Meshes and Manifolds
Fractal Quiz
Last time: overview of geometry

- Many types of geometry in nature
- Demand sophisticated representations
- Two major categories:
 - IMPLICIT - “tests” if a point is in shape
 - EXPLICIT - directly “lists” points
- Lots of representations for both
- Today:
 - what is a surface, anyway?
 - nuts & bolts of polygon meshes
 - geometry processing / resampling
Manifold Assumption

- Today we’re going to introduce the idea of \textit{manifold} geometry
- Can be hard to understand motivation at first!
- So first, let’s revisit a more familiar example...
Bitmap Images, Revisited

To encode images, we used a *regular grid* of pixels:
But images are not fundamentally made of little squares:

Goyō Hashiguchi, *Kamisuki* (ca 1920)
So why did we choose a square grid?

...rather than dozens of alternatives?
Regular grids make life easy

- One reason: SIMPLICITY / EFFICIENCY
 - E.g., always have four neighbors
 - Easy to index, easy to filter...
 - Storage is just a list of numbers

- Another reason: GENERALITY
 - Can encode basically any image

- Are regular grids always the best choice for bitmap images?
 - No! E.g., suffer from anisotropy, don’t capture edges, ...
 - But more often than not are a pretty good choice

- Will see a similar story with geometry...
So, how should we encode surfaces?
Smooth Surfaces

- Intuitively, a surface is the boundary or “shell” of an object
- (Think about the candy shell, not the chocolate.)
- Surfaces are manifold:
 - If you zoom in far enough (at any point) looks like a plane*
 - E.g., the Earth from space vs. from the ground

*...or can easily be flattened into the plane, without cutting or ripping.
Isn’t every shape manifold?

- No, for instance:

Center point never looks like the plane, no matter how close we get.
More Examples of Smooth Surfaces

Which of these shapes are manifold?
A manifold polygon mesh has fans, not fins

- For polygonal surfaces just two easy conditions to check:
 1. Every edge is contained in only two polygons (no “fins”)
 2. The polygons containing each vertex make a single “fan”

[Diagrams showing examples of manifold and non-manifold polygon meshes]
What about boundary?

- The boundary is where the surface “ends.”
- E.g., waist & ankles on a pair of pants.
- Locally, looks like a half disk
- Globally, each boundary forms a loop

Polygon mesh:
- one polygon per boundary edge
- boundary vertex looks like “pacman”
Ok, but why is the manifold assumption *useful*?
Keep it Simple!

- Same motivation as for images:
 - make some assumptions about our geometry to keep data structures/algorithms simple and efficient
 - in *many common cases*, doesn’t fundamentally limit what we can do with geometry

<table>
<thead>
<tr>
<th></th>
<th>(i, j-1)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(i-1, j)</td>
<td>(i, j)</td>
<td>(i+1, j)</td>
</tr>
<tr>
<td></td>
<td>(i, j+1)</td>
<td></td>
</tr>
</tbody>
</table>
How do we actually encode all this data?
Warm up: storing numbers

Q: What data structures can we use to store a list of numbers?

One idea: use an array (constant time lookup, coherent access)

Alternative: use a linked list (linear lookup, incoherent access)

Q: Why bother with the linked list?

A: For one, we can easily insert numbers wherever we like...
Polygon Soup (Array-like)

- Store triples of coordinates \((x,y,z)\), tuples of indices

- E.g., tetrahedron:

<table>
<thead>
<tr>
<th>VERTICES</th>
<th>POLYGONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(i)</td>
</tr>
<tr>
<td>(y)</td>
<td>0</td>
</tr>
<tr>
<td>(z)</td>
<td>1</td>
</tr>
<tr>
<td>0:</td>
<td>-1</td>
</tr>
<tr>
<td>1:</td>
<td>1</td>
</tr>
<tr>
<td>2:</td>
<td>1</td>
</tr>
<tr>
<td>3:</td>
<td>-1</td>
</tr>
</tbody>
</table>

Q: How do we find all the polygons touching vertex 2?

Ok, now consider a more complicated mesh:

Very expensive to find the neighboring triangles! (What’s the cost?)
Incidence Matrices

- If we want to answer neighborhood queries, why not simply store a list of neighbors?
- Can encode all neighbor information via *incidence matrices*
- E.g., tetrahedron:

<table>
<thead>
<tr>
<th>vertex</th>
<th>e0</th>
<th>e1</th>
<th>e2</th>
<th>e3</th>
<th>e4</th>
<th>e5</th>
</tr>
</thead>
<tbody>
<tr>
<td>v0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 1 means “touches”; 0 means “does not touch”
- Instead of storing lots of 0’s, use *sparse matrices*
- Still large storage cost, but finding neighbors is now $O(1)$
- Hard to change connectivity, since we used fixed indices
- Bonus feature: mesh does not have to be manifold
Halfedge Data Structure (Linked-list-like)

