image plane”) so your solution will need to convert from a 3D or homogeneous 3D repre-
sentation to this representation.

Solution:

First transform all hit points into projected light space. (Note: we’re using TlightProj and TlightProj to refer to
the transforms described above.

Qi = TlightProjTworld2lightPi

Then perform homogeneous divide to obtain a 2D sample point for the call to fancyRasterize.
Note that the homogeneous divide is divide by w after applying the perspective projection trans-
form, not divide by z.

(xi, yi) = (Qi[x]/Qi[w], Qi[y]/Qi[w])

For each input point xi, yi, fancyRasterize produces the output tuple (depthi, coveredi). A point Pi is in
shadow if the point is farther from the light source than what fancyRasterize indicates is the distance to
the first hit. Specifically, Pi is in shadow if: |Pi − PL| > depthsi.

Page 13

B. (3 pts) Does the algorithm you proposed above generate “hard” or “soft” shadows? Why? (please
assume your solution successfully does what is asked in part A)

Solution: The algorithm is a hard shadow algorithm because it is computing shadowing due to a point source.
Many students answered that the shadows were hard because only one shadow ray was shot to the light (one
light sample taken). This is not correct, since you can still get a soft shadow (albeit a very high variance one)
but taking one illumination sample from an area light source. The point is that the light source is a point
source!

C. (3 pts) Prof. Kayvon quickly looks at the algorithm you devised above and says “remember I told
you in class that shadow mapping is such a hack”, you should just write a really fast ray tracer that
accurately computes shadows in real time. Prof. Keenan jumps in and says, wait a minute, this
algorithm seems perfectly accurate to me. Who is correct? Why?

Solution: Prof. Keenan is correct. In this case, we’re using a modified form of a rasterizer to exactly compute
the first hit along the exact shadow rays that would be shot by a ray tracer towards a point source. The hard
shadows produced by this algorithm (which uses irregular rasterization) is exactly the same as the output of
a ray tracer. In fact, you can read more about a real implementation in the paper, “The Irregular Z-Buffer:
Hardware Acceleration for Irregular Data Structures” Johnson et al. 2005.

Page 14

Good Thing He Always Wears Hoodies

Problem 5. (7 points):
In class we discussed how to implement an edge detector via discrete convolution with a filter f (i, j),
where the weights were specially designed for the task of edge detection. Now we’re going to up-level a
bit and implement a Prof. Kayvon detector.

Imagine you have a 32× 32 image of Prof. Kayvon, such as the one below. Now you are given a new,
1000× 1000 photo I(x, y) whose contents are unknown. Assuming that (1) Prof. Kayvon always strikes
this a pose in photos (he does), (2) that Prof. Kayvon always wears the same hoodie (the class claims he
does), and (3) that Prof. Kayvon is always projects to a 32× 32 size region in 1000× 1000 photos taken of
him, give an algorithm that, takes as input the image I, detects whether Prof. Kayvon is in the photo and
returns the top-left corner of a 32× 32 pixel bounding box of the region containing Prof. Kayvon. (Or
returns nothing if the algorithm thinks Prof. Kayvon is not in the photo). Rough pseudocode is fine.

(0,0)

(31,31)

Hint: Keep it simple, several answers are possible. It may be helpful to first think about an edge detector
that returns 1 if a pixel is part of an an edge, or 0 otherwise. +2 points of extra credit for a detection
algorithm that is robust to Prof. Kayvon projecting to ANY SIZED SQUARE region in the input photo.

Solution: Many answers are possible to this question. For example, for each pixel in the image treat the 32× 32
region around the pixel as a vector and compute the L2-distance between this vector and the image of Prof. Kayvon.
Then pick the pixel with the smallest distance (provided one exists under a detection threshold value) and use that
as the center of the bounding box returned as the detection. (You have to subtract (16,16) to get the top-left corner
of the detection box.)

An easy solution to the extra credit is to downsample (or upsample) the input image to many scales (e.g., build a
mip-hierarchy) and repeat the above algorithm for all scaled images.

