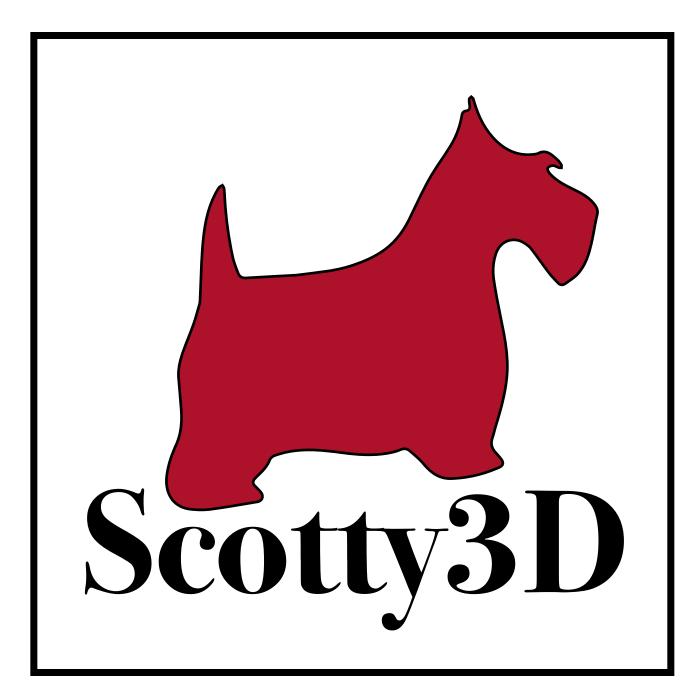
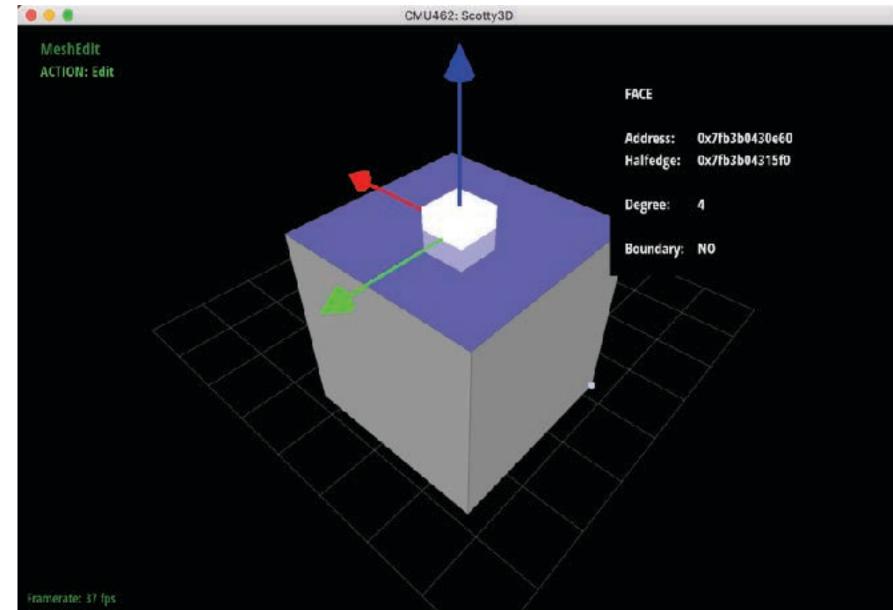
Introduction to Geometry

Computer Graphics CMU 15-462/15-662

Assignment 2 Start building up "Scotty3D"; first part is 3D modeling

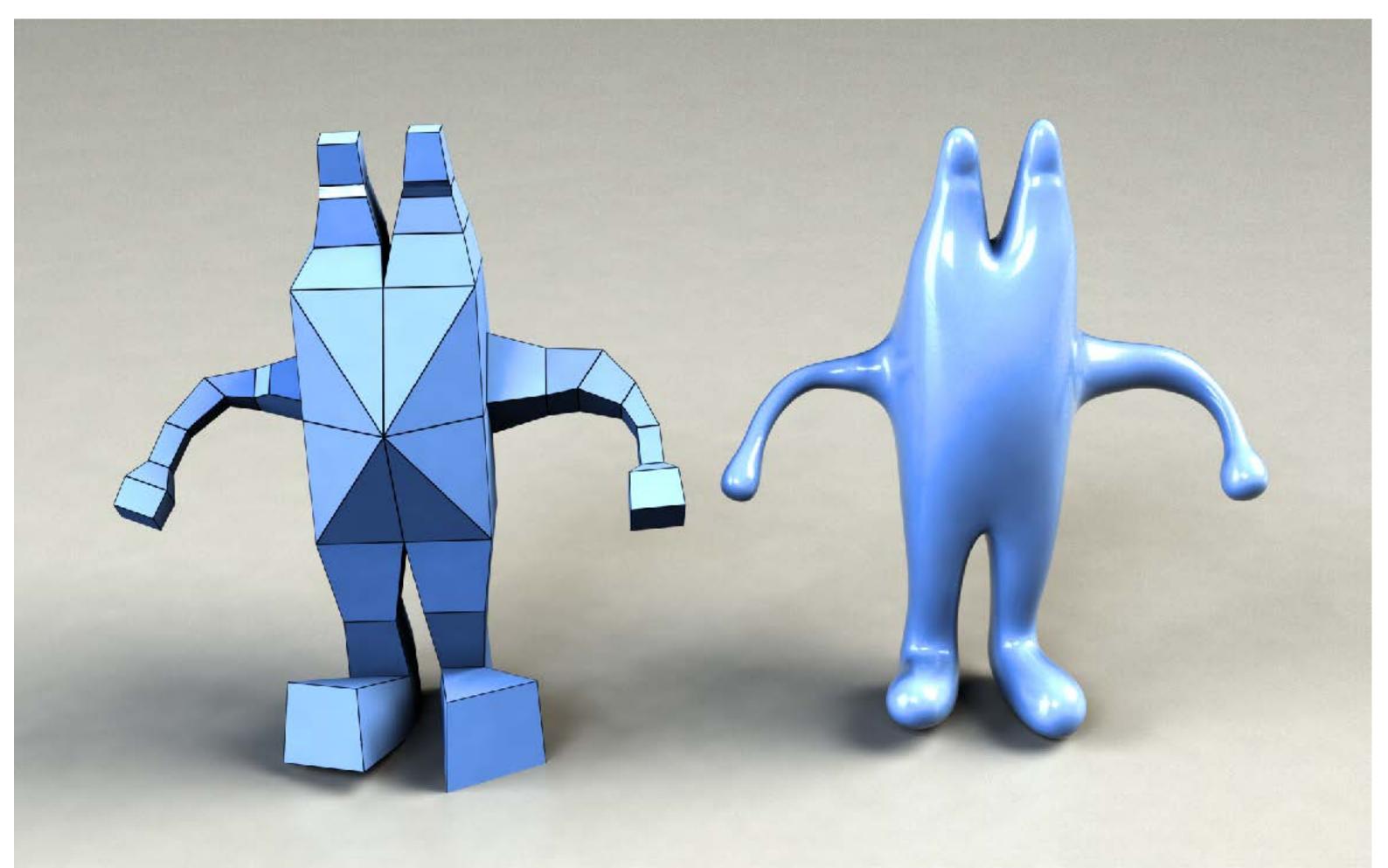




(Start from the cube you described in Lecture 1!)

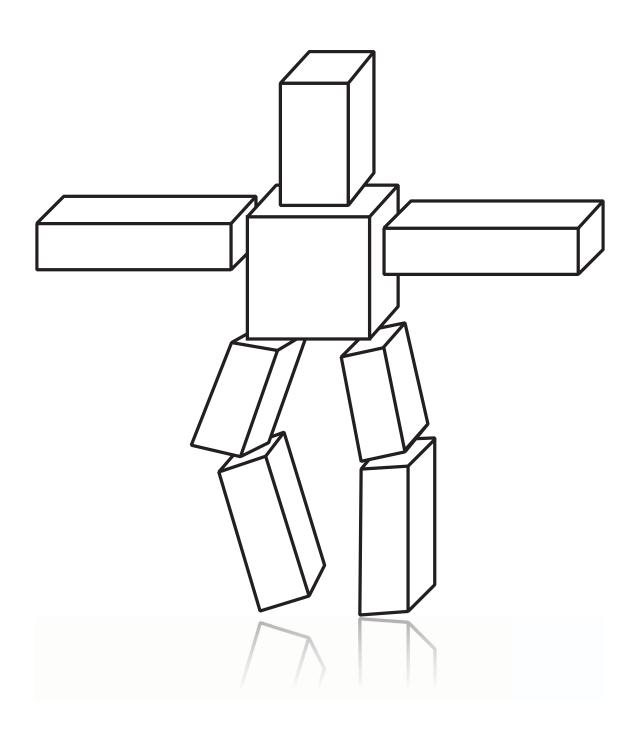
3D Modeling Competition

Don't just make great software... make great art! :-)

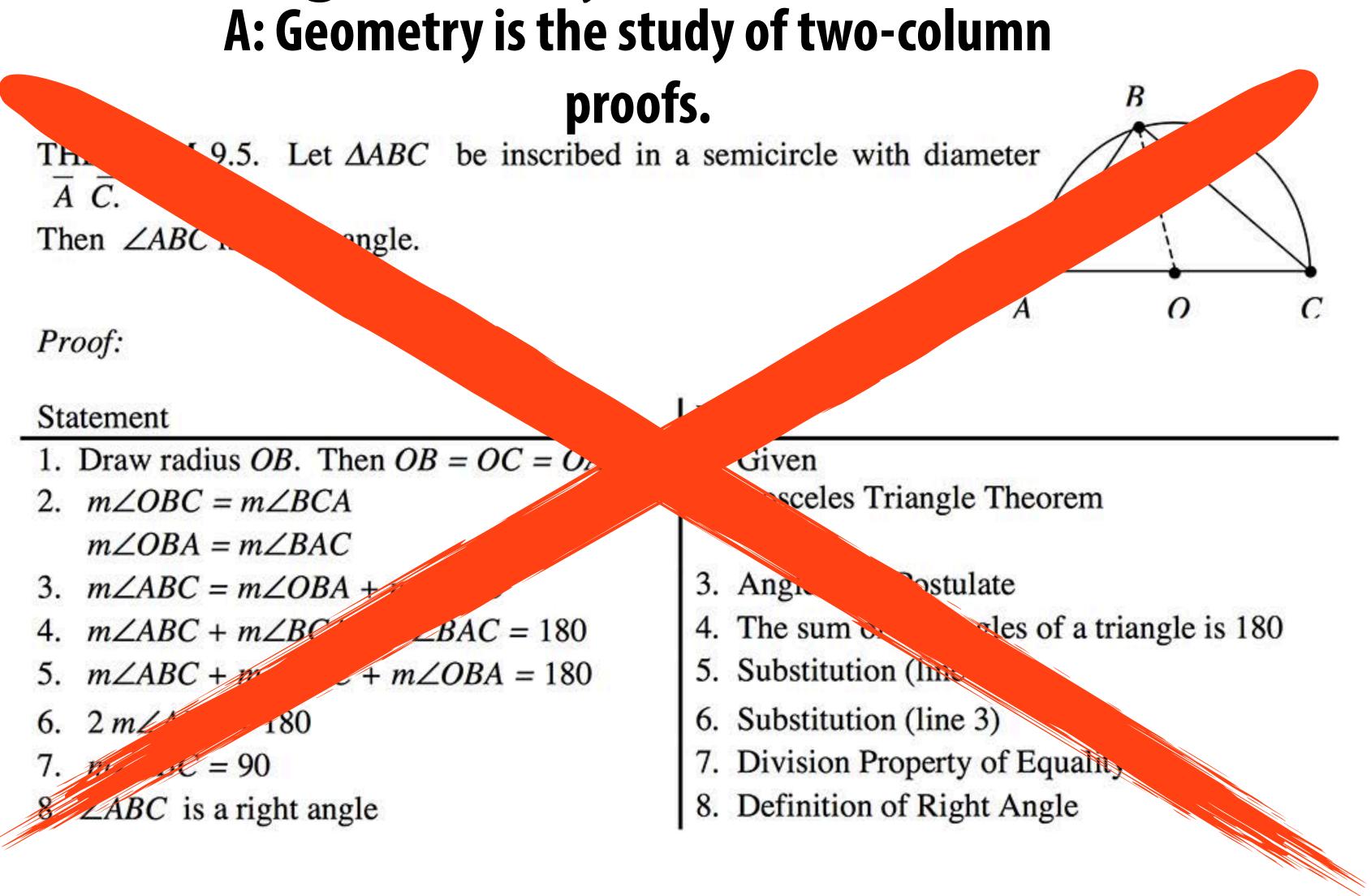


(This mesh was created in Scotty3D in about 5 minutes... you can do much better!)

Increasing the complexity of our modelsTransformationsGeometryMaterials, lighting, ...



Q: What is geometry?



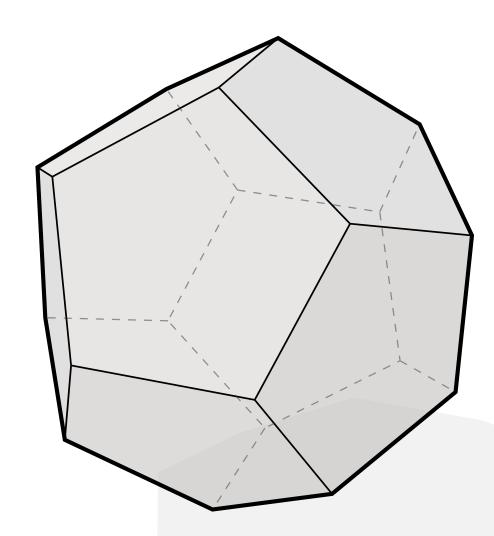
Ceci n'est pas géométrie.

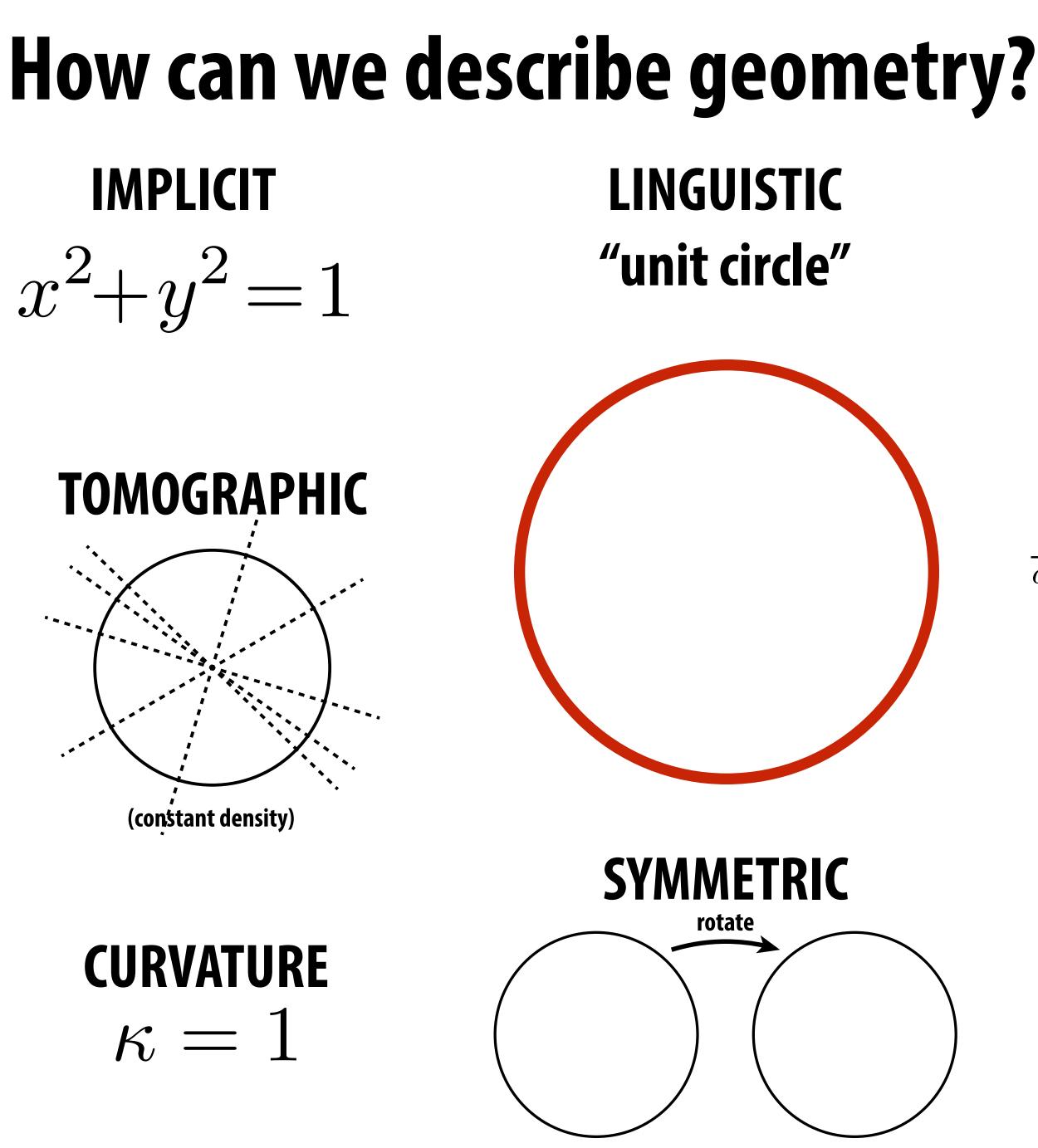
What is geometry?