- Store *some* information about neighbors
- Don’t need an exhaustive list; just a few key pointers
- Key idea: two *halfedges* act as “glue” between mesh elements:

```
struct Halfedge {
    Halfedge* twin;
    Halfedge* next;
    Vertex* vertex;
    Edge* edge;
    Face* face;
};
```

Each vertex, edge face points to just *one* of its halfedges.
Halfedge makes mesh traversal easy

- Use “twin” and “next” pointers to move around mesh
- Use “vertex”, “edge”, and “face” pointers to grab element
- Example: visit all vertices of a face:
  ```c
  Halfedge* h = f->halfedge;
  do {
    h = h->next;
    // do something w/ h->vertex
  } while( h != f->halfedge );
  ```
- Example: visit all neighbors of a vertex:
  ```c
  Halfedge* h = v->halfedge;
  do {
    h = h->twin->next;
  } while( h != v->halfedge );
  ```
- [DEMO]
- Note: only makes sense if mesh is manifold!
Halfedge meshes are *always* manifold

- Consider simplified halfedge data structure
- Require only “common-sense” conditions

```c
struct Halfedge {
    Halfedge *next, *twin;
};
```

- Keep following `next`, and you’ll get faces.
- Keep following `twin` and you’ll get edges.
- Keep following `next->twin` and you’ll get vertices.

Q: Why, therefore, is it impossible to encode the red figures?
Halfedge meshes are easy to edit

- Remember key feature of linked list: insert/delete elements
- Same story with halfedge mesh ("linked list on steroids")
- E.g., for triangle meshes, several atomic operations:

 - Flip
 - Split
 - Collapse

- Must be careful to preserve manifoldness!
Edge Flip (Triangles)

- Triangles \((a,b,c)\), \((b,d,c)\) become \((a,d,c)\), \((a,b,d)\):

- Long list of pointer reassignments \((\text{edge} \rightarrow \text{halfedge} = \ldots)\)
- However, no elements created/destroyed.
- Q: What happens if we flip twice?
- Challenge: can you implement edge flip such that pointers are unchanged after two flips?
Edge Split (Triangles)

- Insert midpoint m of edge (c,b), connect to get four triangles:

- This time, have to *add* new elements.
- Lots of pointer reassignments.
- Q: Can we “reverse” this operation?
Edge Collapse (Triangles)

- Replace edge \((b,c)\) with a single vertex \(m\):

- Now have to *delete* elements.
- Still lots of pointer assignments!
- Q: How would we implement this with a polygon soup?
- Any other good way to do it? (E.g., different data structure?)
Comparison of Polygon Mesh Data Structures

Case study: triangles.

<table>
<thead>
<tr>
<th></th>
<th>Polygon Soup</th>
<th>Incidence Matrices</th>
<th>Halfedge Mesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>storage cost*</td>
<td>~3 x #vertices</td>
<td>~33 x #vertices</td>
<td>~36 x #vertices</td>
</tr>
<tr>
<td>constant-time neighborhood access?</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>easy to add/remove mesh elements?</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>nonmanifold geometry?</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
</tbody>
</table>

number of integer values and/or pointers required to encode connectivity (all data structures require same amount of storage for vertex positions)

Conclusion: pick the right data structure for the job!
Alternatives to Halfedge

- Many very similar data structures:
 - winged edge
 - corner table
 - quaddedge
 - ...

- Each stores local neighborhood information

- Similar tradeoffs relative to simple polygon list:
 - **CONS**: additional storage, incoherent memory access
 - **PROS**: better access time for individual elements, intuitive traversal of local neighborhoods

 (Food for thought: can you design a halfedge-like data structure with reasonably coherent data storage?)
Ok, but what can we actually do with our fancy new data structure?
Subdivision Modeling
Subdivision Modeling

- Common modeling paradigm in modern 3D tools:
 - Coarse “control cage”
 - Perform local operations to control/edit shape
 - Global subdivision process determines final surface
Subdivision Modeling—Local Operations

For general polygon meshes, we can dream up lots of local mesh operations that might be useful for modeling:

...and many, many more!
Global Subdivision

- Start with coarse polygon mesh ("control cage")
- Subdivide each element
- Update vertices via local averaging
- Many possible rules:
 - Catmull-Clark (quads)
 - Loop (triangles)
 - ...
- Common issues:
 - Interpolating or approximating?
 - Continuity at vertices?
- Easier than splines for modeling; harder to evaluate pointwise
Next Time: Digital Geometry Processing

- Extend traditional digital signal processing (audio, video, etc.) to deal with geometric signals:
 - upsampling / downsampling / resampling / filtering ...
 - aliasing (reconstructed surface gives “false impression”)
- Also some new challenges (very recent field!):
 - over which domain is a geometric signal expressed?
 - no terrific sampling theory, no fast Fourier transform, ...
- Often need new data structures & new algorithms