Page 15

That’s a Really Big Aperture You’ve Got There

Problem 6. (10 points):

P0 P1 P2 P3 P4 P5 P6

I(0,0) I(0,6)

Virtual Lens
u=0 u=1

v=0 v=1

0.5

0.5

As part of studying for the final, the class decides to measure the light field in the classroom. Seven
students line up along one wall at positions P0− P6, and take pictures of the opposite wall with pinhole
cameras as shown in the figure. Each camera is a 7-pixel camera, and the image acquried by camera i in
pixel j is encoded at I(i, j) (For ease of illustration we are only measuring a 2D light field with 1D cameras
in this question).

A. (2.5 pts) Each pixel of each camera integrates light from a small number of rays in the light field. In
the ray-space plot below, plot the rays measured by the pixels for cameras at P0, P3, and P6. (You
can ignore rays that fall outside the [0, 1]2 region.)

u
0 1.00.5

v

0

0.5

1.0

Page 16

B. (2.5 pts) Kayvon and Keenan walk in and say, hey, nice work everyone. Given this light field, you
can now simulate the picture that would be formed by a camera that had a really, really large
aperture that spanned the entire u-plane wall (from u = 0 to u = 1) and is focused on the far wall.
Give an expression that computes the value of the center pixel of such a camera in terms of the
measured I(i, j)’s. Also plot the pixels used on the ray-space diagram below.

u
0 1.00.5

v

0

0.5

1.0

Solution: You need to add up: I(0,6), I(1,5), I(2,4), I(3,3), I(4,2), I(5,1), I(6,0). The ray-space diagram
will consist of 7 points all at v = 0.5.

Page 17

C. (2.5 pts) Given a light field, it’s also possible to simulate very exotic types of cameras. The students
now decide to simulate a camera whose aperture still extends from u = 0 to u = 1, but now has a
blocker of light between u = 0.25 to u = 0.75. In other words, the aperture looks like the following:

u
0 1.00.5

Describe how to compute the center pixel of an image formed by a camera with this aperture. The
camera is still focused on the back wall.

Solution: The light from samples I(2,4), I(3,3), and I(4,2) is blocked by the new aperture, so the value of the
center pixel is now the sum of I(0,6), I(1,5), I(5,1), I(6,0).

D. (2.5 pts) Now assume that we have a much higher resolution sampling of the light field obtained
by using 1000’s of cameras on the near wall, each taking 1000 pixel images. We use this new light
field to simulate a camera with the same aperture as the one in the previous subproblem, except
now the simulated camera is focused on a plane a little in front of the far wall. If the far wall was all
white, except for a small, red dot in the center of the wall (around v = 0.5), describe or give a rough
sketch of the image that would result from this simulated large, (but odd) aperture camera. (Don’t
just say it will be blurry.)

Solution: The image of the dot takes the shape of the aperture. Therefore, in this 1D example, the point is
“burred” out to form two disjoint horizontal lines. If you answered the problem thinking of a real 2D image,
you would have said the result is an image with a red ring.

Page 18

The Reflectance Equation

Problem 7. (10 points):
This semester we talked at length about the reflectance equation, which describes the radiance L(p, ωo)
along a ray due to light reflected off a point p on a surface. (The ray’s direction is given by the angle ωo
about the surface’s normal at point p.) The reflectance equation is given below:

L(p, ωo) =
∫

H2
f (p, ωo, ωi) Li(p, ωi) cos θi dωi

A. (3 pts) What is role of the term f (p, ωo, ωi) in this equation?

Solution: This term is the BRDF, a function that represents the ratio of energy reflected off the surface in
the direction ωo to that arriving at the surface from direction ωi. Specifically, the BRDF provides a ratio of
outgoing radiance to incident irradiance.

B. (3 pts) Why are the limits of integration the hemisphere about the normal? (e.g., why not the whole
sphere of directions? why not something less?) (Assume the surface is fully opaque.)

Solution: We need to integrate reflected light from all incident directions, however, light incident on the
opposite side of the surface will not make it through the surface (the surface is opaque). Therefore, the equation
needs to only consider light incident from the hemisphere about the normal.

C. (4 pts) Why does the reflectance equation have a cos θi term in the integral?

Solution: The cos θi term is the conversion of incident radiance L(p, θi) into incident differential irradiance
on the surface. Recall the BRDF is defined to be a ratio of exit radiance in direction θo to incident irradiance
from θi.