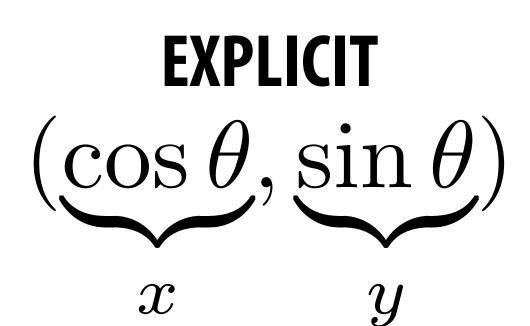
"Earth" "measure"

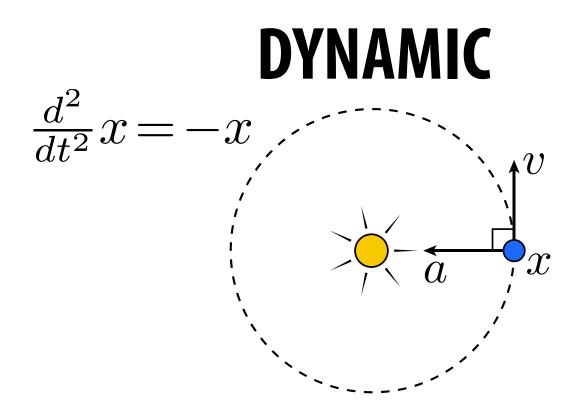
ge•om•et•ry/jē'ämətrē/ n. 1. The study of shapes, sizes, patterns, and positions. 2. The study of spaces where some quantity (lengths, angles, etc.) can be measured.

Plato: "...the earth is in appearance like one of those balls which have leather coverings in twelve pieces..."

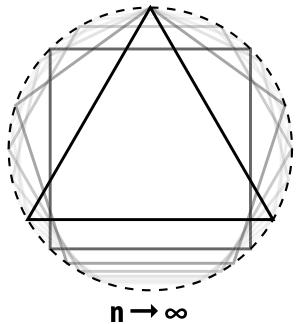




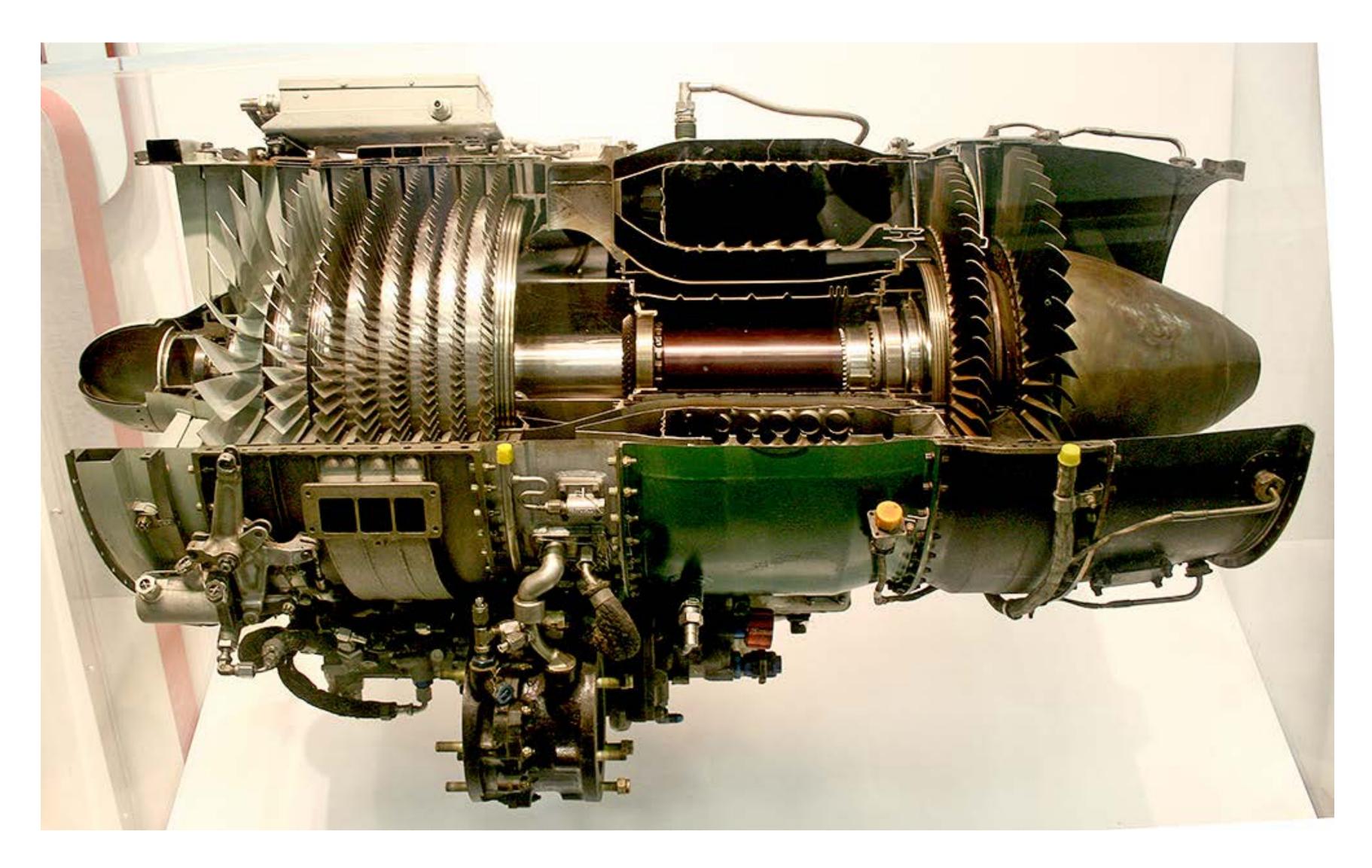


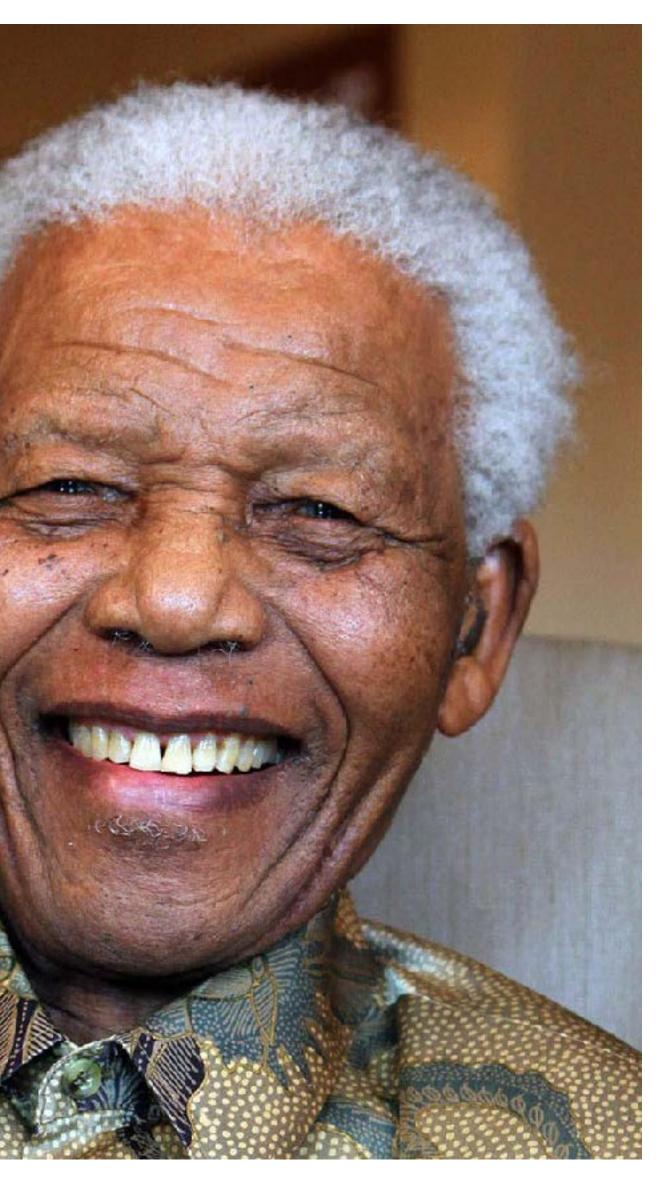


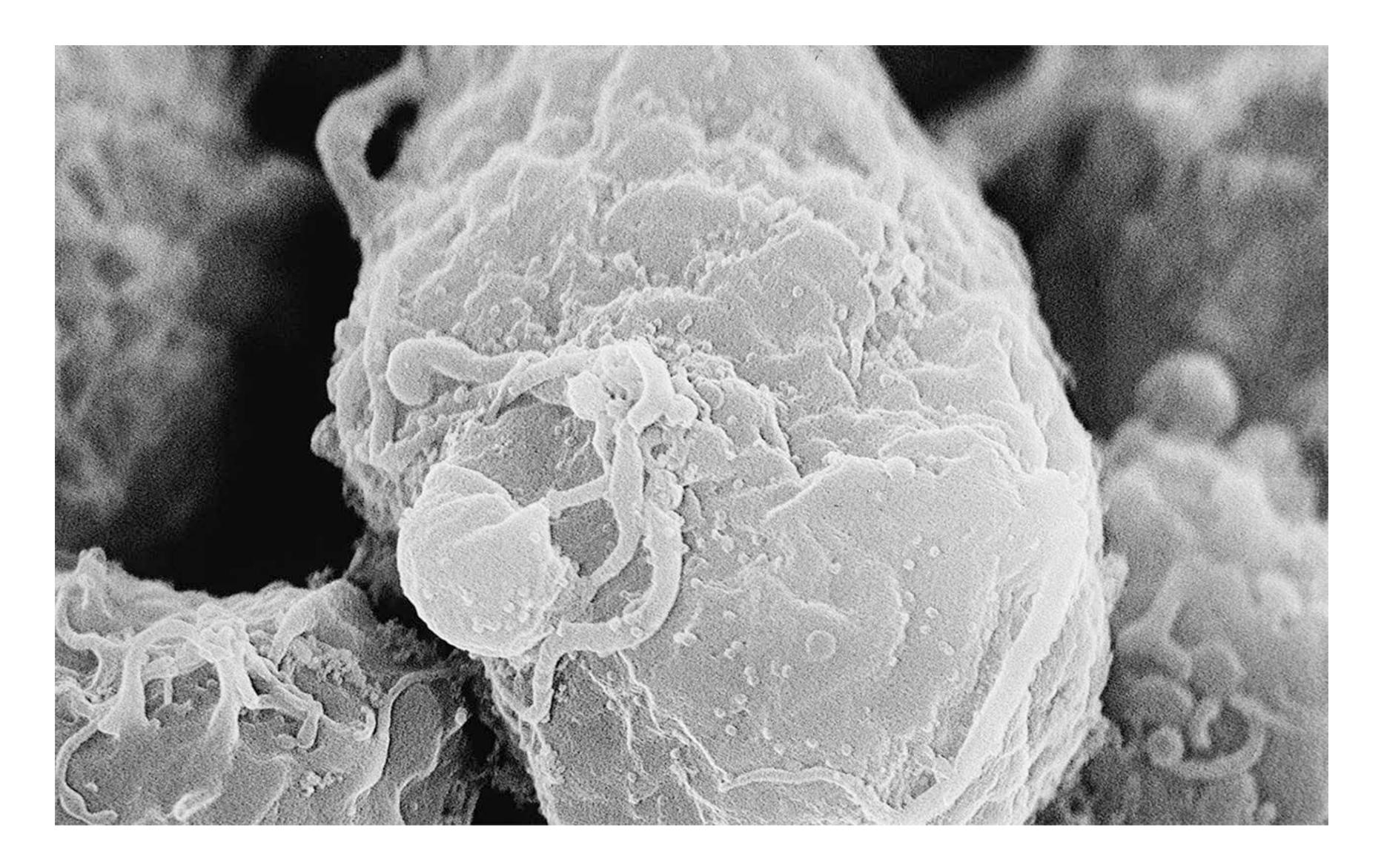
DISCRETE



Given all these options, what's the best way to encode geometry on a computer?







It's a Jungle Out There!

No one "best" choice—geometry is hard!

"I hate meshes. I cannot believe how hard this is. Geometry is hard."

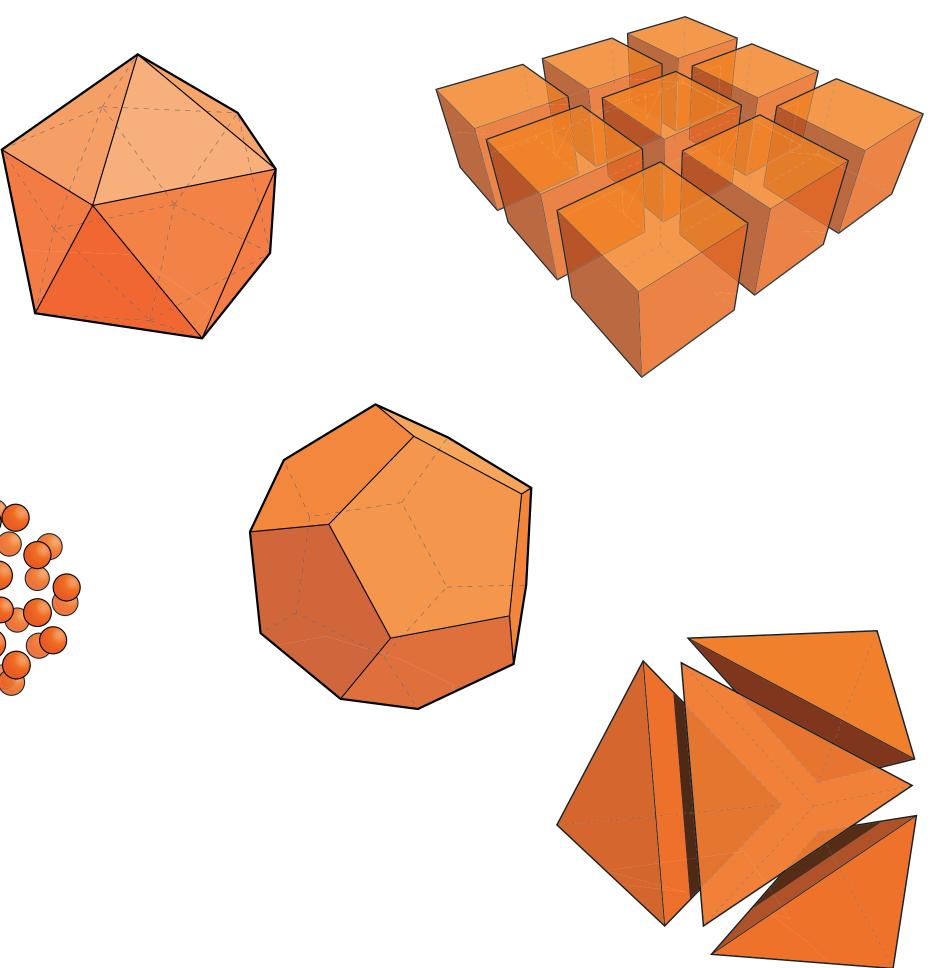
Slide cribbed from Jeff Erickson.

—David Baraff **Senior Research Scientist Pixar Animation Studios**

Many ways to digitally encode geometry

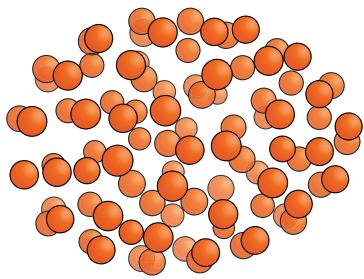
EXPLICIT

- point cloud
- polygon mesh
- subdivision, NURBS



IMPLICIT

level set

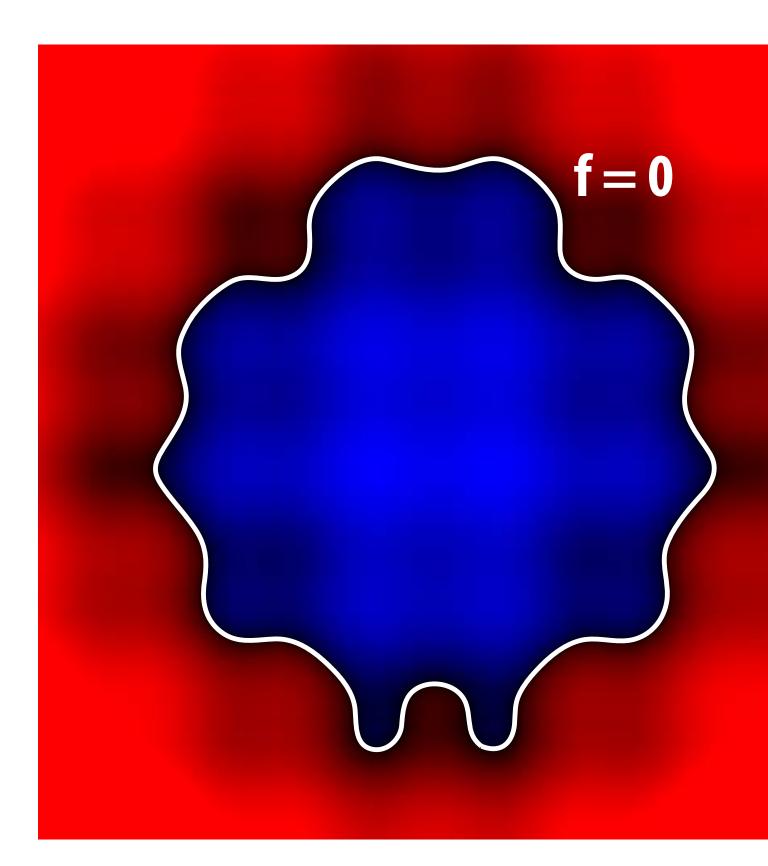


- algebraic surface
- L-systems

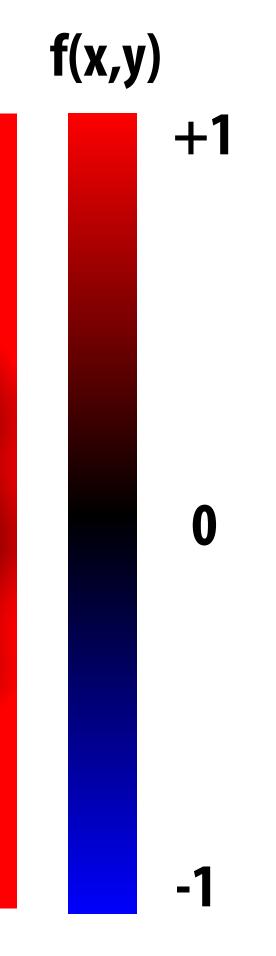
Each choice best suited to a different task/type of geometry

"Implicit" Representations of Geometry

- Points aren't known directly, but satisfy some relationship
- E.g., unit sphere is all points such that x²+y²+z²=1
- More generally, f(x,y,z) = 0



f Geometry some relationship 2+y2+z2=1



Many implicit representations in graphics

- algebraic surfaces
- constructive solid geometry
- level set methods
- **blobby surfaces**
- fractals

(Will see some of these a bit later.)

