
Converting Between Bézier and Hermite Curves

CMU 15-462/662

p0

p3

p2

p1

q0

q1

cubic Bézier cubic Hermite

Different file formats and software systems will use different internal representations for curves—in this
exercise, you’ll write some basic code for converting between such representations. Two common types of curves
used in 2D graphics (e.g., font rendering or illustration software) are Bézier curves and Hermite splines. A Bézier
curve is specified by four control points; a Hermite curve is specified by two control points and two tangents.
Actually, both of these curves are cubic polynomials—the only difference is that they’re expressed with respect to
different bases. In particular, a cubic Bézier curve is a linear combination of cubic Bernstein bases Bi(t), where the
control points pi ∈ Rn serve as constant coefficients:

p(t) = p0B0(t) + p1B1(t) + p2B2(t) + p3B3(t), t ∈ [0, 1].

The cubic Bernstein bases are given explicitly by

B0(t) = (1− t)3,
B1(t) = 3(1− t)2 t,
B2(t) = 3(1− t)t2,
B3(t) = t3.

Similarly, a cubic Hermite spline is a linear combination

q(t) = q0H00(t) + u0H10(t) + q1H01(t) + u1H11(t), t ∈ [0,1],

where q0,q1 ∈ Rn are the endpoints of the curve, u0,u1 ∈ Rn are the tangents at the two endpoints, and Hi(t) are
the cubic Hermite bases

H00(t) = (1+ 2t)(1− t)2,
H10(t) = t(1− t)2,
H01(t) = t2(3− 2t),
H11(t) = −t2(1− t).

Your task is to implement simple routines (prototyped below) that convert a cubic Bézier to a cubic Hermite
curve and vice versa. Rather than hold your hand every step of the way, the purpose of this exercise is to give you
some exposure to what it’s “really” like to do graphics: you have a high-level task, and you have to figure out how
to break it down, formulate the right equations, solve those equations, and turn the results into code. This kind
of activity is really the bread and butter of doing computer graphics. We will however give you one small hint:
change of basis! :-)

1

To get full credit you will need not only to produce correct code, but also to show your work and explain how
you got the expressions you’ve put in your code!

// given coefficients for a cubic curve in Bezier form, computes the
// coefficients for an equivalent curve in Hermite form
void BezierToHermite(Vector p0, Vector p1, Vector p2, Vector p3,

Vector& q0, Vector& q1, Vector& u0, Vector& u1)
{

}

// given coefficients for a cubic curve in Hermite form, computes the
// coefficients for an equivalent curve in Bezier form
void HermiteToBezier(Vector q0, Vector q1, Vector u0, Vector u1,

Vector& p0, Vector& p1, Vector& p2, Vector& p3)
{

}

2

