Variance Reduction

Computer Graphics
CMU 15-462/15-662
Last time: Monte Carlo Ray Tracing

- Recursive description of incident illumination
- Difficult to integrate; *tour de force* of numerical integration
- Leads to lots of sophisticated integration strategies:
 - sampling strategies
 - variance reduction
 - Markov chain methods
 - ...

- Today: get a glimpse of these ideas

- Also valuable outside rendering!
 - E.g., innovations coming from geometry processing/meshing

\[
L_o(x, \omega_o) = L_e(x, \omega_o) + \int_{\Omega} f_r(x, \omega_i, \omega_o) L_i(x, \omega_i) (\omega_i \cdot n) \, d\omega_i
\]
Review: Monte Carlo Integration

Want to integrate:

\[I := \int_{\Omega} f(x) \, dx \]

any function

any domain

(Not just talking about rendering here, folks!)

General-purpose hammer: Monte-Carlo integration

\[I = \lim_{n \to \infty} V(\Omega) \frac{1}{n} \sum_{i=1}^{n} f(X_i) \]

under mild conditions on \(f \)

volume of the domain

uniformly random samples of domain
Review: Expected Value (DISCRETE)

A discrete random variable X has n possible outcomes x_i, occurring with probabilities $0 \leq p_i \leq 1$, $p_1 + \ldots + p_n = 1$

$$E(X) := \sum_{i=1}^{n} p_i x_i$$

(expected value)

probability of event i

value of event i

(just the “weighted average”!)

E.g., what’s the expected value for a fair coin toss?

$$p_1 = \frac{1}{2} \quad x_1 = 1$$

$$p_2 = \frac{1}{2} \quad x_2 = 0$$
Continuous Random Variables

A *continuous* random variable X takes values x anywhere in a set Ω.

Probability density p gives probability x appears in a given region.

E.g., probability you fall asleep at time t in a 15-462 lecture:

Probability you fall asleep *exactly* at any given time t is ZERO!

Can only talk about chance of falling asleep in a given interval of time.

$$\int_{t_0}^{t_1} p(t) \, dt$$
Review: Expected Value (CONTINUOUS)

Expected value of continuous random variable again just the “weighted average” with respect to probability p:

$$E(X) := \int_{\Omega} x p(x) \, dx$$

E.g., expected time of falling asleep?

$$\mu = 44.9 \text{ minutes}$$

(is this result counter-intuitive?)
Flaw of Averages
Review: Variance

- Expected value is the “average value”
- Variance is how far we are from the average, on average!

\[\text{Var}(X) := E[(X - E[X])^2] \]

Discrete

\[\sum_{i=1}^{n} p_i (x_i - \sum_j p_j x_j)^2 \]

Continuous

\[\int_{\Omega} p(x)(x - \int_{\Omega} y p(y) \, dy)^2 \, dx \]

- **Standard deviation** \(\sigma \) is just the square root of variance

\[\mu = 44.9 \text{ minutes} \]
\[\sigma = 15.8 \text{ minutes} \]

(any more intuitive?)
Variance Reduction in Rendering

higher variance

lower variance
Q: How do we reduce variance?
Variance Reduction Example

\[\Omega := [0, 2] \times [0, 2] \]

\[f(x, y) := \begin{cases} 1 & |x| + |y| \text{ is even,} \\ 0 & \text{otherwise} \end{cases} \]

\[I := \int_{\Omega} f(x, y) \, dx \, dy \]

Q: What’s the expected value of the integrand \(f \)?
A: Just by inspection, it’s 1/2 (half white, half black!).

Q: What’s its variance?
A: \[(1/2)(0-1/2)^2 + (1/2)(1-1/2)^2 = (1/2)(1/4) + (1/2)(1/4) = 1/4 \]

Q: How do we reduce the variance?
That was a trick question.

You can’t reduce variance of the integrand! Can only reduce variance of an estimator.
Variance of an Estimator

- An “estimator” is a formula used to approximate an integral
- Most important example: our Monte Carlo estimate:

\[I = \int_{\Omega} f(x) \, dx \quad \hat{I} := V(\Omega) \frac{1}{n} \sum_{i=1}^{n} f(x_i) \]

true integral Monte Carlo estimate

- Get different estimates for different collections of samples
- Want to reduce variance of estimate across different samples
- Why? Integral itself only has one value!
- Many, many (many) techniques for reducing variance
- We will review some key examples for rendering
Bias & Consistency

- Two important things to ask about an estimator
 - Is it consistent?
 - Is it biased?