But first, let's play a game:

I'm thinking of an implicit surface f(x,y,z)=0.

Find *any* point on it.

Give up? My function was f(x,y,z) = x - 1.23 (a plane): (1.23,0,0)

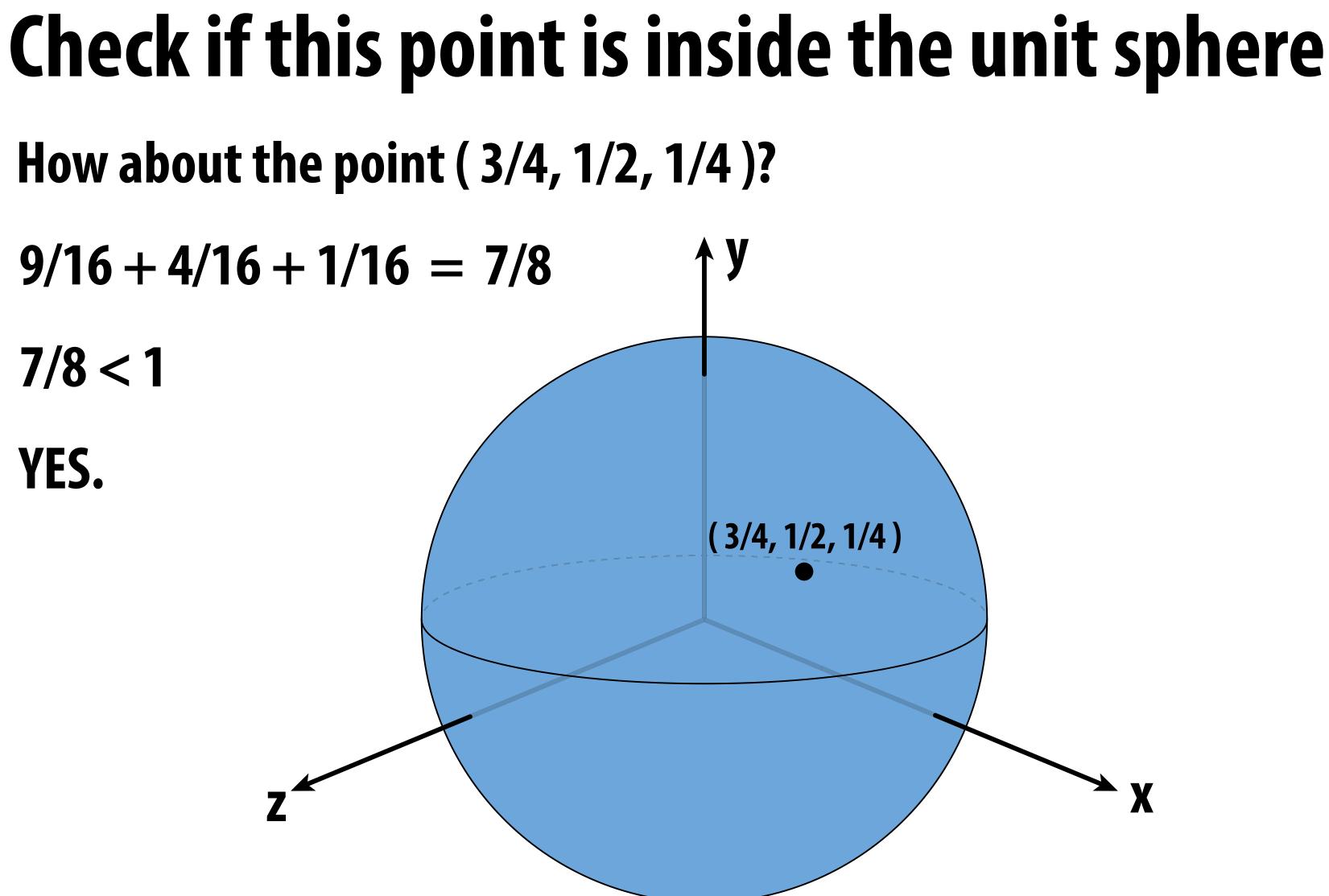
Implicit surfaces make some tasks hard (like sampling).

X

Let's play another game.

I have a new surface $f(x,y,z) = x^2 + y^2 + z^2 - 1$

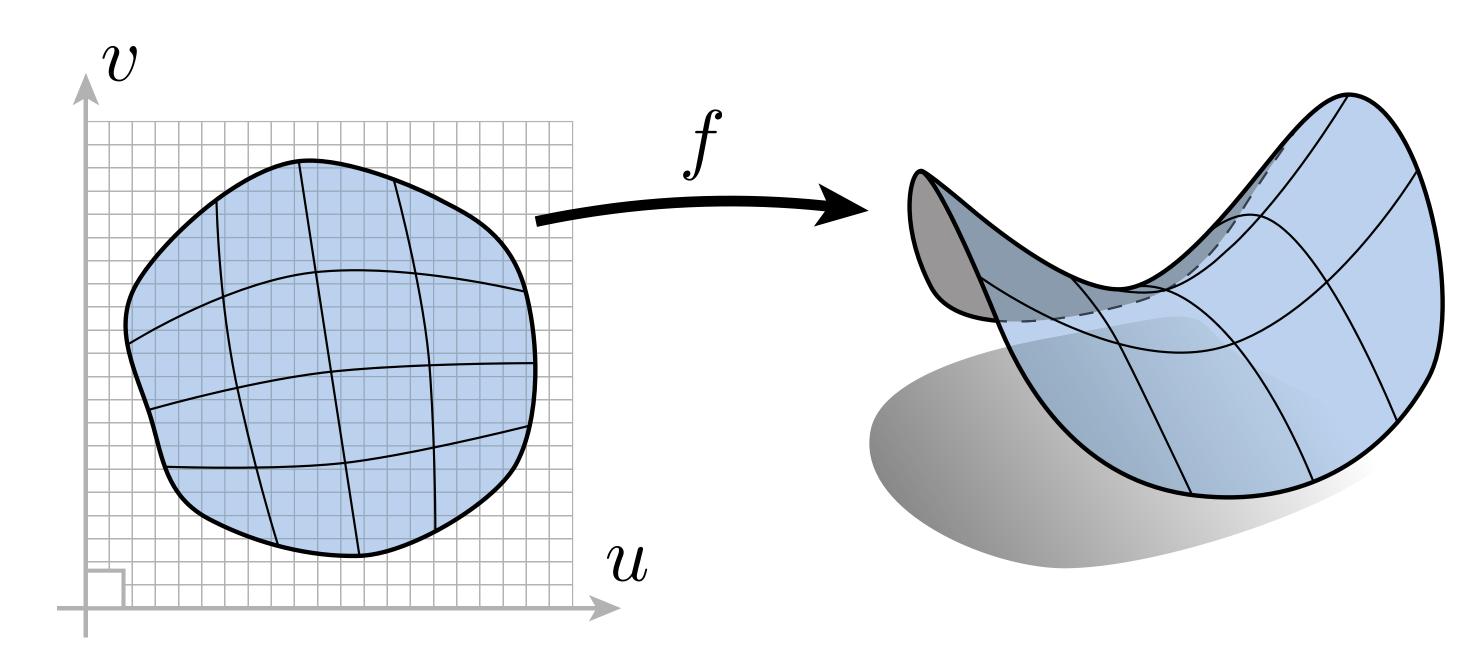
I want to see if a point is *inside* it.



Implicit surfaces make other tasks easy (like inside/outside tests).

"Explicit" Representations of Geometry

- All points are given directly
- **E.g.**, points on sphere are $(\cos(u)\sin(v), \sin(u)\sin(v), \cos(v)),$
 - More generally: $f : \mathbb{R}^2 \to \mathbb{R}^3$; $(u, v) \mapsto (x, y, z)$

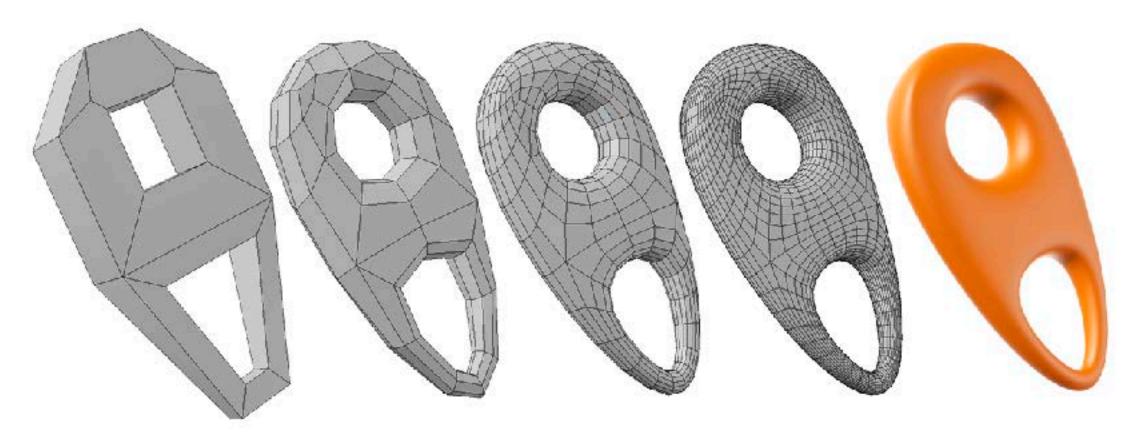


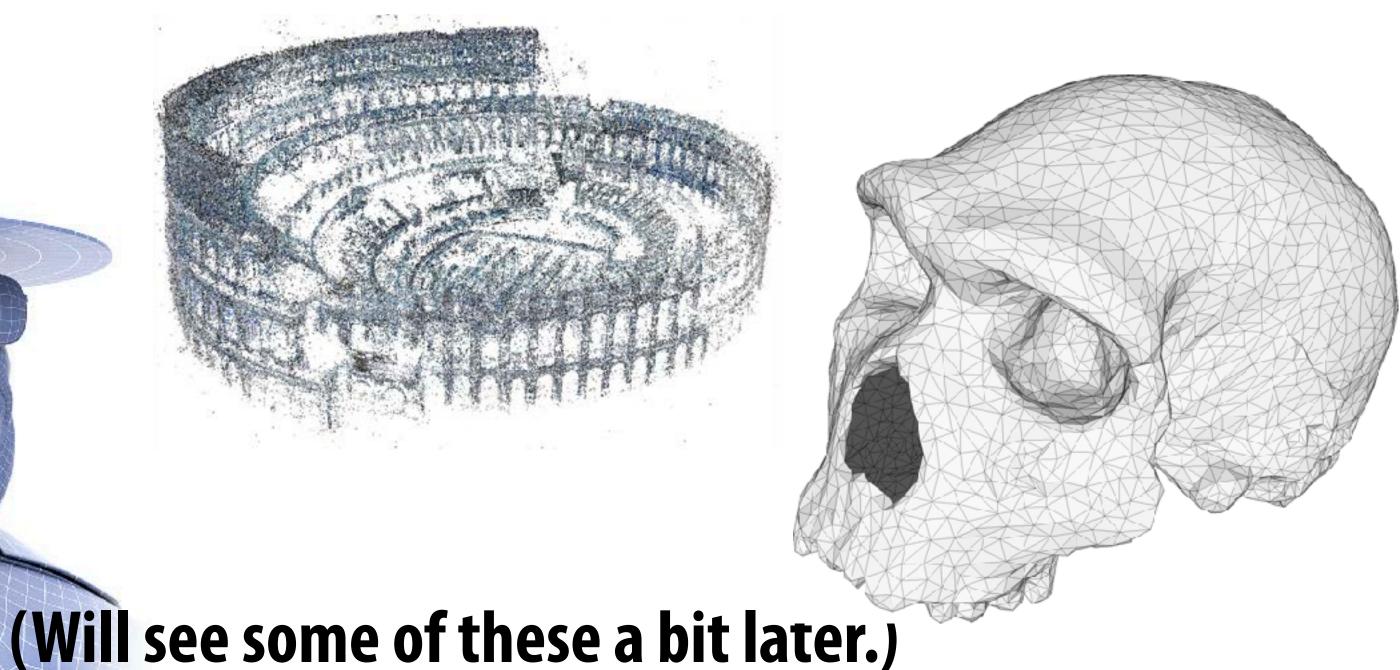
(Might have a bunch of these maps, e.g., one per triangle!)

for $0 \le u \le 2\pi$ and $0 \le v \le \pi$

Many explicit representations in graphics

- triangle meshes
- polygon meshes
- subdivision surfaces
- **NURBS**
- point clouds

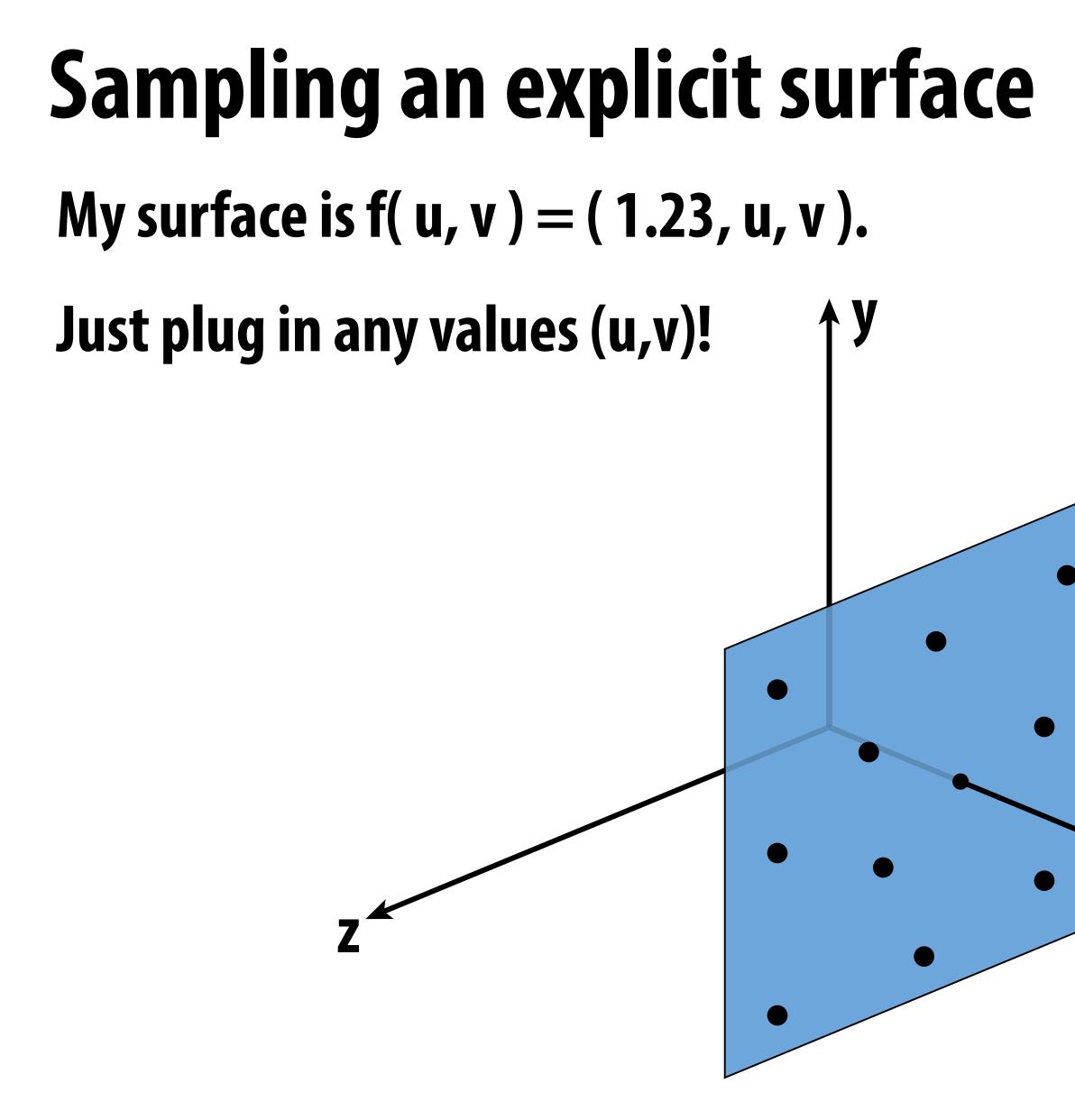




But first, let's play a game:

I'll give you an explicit surface.