Page 19

!@#$ That Noise!

Problem 8. (15 points):
As you saw in your third assignment, noise is a pesky issue in photorealistic rendering. Fortunately, there
are many techniques for reducing noise; here we will explore a few, tying together your knowledge of
rendering, geometry, and numerical methods.

A. (2.5 pts) Stratified Sampling. The “noise” in a rendered image can be quantified in terms of the
variance of a Monte Carlo estimator. Recall that the variance of any random variable X is defined as

Var[X] = E[(X− E[X])2],

i.e., as the expected deviation from the expected value, squared. In a typical Monte Carlo estimator,
we take samples uniformly across the entire domain. Recall that the basic idea behind stratified
sampling is to instead divide the domain into several pieces, and uniformly sample within each
piece. For instance, consider the following example:

Here, we could imagine two different strategies: either (i) pick 2N samples uniformly from the
range [0, 1], or (ii) pick N samples from the range [0, 1/2] and another N samples from the range
(1/2, 1]. The former represents standard Monte Carlo; the latter represents stratified sampling.
Give a rough, intuitive argument for why stratified sampling will tend to have lower variance than
standard Monte Carlo, and can never have worse variance. (You do not need to do any calculations
here!) What’s an extreme example of a function f : [0, 1] → R where the stratified strategy will do
“infinitely” better than standard Monte Carlo?

Solution: For most function, the variance in each stratum (i.e., the range of values the function can take)
will be less than the variance over the whole domain. Therefore, the overall variance of the stratified estimator
will never be greater than the variance of standard Monte Carlo. An extreme example is a function that
is constant over each half of the interval—in this case, we are guaranteed to get the exact integral in just
two samples using the stratified estimator, whereas the standard estimator will gradually approach the true
integral as we take more and more samples.

Page 20

B. (2.5 pts) Blue Noise Sampling. As we just saw, getting a nice distribution of points is essential to
reducing variance. Beyond stratified sampling, how can you get a good point sample in 2D? One
way is to use a centroidal Voronoi tessellation (CVT), which, roughly speaking, is a collection of evenly-
sized cells that provides a decent “blue noise” distribution. A standard Voronoi diagram takes a
collection of sites x1, . . . , xn ∈ R2, and partitions the plane into cells Ωi ⊂ R2 such that every point x
inside Ωi is closer to xi than to any other site. However, the site xi can be very far from the geometric
cell center ci := 1

Ai

∫
Ωi

x dx where Ai is the cell area, as indicated in the leftmost figure below:

Voronoi Centroidal
Voronoi

You may notice that sites in the standard Voronoi diagram have a rather nonuniform distribution,
leading to a fairly noisy estimator. The idea of a centroidal Voronoi tessellation is to make sure every
site sits exactly at the geometric center, i.e., for all cells Ωi, we want xi = ci. To make this happen,
you can run gradient descent on the energy

ECVT := 1
2 ∑

k

∫
Ωk

|xk − x|2dx,

which measures the total distance from the site to all other points in the cell. Intuitively, cells that are
nice, round, and “compact” will have smaller energy than cells that are long, skinny, and off-center.
Show that the gradient of ECVT with respect to site xi can be expressed as ∇xi ECVT = Ai(xi − ci)
(and that therefore, local minima will satisfy xi = ci).

Solution: Since only one term in the sum depends on xi, we have

∇xi ECVT = 1
2∇xi

∫
Ωi
|xi − x|2 dx

= 1
2

∫
Ωi
∇xi |xi − x|2 dx

=
∫

Ωi
xi − x dx

=
∫

Ωi
xi dx−

∫
Ωi

x dx
= xi

∫
Ωi

dx−
∫

Ωi
x dx

= Ai(xi − ci).