- Consistency: “converges to the correct answer”

\[
\lim_{{n \to \infty}} P(|I - \hat{I}_n| > 0) = 0
\]

- Unbiased: “estimate is correct on average”

\[
E[I - \hat{I}_n] = 0
\]

- Consistent does not imply unbiased!
Example 1: Consistent or Unbiased?

- My estimator for the integral over an image:
 - take $n = m \times m$ samples at fixed grid points
 - sum the contributions of each box
 - let m go to ∞

Is this estimator consistent? Unbiased?
Example 2: Consistent or Unbiased?

- My estimator for the integral over an image:
 - take only a single random sample of the image \((n=1)\)
 - multiply it by the image area
 - use this value as my estimate

Is this estimator consistent? Unbiased?
(What if I then let \(n\) go to \(\infty\)?)
Why does it matter?

Rule of thumb: unbiased estimators have more predictable behavior / fewer parameters to tweak to get correct result (which says nothing about performance...)

- **biased + inconsistent**
- **consistent + unbiased**
- **biased + consistent**
Consistency & Bias in Rendering Algorithms

<table>
<thead>
<tr>
<th>method</th>
<th>consistent?</th>
<th>unbiased?</th>
</tr>
</thead>
<tbody>
<tr>
<td>rasterization*</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>path tracing</td>
<td>ALMOST</td>
<td>ALMOST</td>
</tr>
<tr>
<td>bidirectional path tracing</td>
<td>???</td>
<td>???</td>
</tr>
<tr>
<td>Metropolis light transport</td>
<td>???</td>
<td>???</td>
</tr>
<tr>
<td>photon mapping</td>
<td>???</td>
<td>???</td>
</tr>
<tr>
<td>radiosity</td>
<td>???</td>
<td>???</td>
</tr>
</tbody>
</table>

*But very high performance!
Naïve Path Tracing: Which Paths Can We Trace?

Q: What’s the probability we sample the reflected direction?
A: ZERO.

Q: What’s the probability we hit a point light source?
A: ZERO.
Naïve path tracing misses important phenomena!
(Formally: the result is biased.)
...But isn’t this example pathological?
No such thing as point light source, perfect mirror.
Real lighting can be close to pathological

small directional light source

near-perfect mirror

Still want to render this scene!
Light has a very “spiky” distribution

- Consider the view from each bounce in our disco scene:

 - view from camera

 - view from diffuse bounce
 - mirrored ball (pink) covers small percentage of solid angle

 - view from specular bounce
 - area light (white) covers small percentage of solid angle

Probability that a uniformly-sampled path carries light is the product of the solid angle fractions. (Very small!)

Then consider even more bounces...
Just use more samples?

path tracing - 16 samples/pixel

path tracing - 128 samples/pixel

path tracing - 8192 samples/pixel

how do we get here? (photo)
We need better sampling strategies!
Review: Importance Sampling

- Simple idea: sample the integrand according to how much we expect it to contribute to the integral.

\[f(x) \]

\[p(x) \]

no reason to put lots of samples here! (don’t contribute much to integral)

complicated integrand

our best guess for where the integrand is “big”

naive Monte Carlo:

\[V(\Omega) \frac{1}{n} \sum_{i=1}^{n} f(x_i) \]

(x_i are sampled uniformly)

importance sampled Monte Carlo:

\[\frac{1}{n} \sum_{i=1}^{n} \frac{f(x_i)}{p(x_i)} \]

(x_i are sampled proportional to \(p\))

“If I sample x more frequently, each sample should count for less; if I sample x less frequently, each sample should count for more.”

Q: What happens when \(p\) is proportional to \(f\) (\(p = cf\))?
Importance Sampling in Rendering

- **materials:** sample important “lobes”
- **illumination:** sample bright lights

(important special case: perfect mirror!)

Q: How else can we re-weight our choice of samples?
Path Space Formulation of Light Transport

- So far have been using recursive rendering equation:

\[L_o(x, \omega_o) = L_e(x, \omega_o) + \int_{\Omega} f_r(x, \omega_i, \omega_o) L_i(x, \omega_i) (\omega_i \cdot n) \, d\omega_i \]

- Make intelligent “local” choices at each step (material/lights)

- Alternatively, we can use a “path integral” formulation:

how much “light” is carried by this path?

\[I = \int_{\Omega} f(\bar{x}) d\mu(\bar{x}) \]

how much of path space does this path “cover”

all possible paths

one particular path

- Opens the door to intelligent “global” importance sampling. (But still hard!)
Unit Hypercube View of Path Space

- Paths determined by a sequence of random values ξ in $[0,1]$.
- Hence, path of length k is a point in hypercube $[0,1]^k$.
- “Just” integrate over cubes of each dimension k.
- E.g., two bounces in a 2D scene:

Each point is a path of length 2:

Total brightness of this image \leftrightarrow total contribution of length-2 paths.
How do we choose paths—and path lengths?
Bidirectional Path Tracing

- Forward path tracing: no control over path length (hits light after \(n \) bounces, or gets terminated by Russian Roulette)

- Idea: connect paths from light, eye ("bidirectional")

- Importance sampling? Need to carefully weight contributions of path according to sampling strategy.