You give me some points on it.

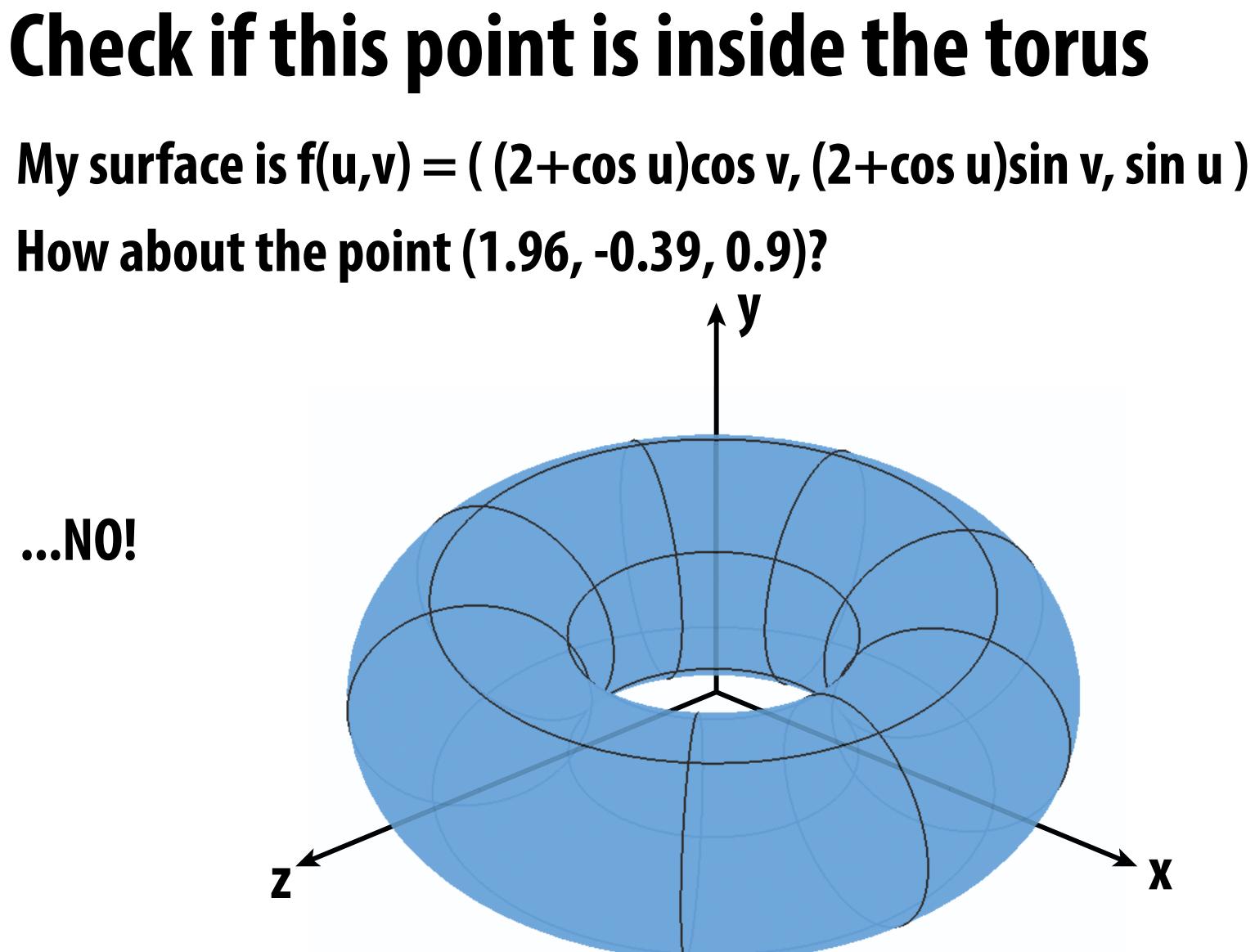


Explicit surfaces make some tasks easy (like sampling).

Let's play another game.

I have a new surface f(u,v).

I want to see if a point is *inside* it.



Explicit surfaces make other tasks hard (like inside/outside tests).

CONCLUSION: Some representations work better than others—depends on the task!

Different representations will also be better suited to different types of geometry.

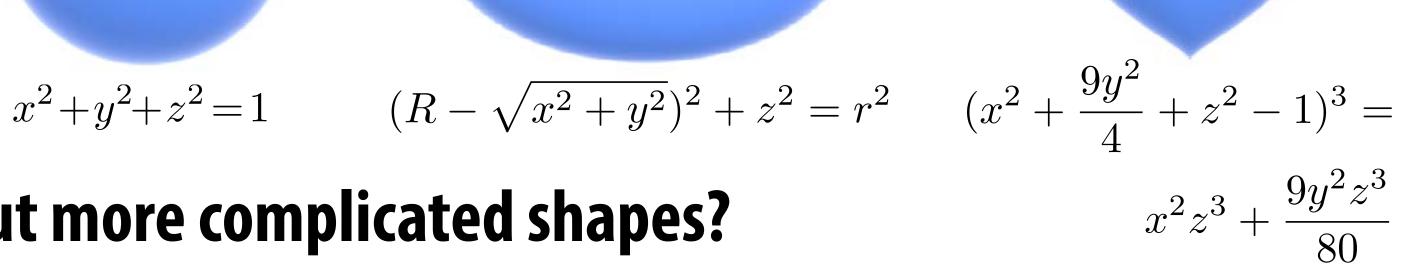
Let's take a look at some common representations used in computer graphics.

Algebraic Surfaces (Implicit)

- Surface is zero set of a polynomial in x, y, z ("algebraic variety")
- **Examples:**

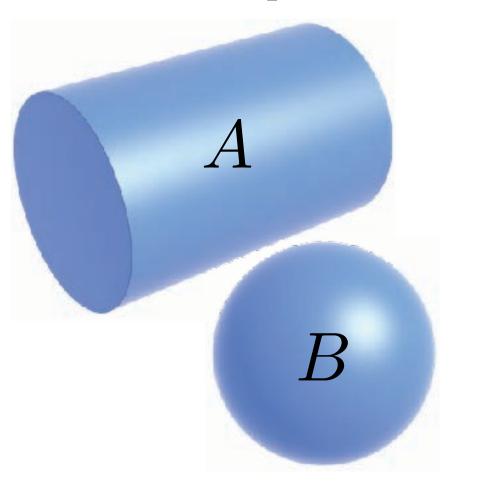
What about more complicated shapes?

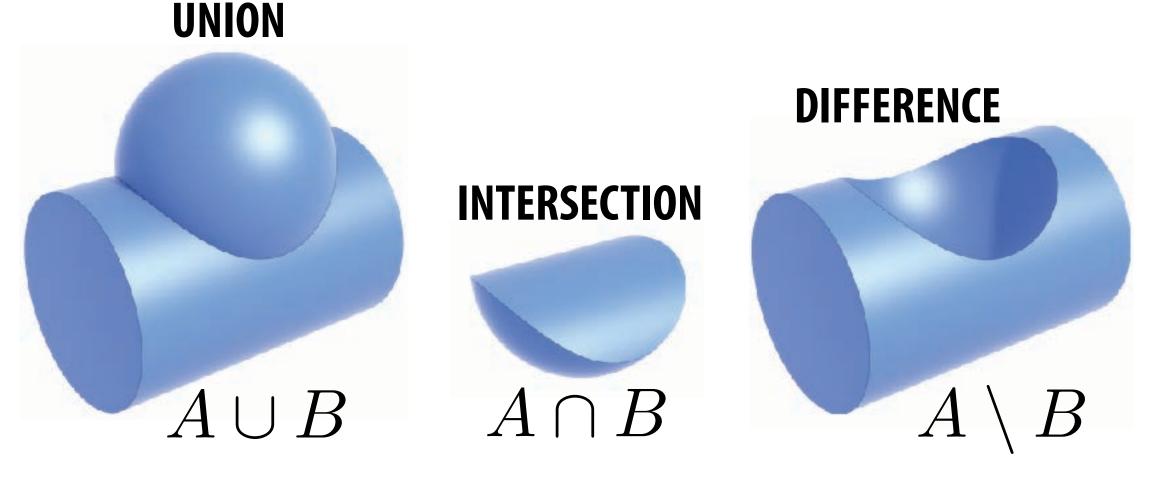
Very hard to come up with polynomials!



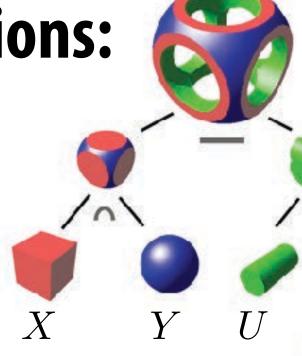
Constructive Solid Geometry (Implicit)

Build more complicated shapes via Boolean operations
 Basic operations:





Then chain together expressions:



(Implicit) ean operations

 $(X \cap Y) \setminus (U \cup V \cup W)$

W

Blobby Surfaces (Implicit)

Instead of Booleans, gradually blend surfaces together:

Easier to understand in 2D:

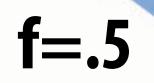
$$\phi_p(x) := e^{-|x-p|^2}$$

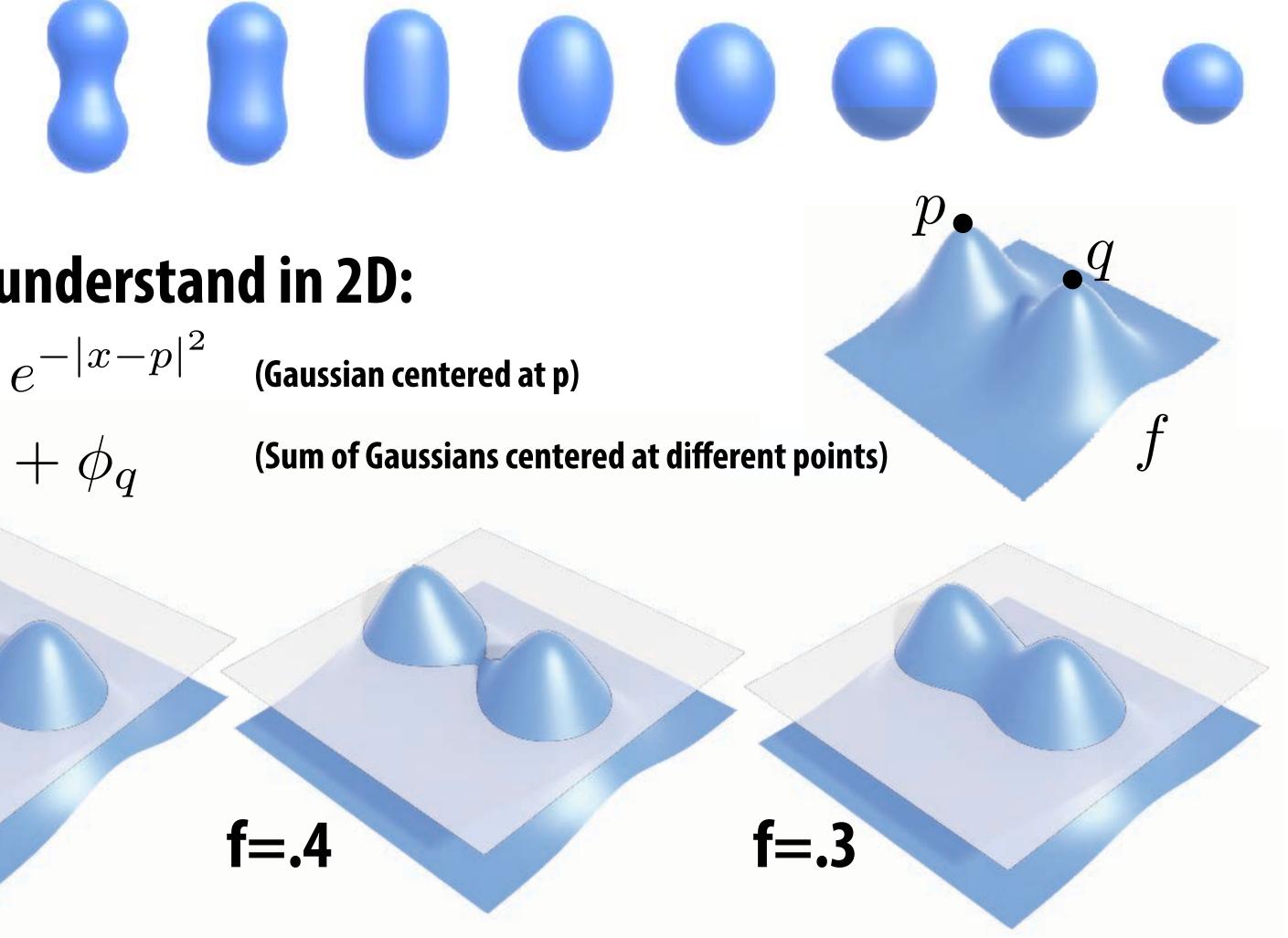
(Gaussian centered at p)

f=.4

$$f := \phi_p + \phi_q$$

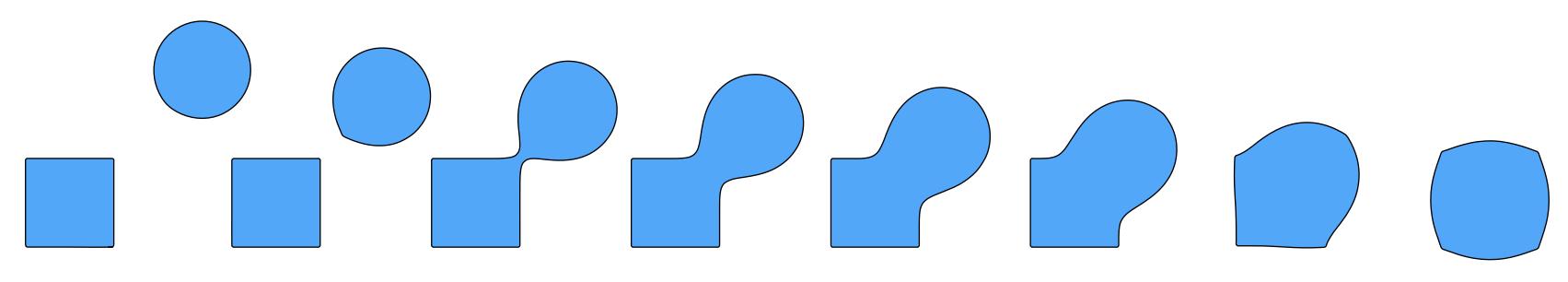
(Sum of Gaussians centered at different points)





Blending Distance Functions (Implicit)

- A distance function gives distance to closest point on object
- Can blend any two distance functions d₁, d₂:



Similar strategy to points, though many possibilities. E.g.,

$$f(x) := e^{d_1(x)^2} + e^{d_2(x)}$$

- Appearance depends on how we combine functions
 - Q: How do we implement a Boolean union of d1(x), d2(x)*?
- A: Just take the minimum: $f(x) := \min(d_1(x)) + \min(d_2(x))$

*Assuming shape is set of points where f(x) = 0

(**Implicit**) sest point on object , d₂:

 $()^2 - \frac{1}{2}$

The functions in of d1(x), d2(x)*? $\ln(d_1(x)) + \min(d_2(x))$

Scene of pure distance functions (not easy!)