Page 21

C. (2.5 pts) Time to flip out!

flip
t
w
i
n

nex
t

face

edge

vertex

h

Before computing a centroidal Voronoi tessellation, we need to initialize our algorithm with a stan-
dard Voronoi tessellation. An important fact about Voronoi diagrams is that their sites define the
vertices of a Delaunay triangulation, which in turn is any triangulation such that no vertex is con-
tained in the interior of a circumcircle of one of the triangles. (Such triangulations have many nice
properties in computer graphics, far beyond our blue noise example.) An equivalent characteriza-
tion is that for each edge ij ∈ E the sum of opposite angles αij and βij is less than or equal to π, where
αij, βij are the two angles opposite ij. This characterization suggests a dead-simple algorithm for
finding a Voronoi diagram: start with any triangulation in the plane, and keep flipping greedily un-
til αij + βij ≤ π for all edges. Connecting up the circumcenters of the triangles then yields a Voronoi
diagram. One can show that this algorithm terminates in at most O(n2) flips, but in practice tends
to be much faster. Your job is to implement this algorithm using a halfedge mesh, assuming that
Mesh::flipEdge() has already been implemented (and does not change any pointers). Recall
that in a halfedge mesh, each halfedge knows about its next and twin halfedge, and each vertex,
edge, and face points to a single halfedge; the vertex positions are stored in Vertex::position.

double Halfedge::angle(void) const
// returns the angle opposite this halfedge
{

Vector3D a = next()->next()->vertex()->position;
Vector3D b = vertex()->position;
Vector3D c = next->vertex()->position;

Vector3D u = b-a;
Vector3D v = c-a;

return atan2(cross(u,v).norm(), dot(u,v));

}

Page 22

void Mesh::makeDelaunay(void)
// greedily flips edges until the mesh is Delaunay
{

bool isDelaunay = true;
do
{

for(EdgeIter e = edges.begin(); e != edges.end(); e++)
{

double alpha = e->halfedge()->angle();
double beta = e->halfedge()->twin()->angle();
if(alpha + beta > M_PI)
{

flipEdge(e);
isDelaunay = false;

}
}

}
while(!isDelaunay);

}

D. (2.5 pts) Now that you know how to make a Delaunay triangulation (and hence a Voronoi dia-
gram), you can apply gradient descent to the energy ECVT to improve the quality of your Voronoi
diagram, ultimately converging on a centroidal Voronoi tessellation. You can assume that the meth-
ods Vertex::cellArea() and Vertex::cellCentroid() have already been implemented for
you, returning the current area Ai and centroid ci of the Voronoi cell associated with a given vertex
of the triangulation (or equivalently, site in the Voronoi diagram). You can also assume that there is
a member Vertex::newPosition, which can be used however you see fit.

void Mesh::gradientDescentCVT(double tau)
// takes a single gradient descent step of size tau on the CVT energy
{

for(VertexIter v = vertices.begin(); v != vertices.end(); v++)
{

v->newPosition = v->position - tau * v->cellArea() * (v->position - v->centroid());
}
for(VertexIter v = vertices.begin(); v != vertices.end(); v++)
{

v->position = v->newPosition;
}

}

Page 23

E. (2.5 pts) The sites from your centroidal Voronoi tessellation provide a good general-purpose sam-
pling pattern for an unknown function, but suppose now that we know a priori which function
we’re going to sample. In particular, imagine that we want to use a known 2D image as an area
light source. How might you modify the definition of the energy ECVT to concentrate more samples
in regions that are bright? How would this modification affect your algorithm for constructing the
CVT?

Solution: One simple thing we could do is weight the CVT energy by the image intensity, which would
encourage smaller cells in brighter regions. To modify our algorithm, we could replace the area Ai with the
total brightness covered by the cell Ωi.

F. (2.5 pts) The idea of concentrating samples in bright regions is one way to reduce variance, since
each sample will tend to contribute more to the integrand. What’s a very different strategy sug-
gested by our discussion of stratified sampling in the first part of this question? What should the
region covered by each cell of our Voronoi diagram look like, and how might this strategy be turned
into CVT-like algorithm for generating a sample pattern? Consider again the example of a 2D area
light source coming from a known image.

Solution: Instead of concentrating samples in regions of high brightness, we could try to make the variance
in each cell as small as possible. In the ideal case, where the image is constant over each cell, we would need
only one sample per cell. We could try doing this by penalizing the variance in the image values, rather than
the variance in position. [Note to the graders: this is a high-level conceptual question, and any good
effort should receive full points.]

Page 24