- (Details in Veach & Guibas, “Bidirectional Estimators for Light Transport”)
Bidirectional Path Tracing (Path Length=2)

- **standard (forward) path tracing**
 - fails for point light sources

- **direct lighting**

- **visualize particles from light**

- **backward path tracing**
 - fails for a pinhole camera
Contributions of Different Path Lengths
Good paths can be hard to find!

Idea:
Once we find a good path, perturb it to find nearby “good” paths.

bidirectional path tracing

Metropolis light transport (MLT)
Metropolis-Hastings Algorithm (MH)

- Standard Monte Carlo: sum up independent samples
- MH: take random walk of dependent samples ("mutations")
- Basic idea: prefer to take steps that increase sample value

If careful, sample distribution will be proportional to integrand
- make sure mutations are "ergodic" (reach whole space)
- need to take a long walk, so initial point doesn’t matter ("mixing")

\[
\alpha := \frac{f(x')}{f(x_i)} \quad \text{"transition probability"}
\]

if random # in \([0,1]\) < \(\alpha\):
\[
x_{i+1} = x'
\]
else:
\[
x_{i+1} = x_i
\]
Metropolis-Hastings: Sampling an Image

- Want to take samples proportional to image density f
- Start at random point; take steps in (normal) random direction
- Occasionally jump to random point (ergodicity)
- Transition probability is "relative darkness" $f(x')/f(x_i)$
Metropolis Light Transport

Basic idea: mutate paths

(For details see Veach, “Robust Monte Carlo Methods for Light Transport Simulation”)

path tracing

Metropolis light transport (same time)
Multiple Importance Sampling (MIS)

- Many possible importance sampling strategies
- Which one should we use for a given integrand?
- MIS: combine strategies to preserve strengths of all of them
- *Balance heuristic* is (provably!) about as good as anything:

\[
\frac{1}{N} \sum_{i=1}^{n} \sum_{j=1}^{n_i} \sum_{k} c_k p_k(x_{ij}) f(x_{ij})
\]

Still, several improvements possible (cutoff, power, max)—see Veach & Guibas.
Multiple Importance Sampling: Example

sample materials

multiple importance sampling
(power heuristic)

sample lights
Ok, so importance is important.

But how do we sample our function in the first place?
Sampling Patterns & Variance Reduction

- Want to pick samples according to a given density
- But even for uniform density, lots of possible sampling patterns
- Sampling pattern will affect variance (of estimator!)

![Sampling Patterns](image)
Stratified Sampling

- How do we pick n values from $[0,1]$?
- Could just pick n samples uniformly at random
- Alternatively: split into n bins, pick uniformly in each bin

FACT: stratified estimate never has larger variance (often lower)

Intuition: each stratum has smaller variance. (Proof by linearity of expectation!)
Stratified Sampling in Rendering/Graphics

Simply replacing uniform samples with stratified ones already improves quality of sampling for rendering (and other graphics/visualization tasks!)

See especially: Jim Arvo, “Stratified Sampling of Spherical Triangles” (SIGGRAPH 1995)
Low-Discrepancy Sampling

- “No clumps” hints at one possible criterion for a good sample:
- **Number of samples should be proportional to area**
- **Discrepancy** measures deviation from this ideal

$$d_S(X) := \left| A(S) - \frac{n(S)}{|X|} \right|$$

- Discrepancy of sample points X over a region S
- Area of S
- Number of samples $n(S)$
- Total # of samples in X

Overall discrepancy of X:

$$D(X) := \max_{S \in F} d_S(X)$$

(ideally equal to zero!)

Some family of regions S (e.g., boxes, disks, ...)

See especially: Dobkin et al, “Computing Discrepancy w/ Applications to Supersampling” (1996)
Quasi-Monte Carlo methods (QMC)

- Replace truly random samples with low-discrepancy samples

Why? *Koksma’s theorem:*

\[
\left| \frac{1}{n} \sum_{i=1}^{n} f(x_i) - \int_{0}^{1} f(x) \, dx \right| \leq \mathcal{V}(f)D(X)
\]

- I.e., for low-discrepancy X, estimate approaches integral
- Similar bounds can be shown in higher dimensions

WARNING: total variation not always bounded!