See http://iquilezles.org/www/material/nvscene2008/nvscene2008.htm

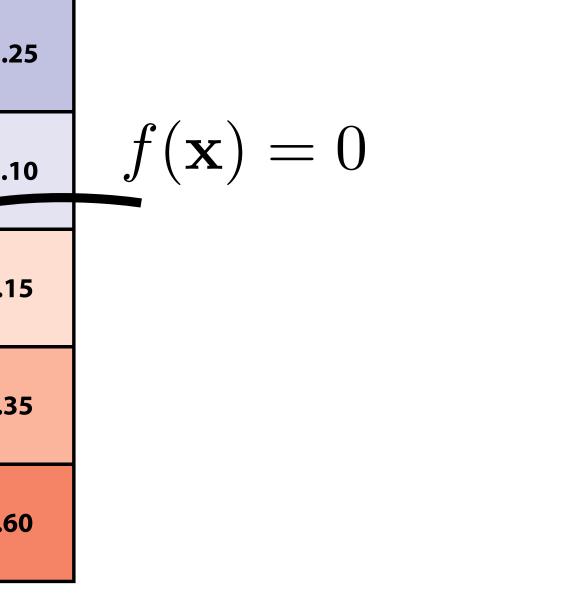
Level Set Methods (Implicit)

- Implicit surfaces have some nice features (e.g., merging/splitting)
- But, hard to describe complex shapes in closed form
- Alternative: store a grid of values approximating function

55	45	35	30	-•2
30	25	20	10	
20	15	10	.10	.1
05	.10	.05	.25	
.15	.20	.25	.55	.6

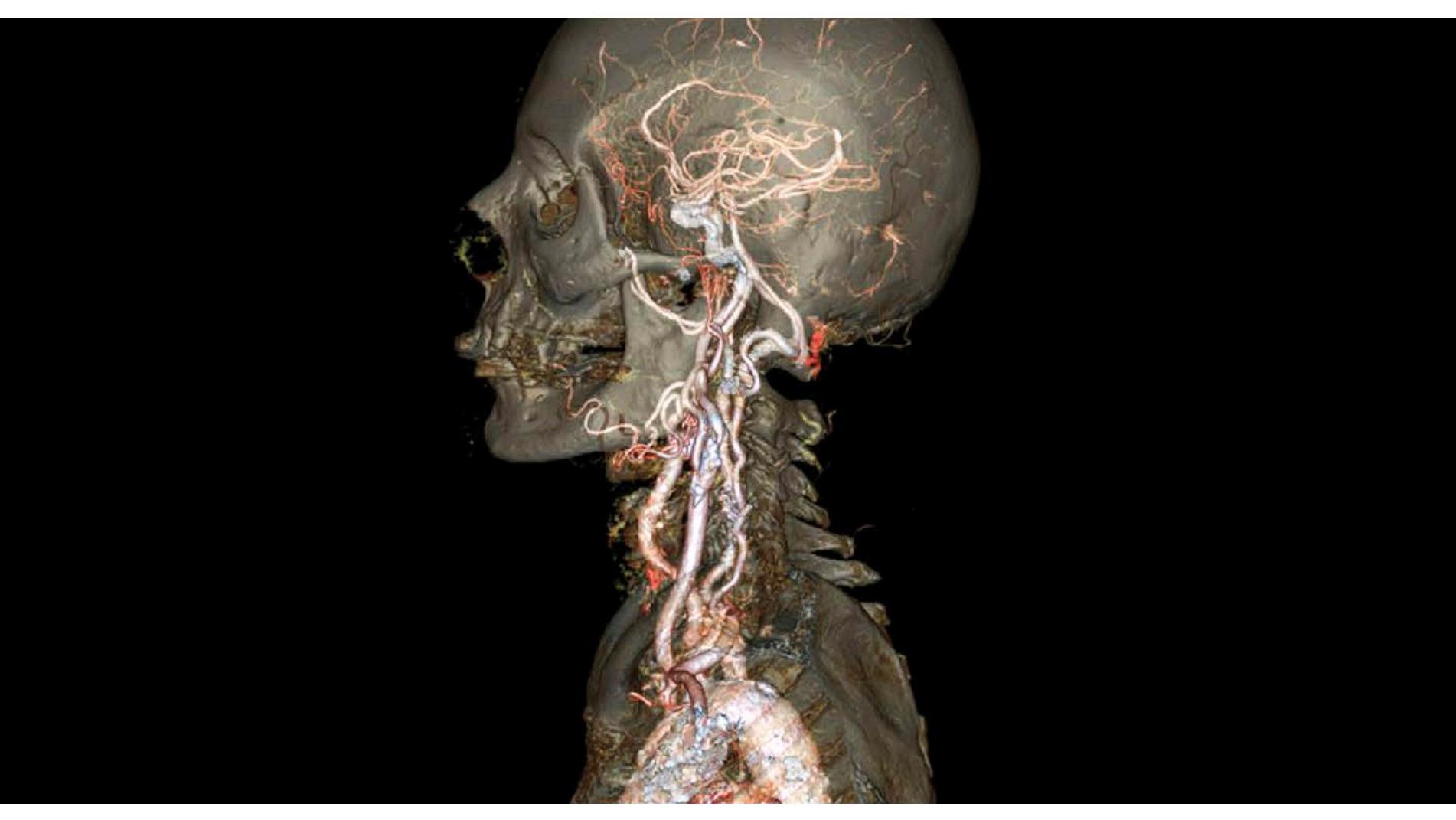
- Surface is found where *interpolated* values equal zero
- Provides much more explicit control over shape (like a texture)
- Often demands sophisticated *filtering* (trilinear, tricubic...)

es (e.g., merging/splitting) closed form ximating function



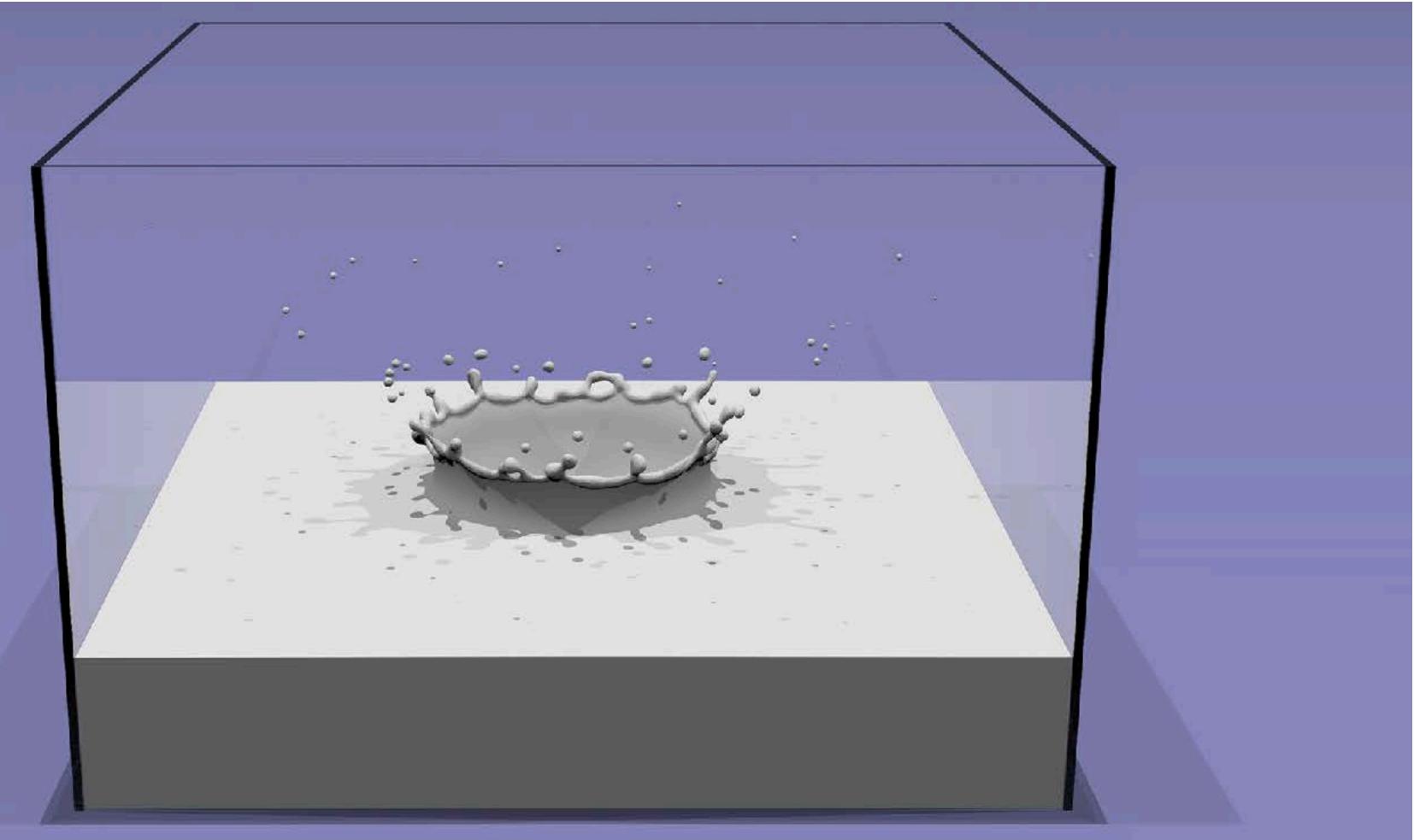
ues equal zero er shape (like a texture) trilinear, tricubic...)

Level Sets from Medical Data (CT, MRI, etc.) Level sets encode, e.g., constant tissue density



Level Sets in Physical Simulation

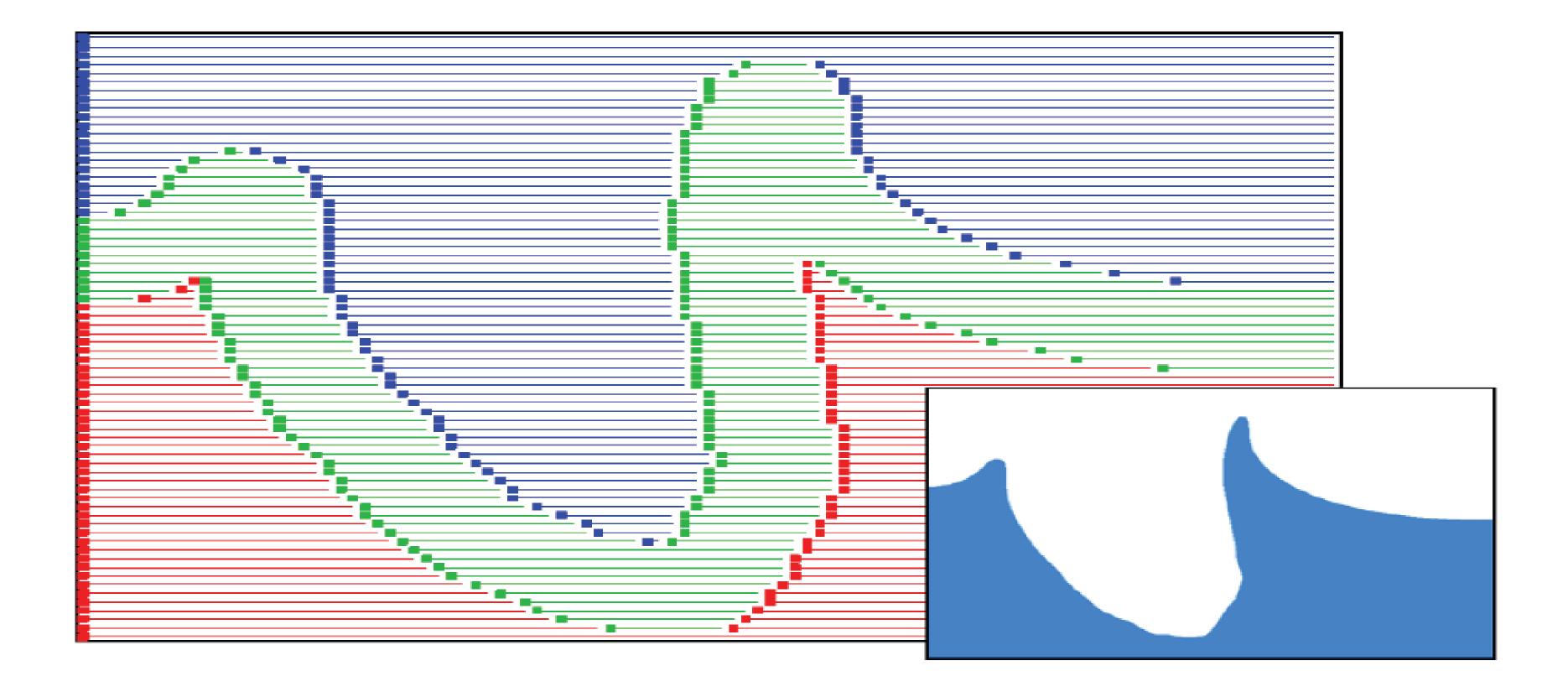
Level set encodes distance to air-liquid boundary



See http://physbam.stanford.edu

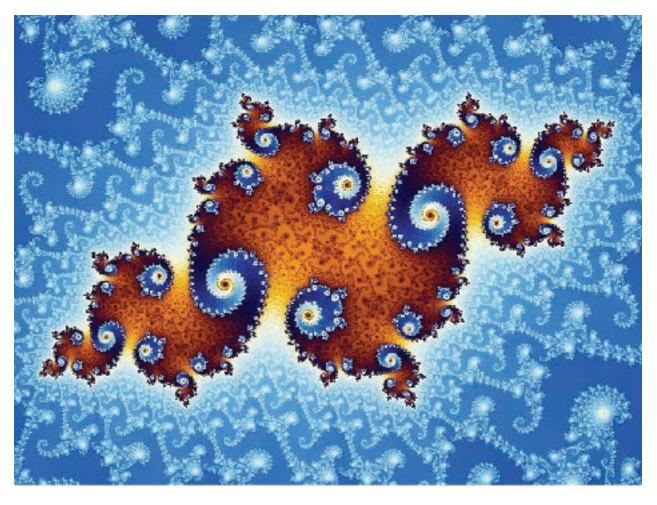
Level Set Storage

Drawback: storage for 2D surface is now O(n³) Can reduce cost by storing only a narrow band around surface:

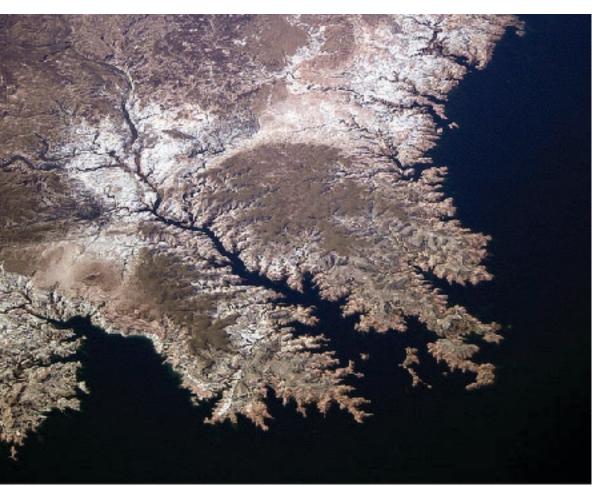


Fractals (Implicit)

- No precise definition; exhibit self-similarity, detail at all scales
- New "language" for describing natural phenomena
- Hard to control shape!



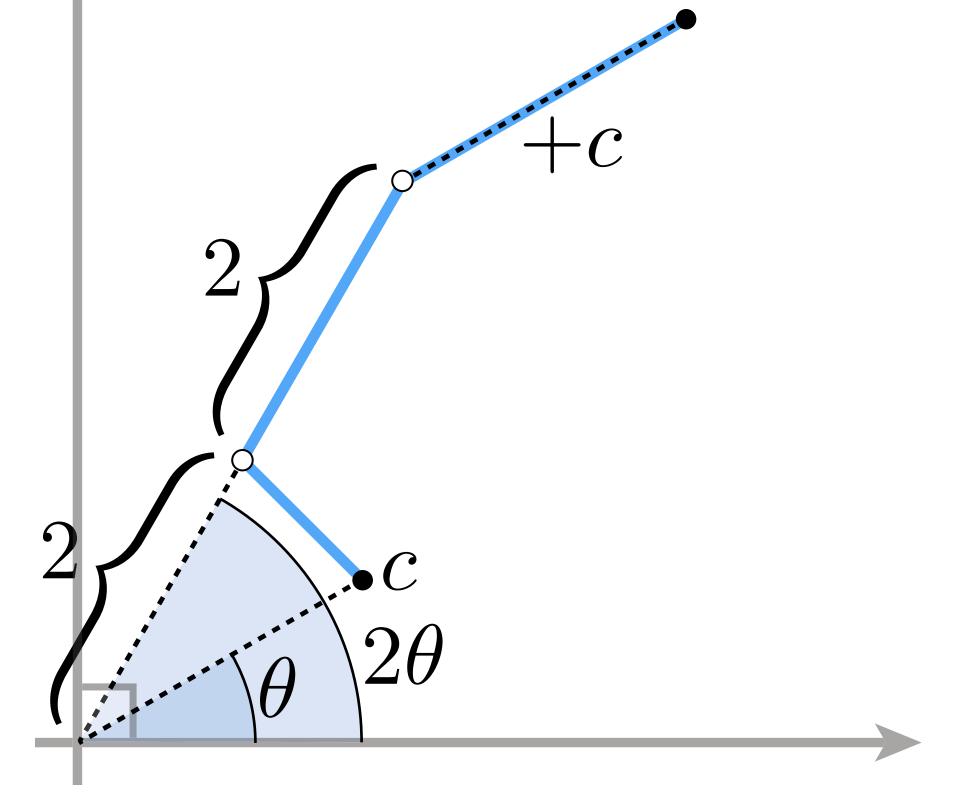
rity, detail at all scales henomena



Mandelbrot Set - Definition

For each point c in the plane:

- double the angle
- square the magnitude
- add the original point c
- repeat
- **Complex version:**
 - Replace z with $z^2 + c$
 - repeat



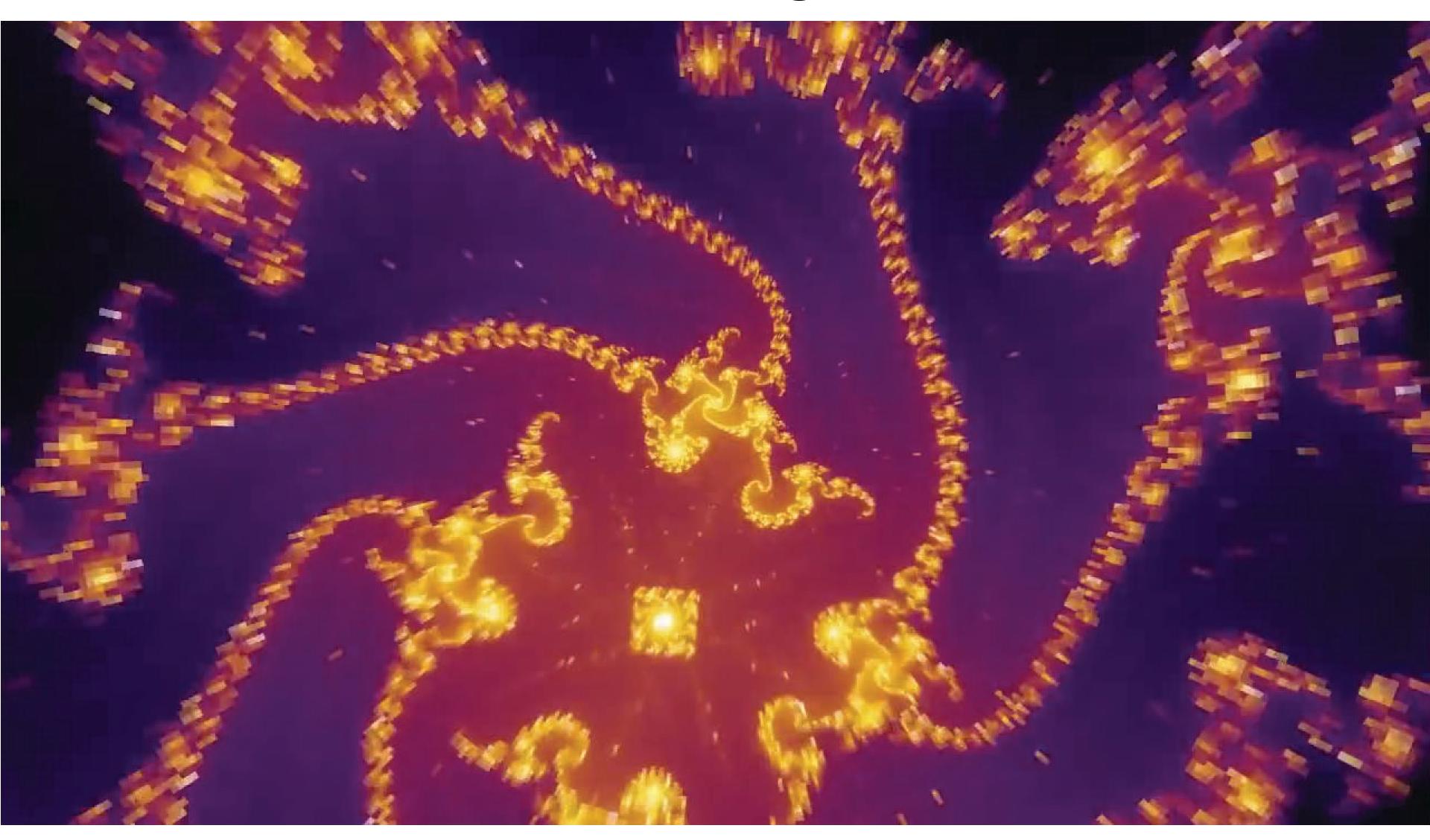
If magnitude remains bounded (never goes to ∞), it's in the Mandelbrot set.

Mandelbrot Set - Examples

starting point

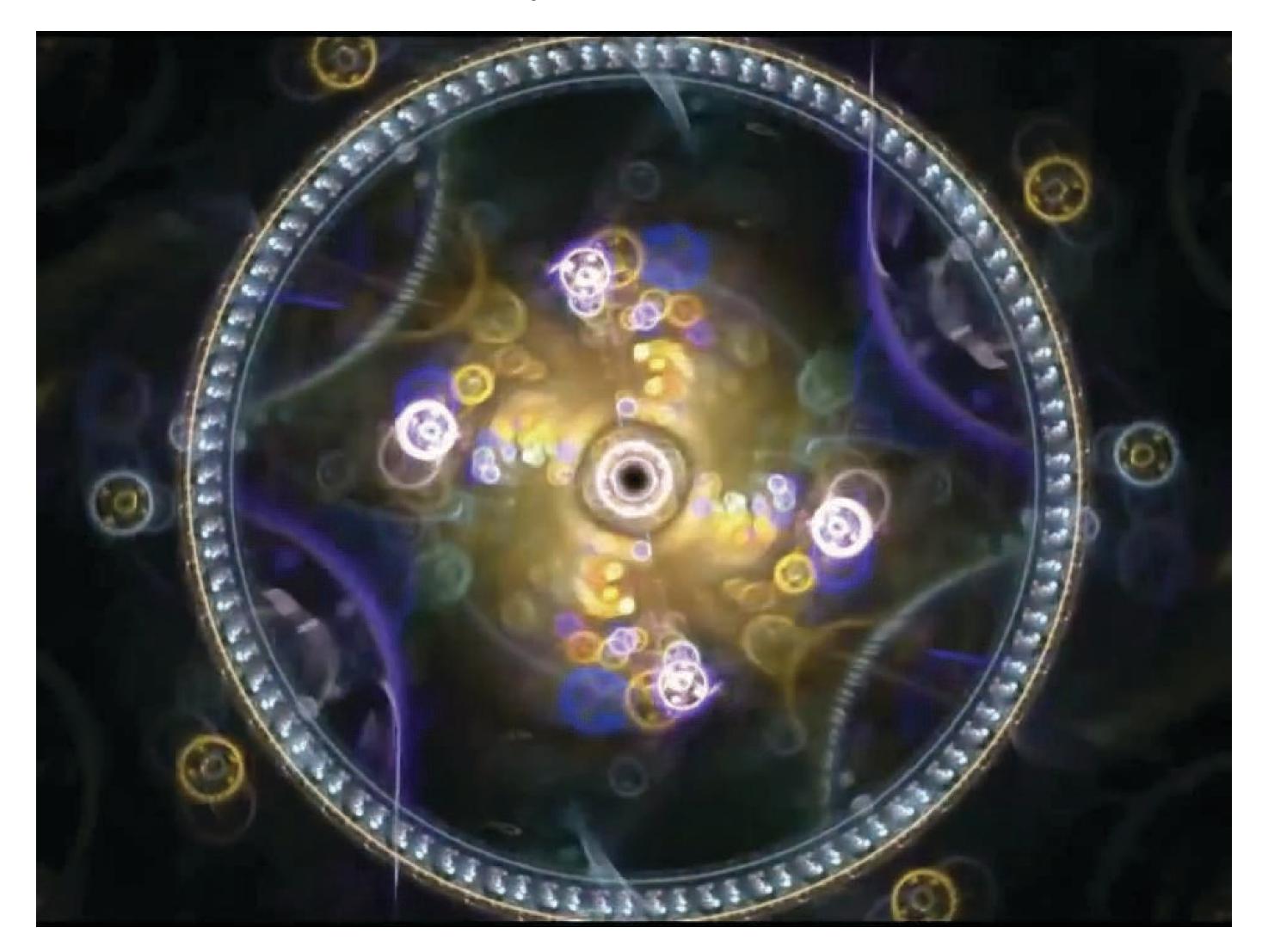
- (0, 1/2) (converges)
- (0,1) (periodic)
- (1/3, 1/2) (diverges)

Mandelbrot Set - Zooming In



(Colored according to how quickly each point diverges/converges.)

Iterated Function Systems



Scott Draves (CMU Alumnus) - see <u>http://electricsheep.org</u>

Implicit Representations - Pros & Cons

Pros:

- description can be very compact (e.g., a polynomial)
- easy to determine if a point is in our shape (just plug it in!)
- other queries may also be easy (e.g., distance to surface)
- for simple shapes, exact description/no sampling error
- easy to handle changes in topology (e.g., fluid)

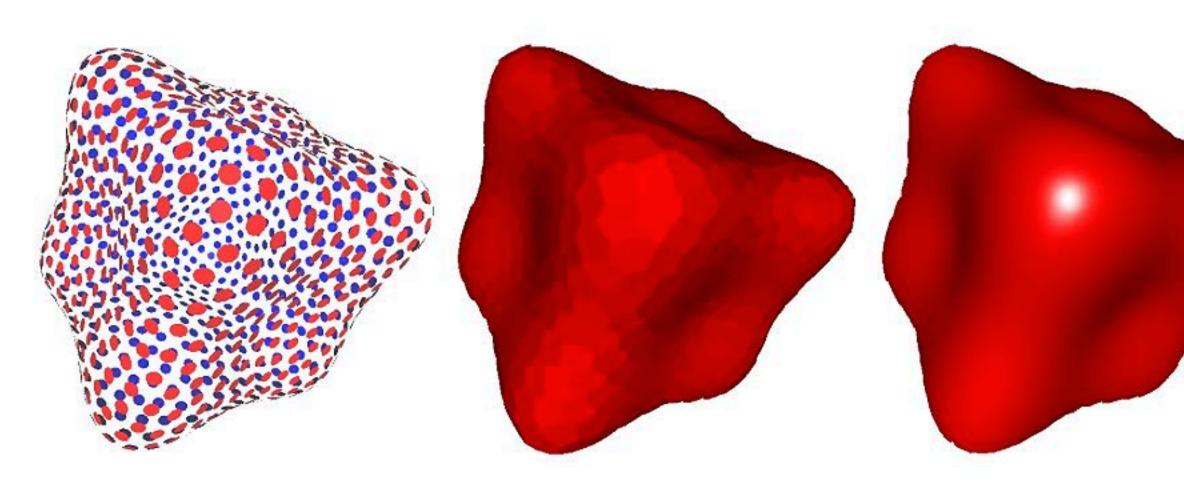
Cons:

- expensive to find all points in the shape (e.g., for drawing)
- very difficult to model complex shapes

What about explicit representations?

Point Cloud (Explicit)

- Easiest representation: list of points (x,y,z)
- Often augmented with normals
- Easily represent any kind of geometry
- Useful for LARGE datasets (>>1 point/pixel)
- Hard to interpolate undersampled regions
- Hard to do processing / simulation / ...



Polygon Mesh (Explicit)

- Store vertices and polygons (most often triangles or quads)
- Easier to do processing/simulation, adaptive sampling
 - More complicated data structures
- Perhaps most common representation in graphics

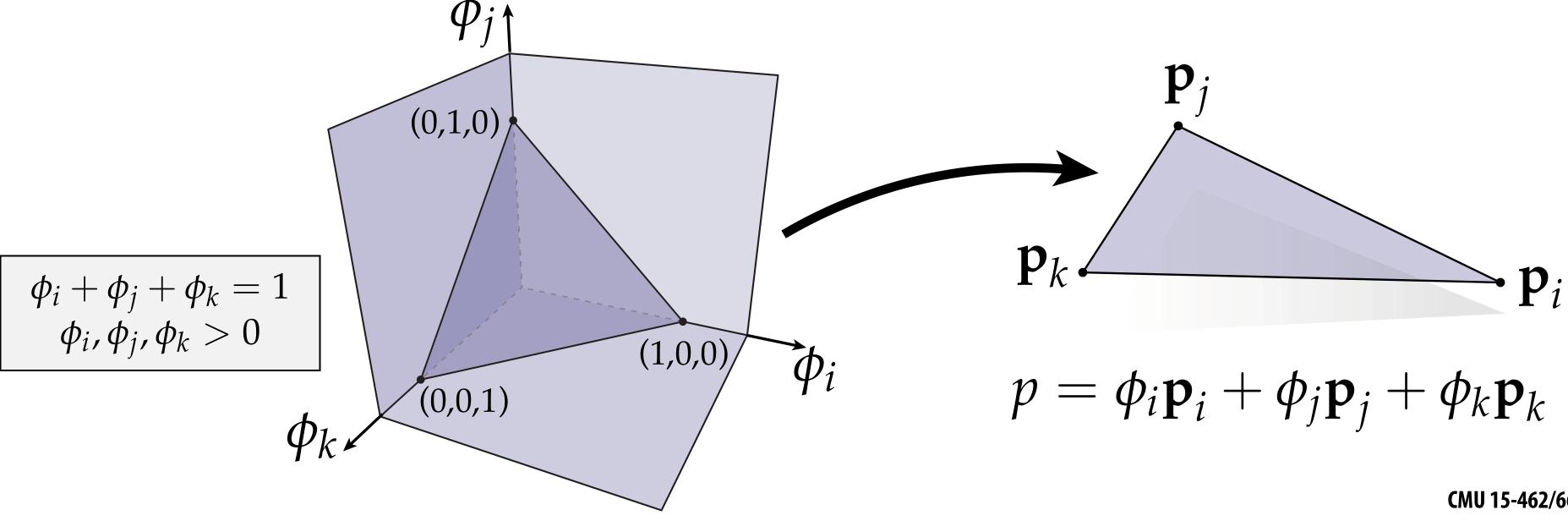
(Much more about polygon meshes in upcoming lectures!)

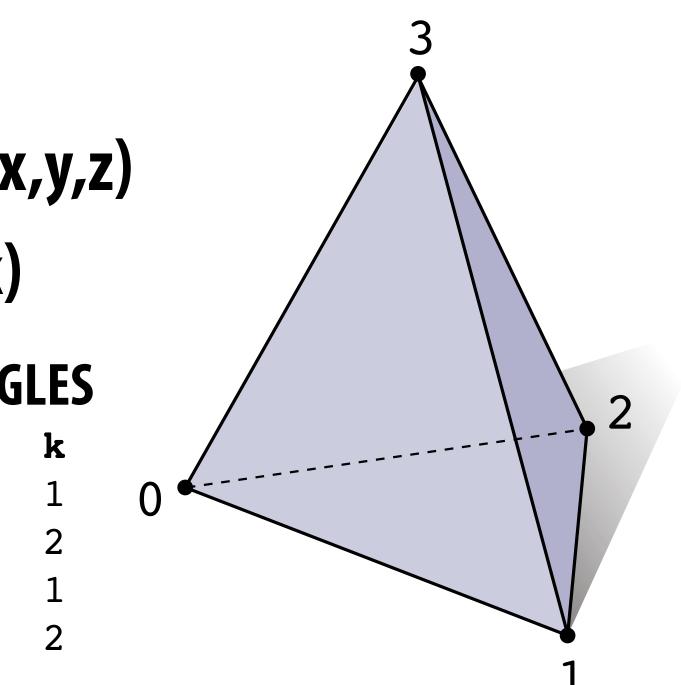
Triangle Mesh (Explicit)

- Store vertices as triples of coordinates (x,y,z)
- Store triangles as triples of indices (i,j,k)
- E.g., tetrahedron:

	VEI	RTIC	ES	TRI	ANC
	x	У	Z	i	j
0:	-1	-1	-1	0	2
1:	1	-1	1	0	3
2:	1	1	-1	3	0
3:	-1	1	1	3	1

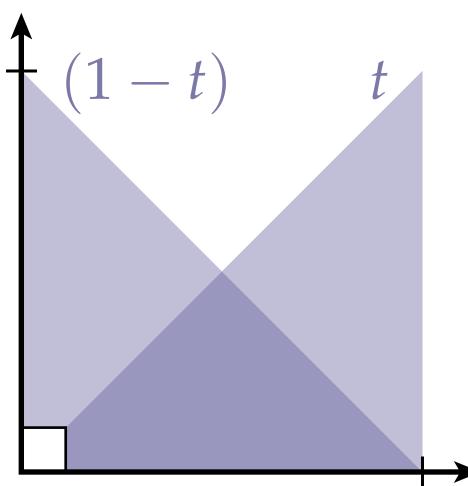
Use barycentric interpolation to define points inside triangles:





Recall: Linear Interpolation (1D)

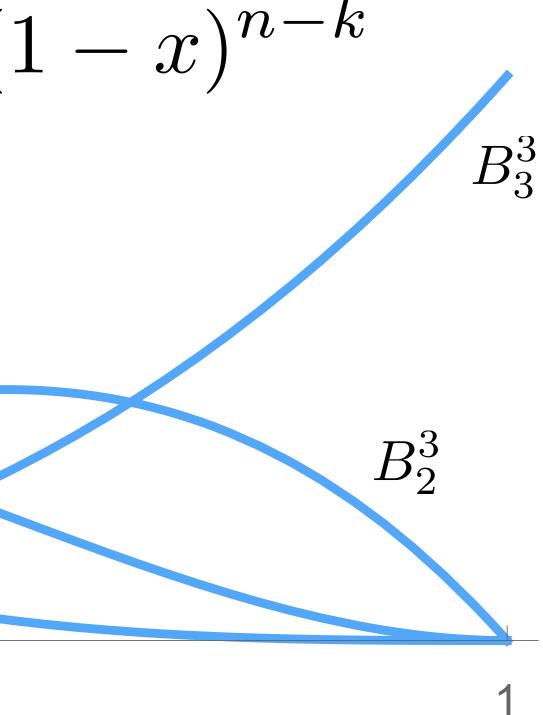
- Interpolate vertex positions using *linear interpolation*; in 1D: $\hat{f}(t) = (1-t)f_i + tf_j$
- **Can think of this as a linear combination of two functions:**



As we move closer to t=0, we approach the value of f at x_i As we move closer to t=1, we approach the value of f at x_i

Bernstein Basis

Why limit ourselves to just linear interpolation? More flexibility by using higher-order polynomials Instead of usual basis (1, x, x², x³, ...), use Bernstein basis: $\begin{array}{c} \overset{\text{uegree}}{\searrow} & \overset{\text{o} \leq \mathbf{x} \leq \mathbf{1}}{\overset{\text{o} \\ B}{}_{k}^{n}(x)} := \binom{n}{k} x^{k} (1-x)^{n-k} \\ \overset{\text{o} \\ \mathbf{x} = \mathbf{0}, \dots, \mathbf{n}} \end{array}$ B_{0}^{3} <u>1</u> 2 B_{1}^{3}