WARNING: only for family F of *axis-aligned* boxes S!

E.g., edges can have arbitrary orientation (coverage)

Discrepancy still a very reasonable criterion in practice
Hammersley & Halton Points

- Can easily generate samples with near-optimal discrepancy
- First define radical inverse $\varphi_r(i)$
- Express integer i in base r, then reflect digits around decimal
- E.g., $\varphi_{10}(1234) = 0.4321$
- Can get n Halton points x_1, \ldots, x_n in k-dimensions via
 \[x_i = (\varphi_{P_1}(i), \varphi_{P_2}(i), \ldots, \varphi_{P_k}(i)) \]
- Similarly, Hammersley sequence is
 \[x_i = \left(\frac{i}{n}, \varphi_{P_1}(i), \varphi_{P_2}(i), \ldots, \varphi_{P_{k-1}}(i) \right) \]

n must be known ahead of time!
Wait, but doesn’t a regular grid have really low discrepancy...?
There’s more to life than discrepancy

- Even low-discrepancy patterns can exhibit poor behavior:

$$\frac{1}{n} \sum_{i=1}^{n} f(x_i) = 1$$

$$\frac{1}{n} \sum_{i=1}^{n} f(x_i) = 0$$

- Want pattern to be *anisotropic* (no preferred direction)
- Also want to avoid any preferred *frequency* (see above!)
Blue Noise - Motivation

- Yellott observed that monkey retina exhibits *blue noise* pattern

Fig. 13. Tangential section through the human fovea. Larger cones (arrows) are blue cones. From Ahnelt et al. 1987.

- No obvious preferred directions (anisotropic)
- What about frequencies?
Blue Noise - Fourier Transform

- Can analyze quality of a sample pattern in Fourier domain

- Regular pattern has “spikes” at regular intervals
- Blue noise is spread evenly over all frequencies in all directions
- Bright center “ring” corresponds to sample spacing
Spectrum affects reconstruction quality

(from Balzer et al 2009)
Poisson Disk Sampling

- How do you generate a “nice” sample?
- One of the earliest algorithms: Poisson disk sampling
- Iteratively add random non-overlapping disks (until no space left)

Decent spectral quality, but we can do better.
Lloyd Relaxation

- Iteratively move each disk to the center of its neighbors

Better spectral quality, slow to converge. Can do better yet...
Voronoi-Based Methods

- Natural evolution of Lloyd
- Associate each sample with set of closest points (Voronoi cell)
- Optimize qualities of this Voronoi diagram
- E.g., sample is at cell’s center of mass, cells have same area, etc.
Adaptive Blue Noise

- Can adjust cell size to sample a given density (e.g., importance)

Computational tradeoff: expensive* precomputation / efficient sampling.

*But these days, not that expensive...
How do we efficiently sample from a large distribution?
Sampling from the CDF

To randomly select an event, select x_i if

$$P_{i-1} < \xi < P_i$$

Uniform random variable $\in [0, 1]$

Cost? $O(\log n)$

E.g., # of pixels in an environment map (big!)
Alias Table

- Get amortized $O(1)$ sampling by building “alias table”
- Basic idea: rob from the rich, give to the poor ($O(n)$):

Table just stores two identities & ratio of heights per column

To sample:
- pick uniform # between 1 and n
- biased coin flip to pick one of the two identities in n-th column
Ok, great!
Now that we’ve mastered Monte Carlo rendering, what other techniques are there?
Photon Mapping

- Trace particles from light, deposit “photons” in kd-tree
- Especially useful for, e.g., caustics, participating media (fog)

Interestingly enough, Voronoi diagrams also used to improve photon distribution!

(from Spencer & Jones 2013)
Finite Element Radiosity

- Very different approach: transport between patches in scene
- Solve large linear system for equilibrium distribution
- Good for diffuse lighting; hard to capture other light paths
Consistency & Bias in Rendering Algorithms

<table>
<thead>
<tr>
<th>method</th>
<th>consistent?</th>
<th>unbiased?</th>
</tr>
</thead>
<tbody>
<tr>
<td>rasterization</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>path tracing</td>
<td>ALMOST</td>
<td>ALMOST</td>
</tr>
<tr>
<td>bidirectional path tracing</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Metropolis light transport</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>photon mapping</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>radiosity</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>
Can you certify a renderer?

- Grand challenge: write a renderer that comes with a certificate (i.e., provable, formally-verified guarantee) that the image produced represents the illumination in a scene.
- Harder than you might think!
- Inherent limitation of sampling: you can never be 100% certain that you didn’t miss something important.

Can always make sun brighter, hole smaller...!
Moment of Zen