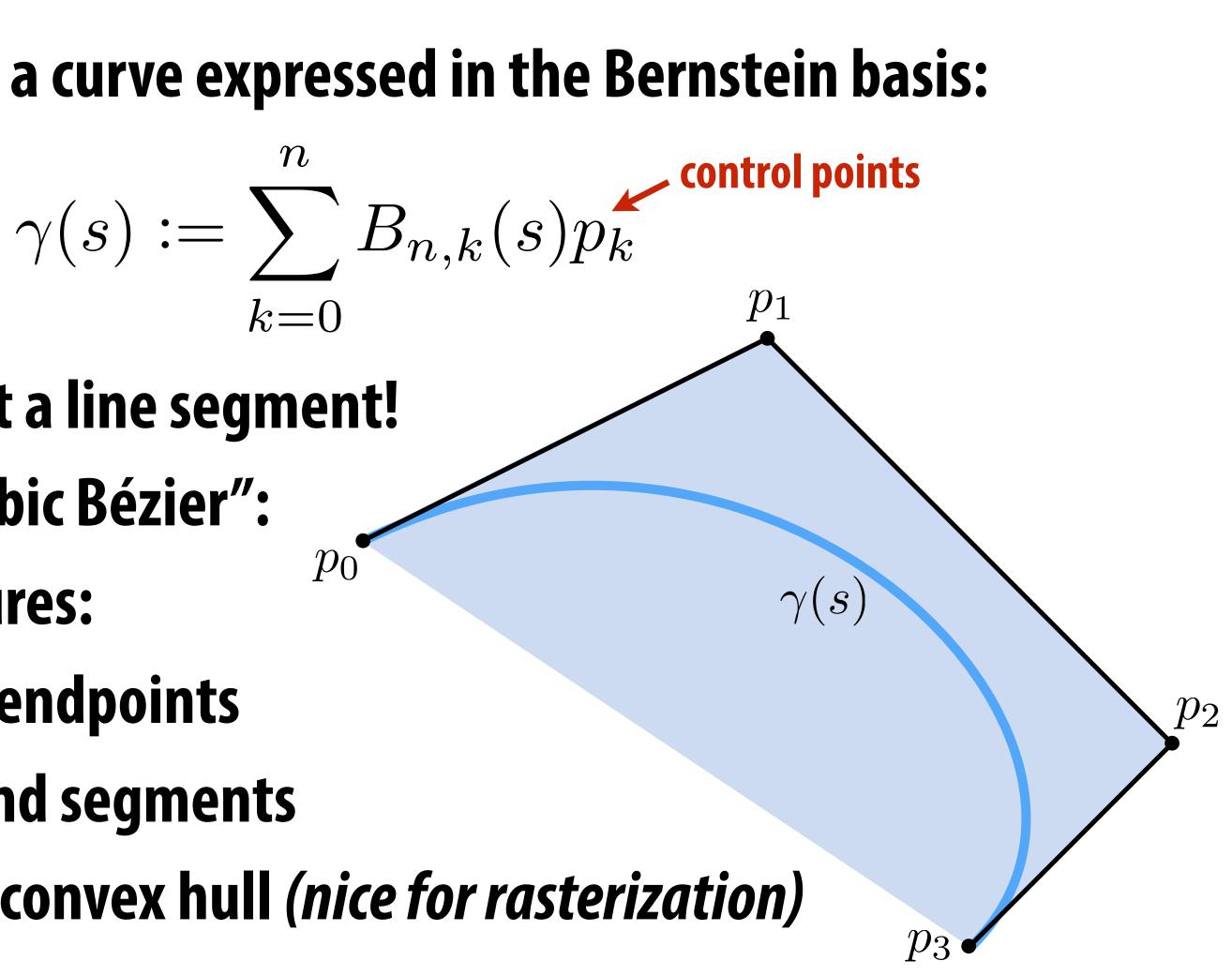
Bézier Curves (Explicit)

A Bézier curve is a curve expressed in the Bernstein basis:

k=0

 p_0

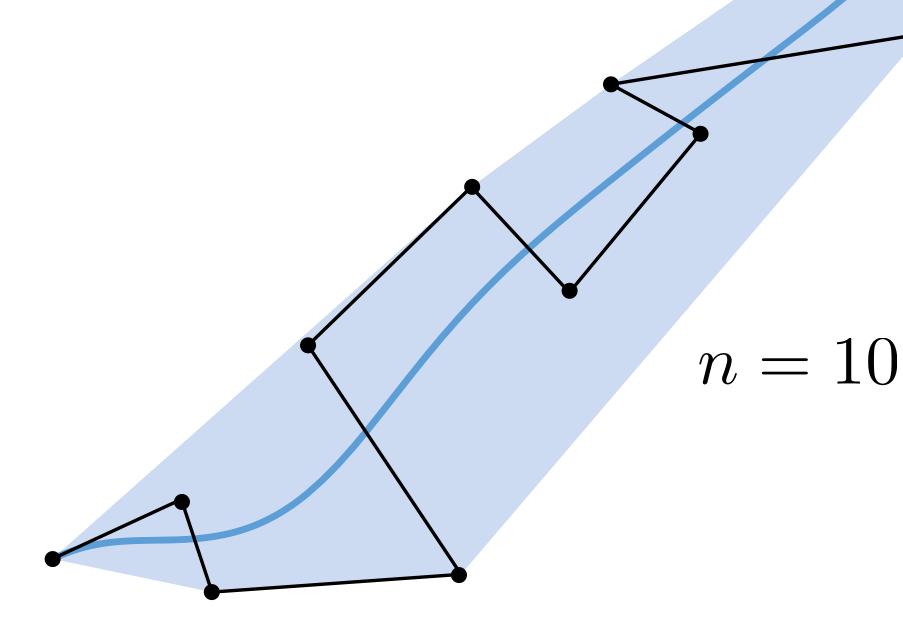
- For n=1, just get a line segment!
- For n=3, get "cubic Bézier":
- **Important features:**
 - 1. interpolates endpoints
 - 2. tangent to end segments
 - 3. contained in convex hull (nice for rasterization)



Just keep going...?

What if we want an even more interesting curve?

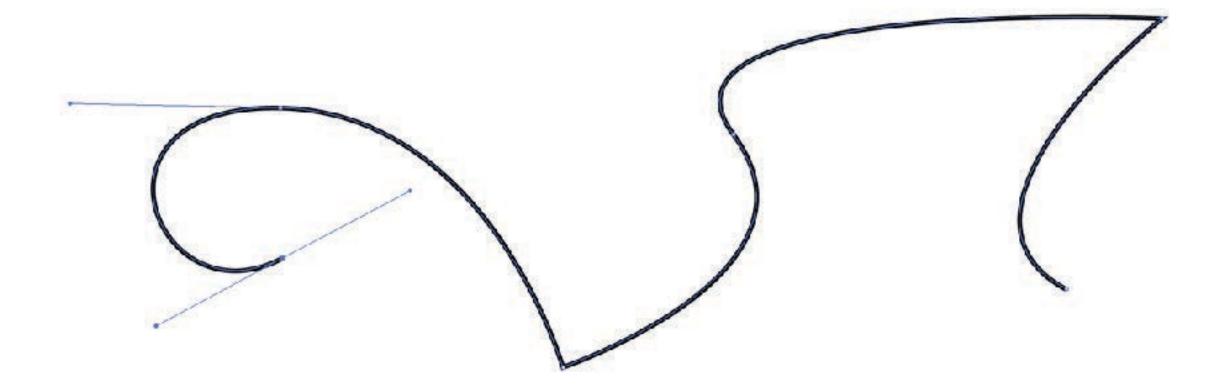
High-degree Bernstein polynomials don't interpolate well:



Very hard to control!

Piecewise Bézier Curves (Explicit)

Alternative idea: piece together many Bézier curves
 Widely-used technique (Illustrator, fonts, SVG, etc.)

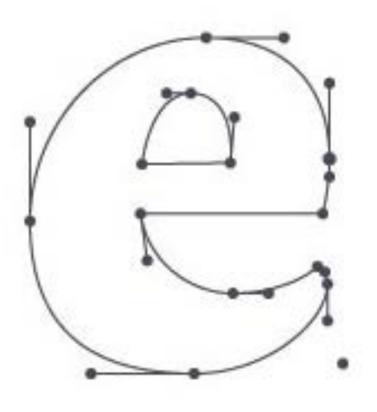


Formally, piecewise Bézier curve:

piecewise Bézier

$$\gamma(u) := \gamma_i \left(\frac{u - u_i}{u_{i+1} - u_i} \right),$$
single Bézier

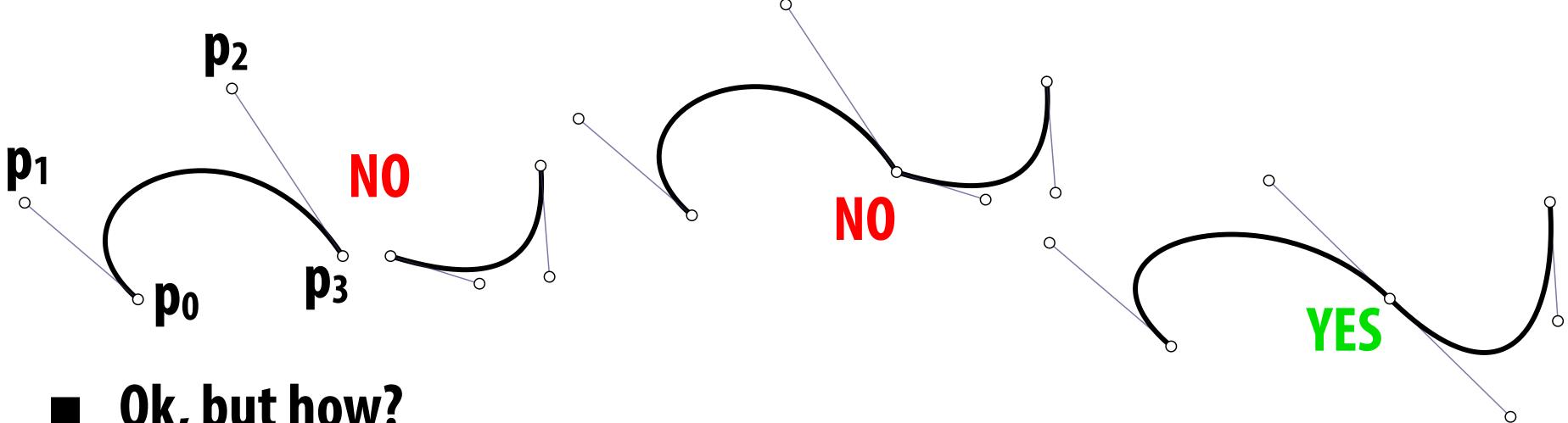
licit) Sézier curves s, SVG, etc.)



$u_i \leq u < u_{i+1}$

Bézier Curves — tangent continuity

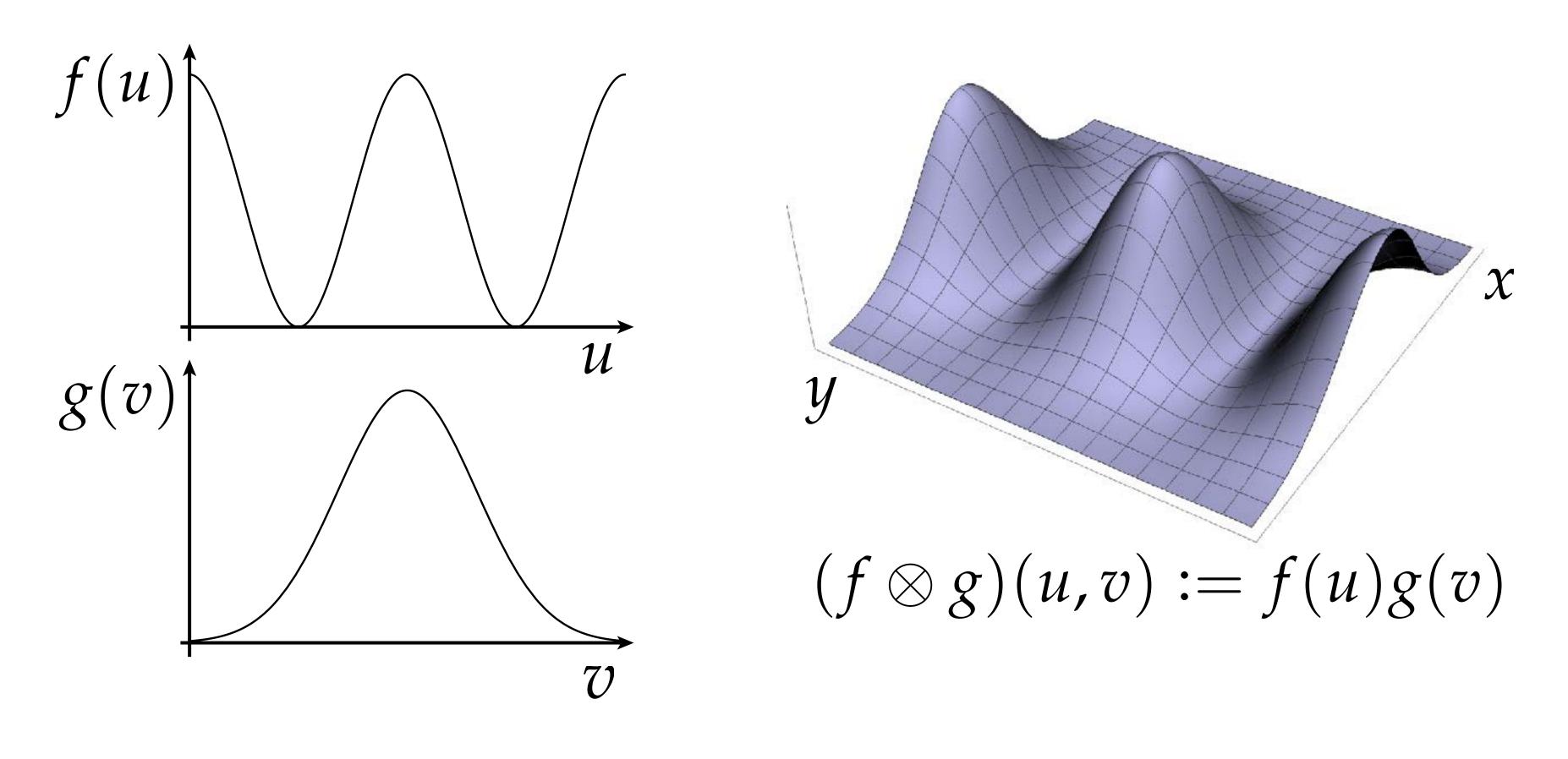
To get "seamless" curves, need *points* <u>and</u> *tangents* to line up:



- **Ok**, but how?
 - Each curve is cubic: $u^{3}p_{0} + 3u^{2}(1-u)p_{1} + 3u(1-u)^{2}p_{2} + (1-u)^{3}p_{3}$
- Want endpoints of each segment to meet
- Want tangents at endpoints to meet
 - Q: How many constraints vs. degrees of freedom?
- **Q: Could you do this with** *quadratic* **Bézier?** *Linear* Bézier?

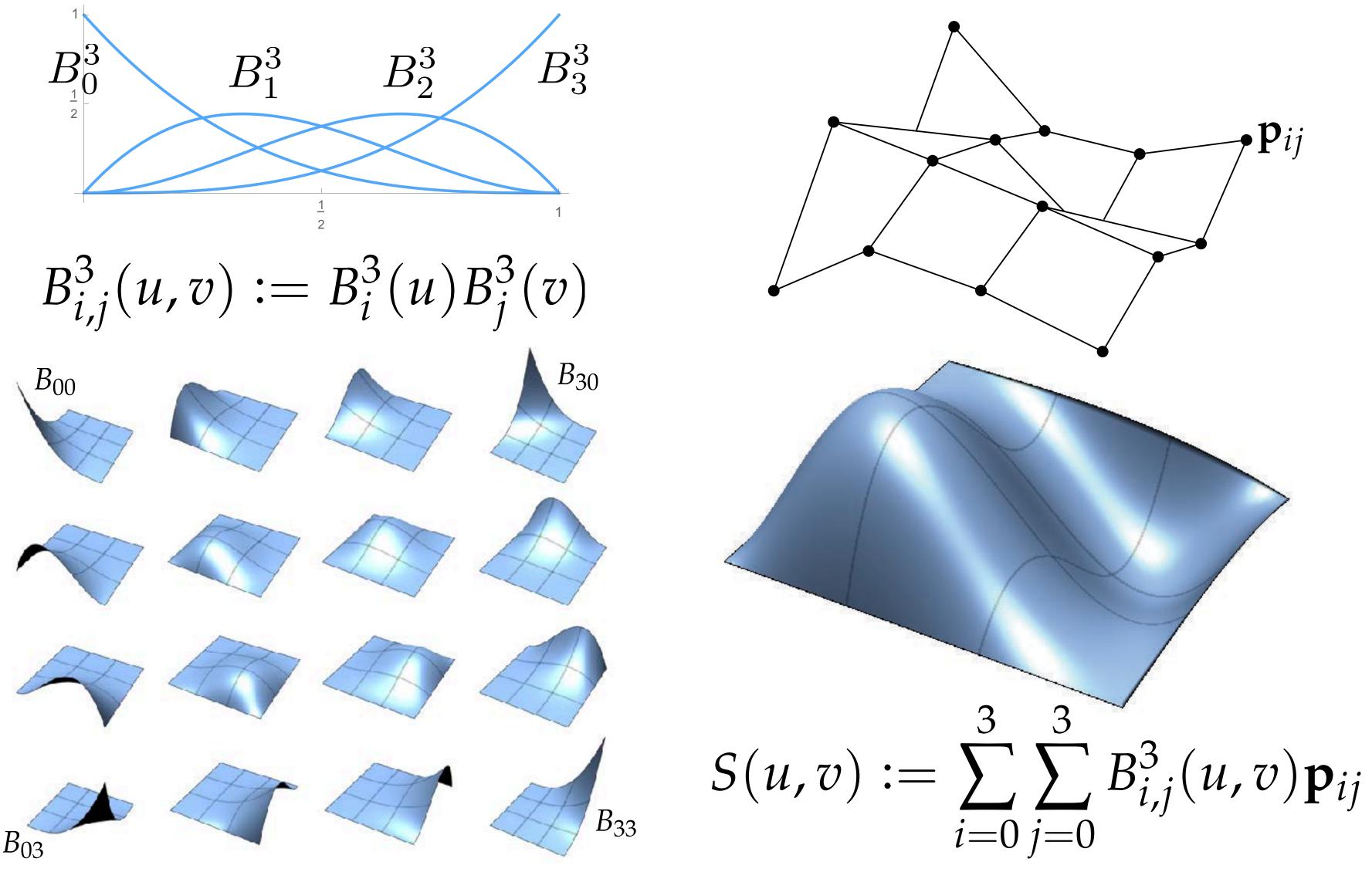
Tensor Product

- Can use a pair of curves to get a surface
- Value at any point (u,v) given by product of a curve f at u and a curve g at v (sometimes called the *"tensor product"*):



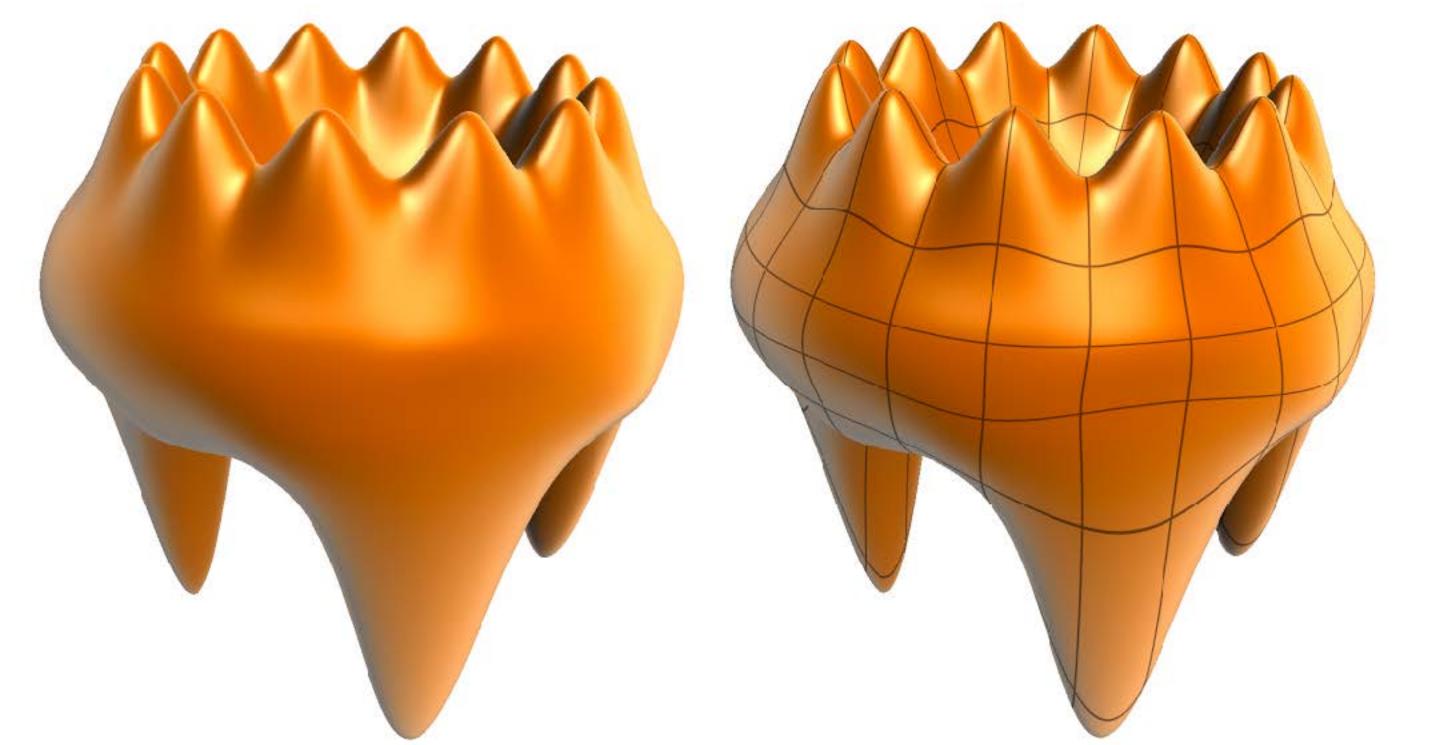
Bézier Patches

Bézier patch is sum of (tensor) products of Bernstein bases



Bézier Surface

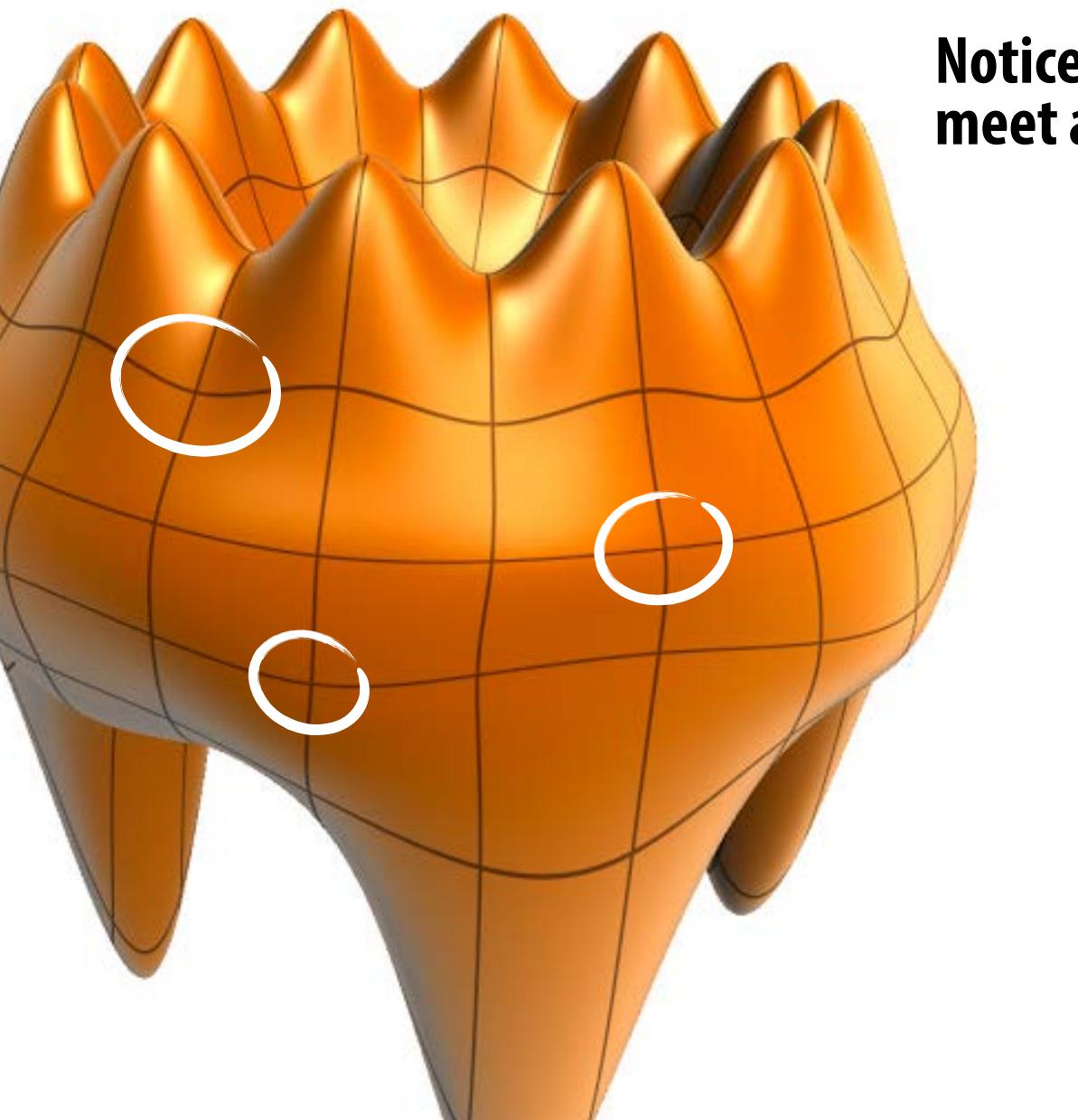
Just as we connected Bézier *curves*, can connect Bézier *patches* to get a surface:



- Very easy to draw: just dice each patch into regular (u,v) grid!
- Q: Can we always get tangent continuity? (Think: how many constraints? How many degrees of freedom?)

Notice anything fishy about the last picture?

Bézier Patches are Too Simple



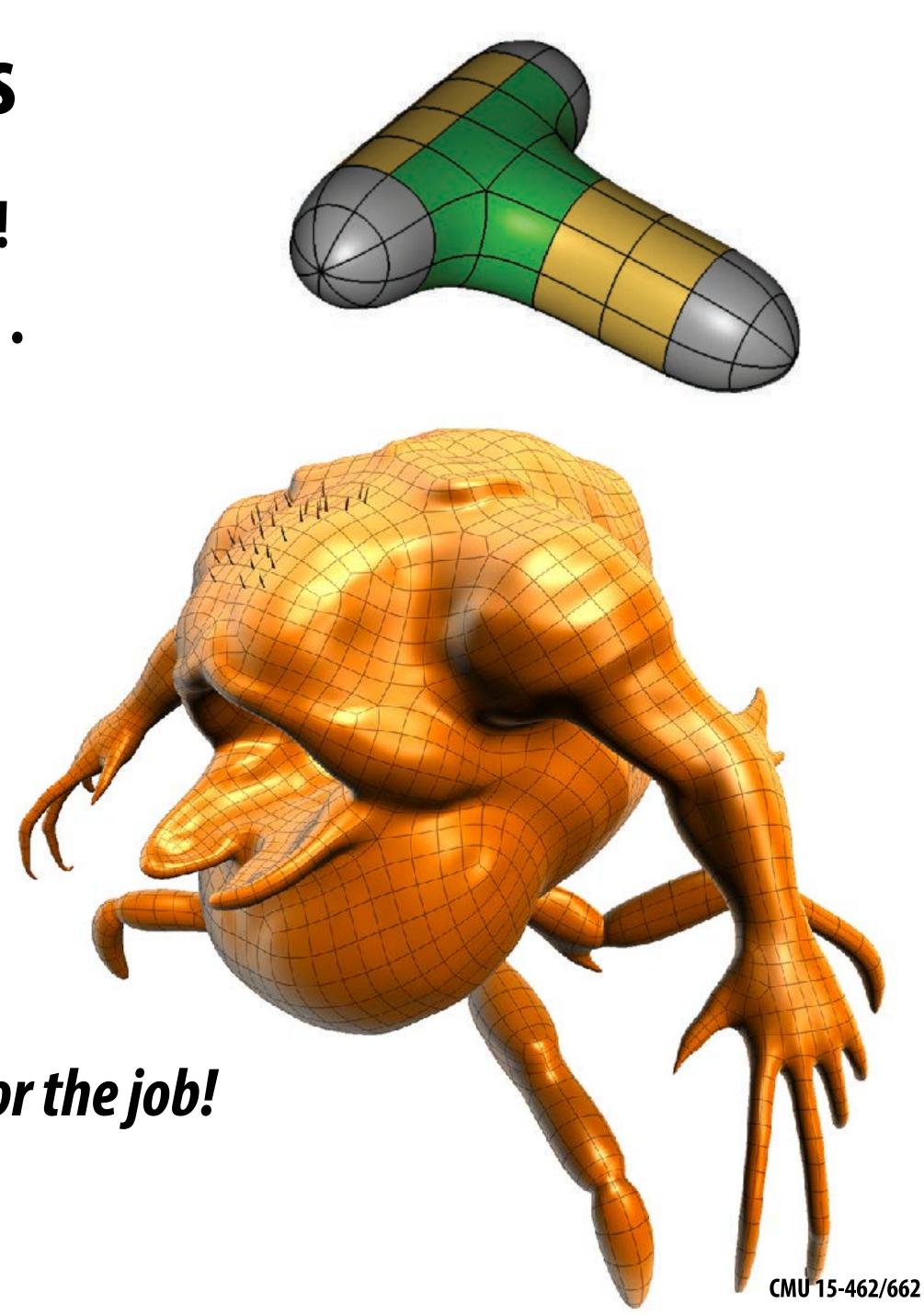
Notice that exactly four patches meet around *every* vertex!

In practice, far too constrained.

To make interesting shapes (with good continuity), we need patches that allow more interesting connectivity...

Spline patch schemes

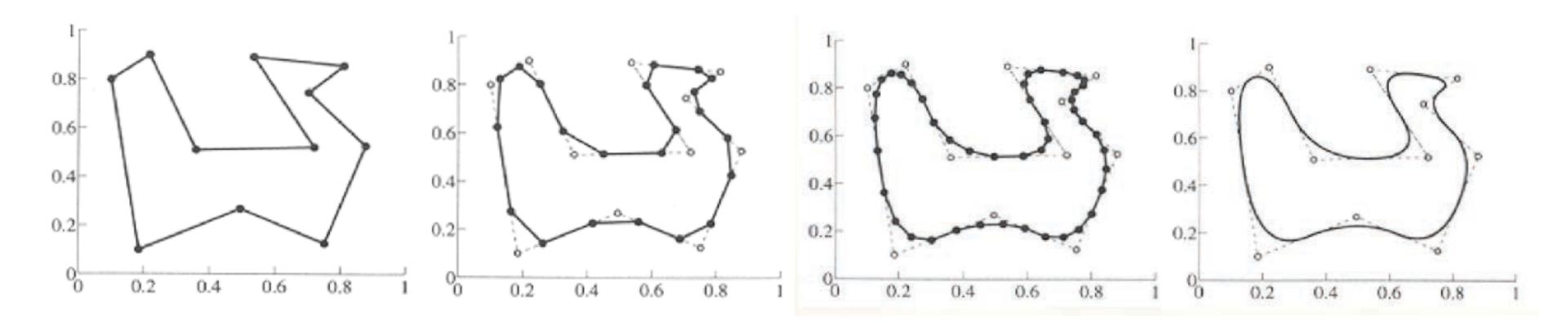
- There are many alternatives!
- NURBS, Gregory, Pm, polar...
- Tradeoffs:
 - degrees of freedom
 - continuity
 - difficulty of editing
 - cost of evaluation
 - generality



As usual: pick the right tool for the job!

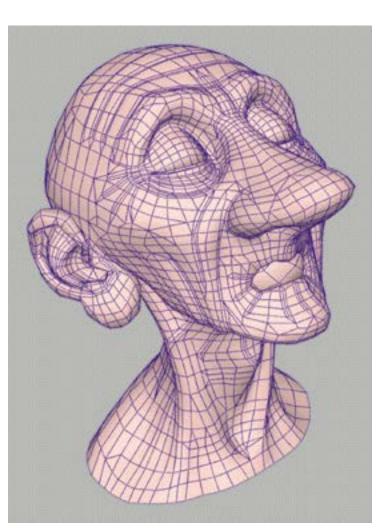
Subdivision (Explicit or Implicit?)

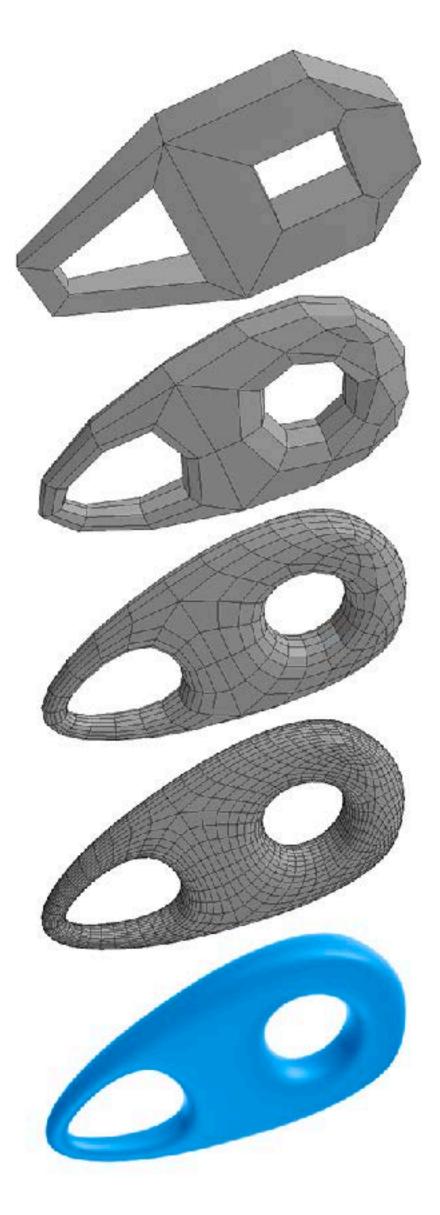
- Alternative starting point for curves/surfaces: subdivision
- Start with control curve
- Insert new vertex at each edge midpoint
- Update vertex positions according to fixed rule
- For careful choice of averaging rule, yields smooth curve
 - Some subdivision schemes correspond to well-known spline schemes!



Subdivision Surfaces (Explicit)

- Start with coarse polygon mesh ("control cage")
- Subdivide each element
 - Update vertices via local averaging
 - Many possible rule:
 - Catmull-Clark (quads)
 - Loop (triangles)
 - **Common issues:**
 - interpolating or approximating?
 - continuity at vertices?
- Easier than splines for modeling; harder to evaluate pointwise





Subdivision in Action (Pixar's "Geri's Game")

Next time: Curves, Surfaces, & Meshes

