Perspective Projection and
Texture Mapping

Computer Graphics
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Perspective & Texture
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- rasterization (how to turn primitives
into pixels)

- transformations (how to manipulate
primitives in space)

m TODAY:

- see where these two ideas come
crashing together!

- revisit perspective transformations

- talk about how to map texture onto a '
primitive to get more detail

Why is it hard to render
challenges for texture mapping! an image like this?

- ...and how perspective creates
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Perspective Projection
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Perspective projection
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-ge, S

Early pamtmg mcor

R r-.' B gt ]
N H
4 B ) e i i
._- J— = -'I e = -
": ..;.‘: -F L _:‘.I_-.. - N .'
3 = = - x

| ;. 'I'H I'

L Ll ey

Carolingian painting from the 8-9th century CMU 15-462/662



Evolution toward correct perspective

Ambrogio Lorenzetti
Annunciation, 1344

. Sk |
Brunelleschi, elevation of Santo Spirito, Masaccio — The Tribute Money ¢.1426-27
1434-83, Florence Fresco, The Brancacci Chapel, Florence
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Later... rejection of proper perspective projection
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In computer graphics
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Transformations: From Objects to the Screen
[WORLD COORDINATES] [VIEW COORDINATES] [CLIP COORDINATES]

i N .

A

('11'11'1)

original description all positions now expressed everything visible to the
of objects relative to camera; camera camera is mapped to unit
is sitting at origin looking cube for easy “clipping”
down -z direction l
[WINDOW COORDINATES] [NORMALIZED COORDINATES]
(w, h) (1,1)
primitives are now 2D « =
and can be drawn via
rasterization % %
(0,0) (-1,-1)
Screen transform: unit cube mapped to unit
objects now in 2D screen coordinates square via perspective divide
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Review: simple camera transform

Consider object positioned in world at (10, 2, 0)
Consider camera at (4, 2, 0), looking down x axis

y

X

4

What transform places in the object in a coordinate space where the camera is at the
origin and the camera is looking directly down the -z axis?

B Translating object vertex positions by (-4, -2, 0) yields position relative to camera
B Rotation about y by 7 /2 gives position of object in new coordinate system
where camera’s view direction is aligned with the -z axis
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Camera looking in a different direction

Consider camera looking in direction W

What transform places in the object in a coordinate space where the camera is at the origin and the
camera is looking directly down the -z axis?

z How do we invert?
Form orthonormal basis around w: (see 1 and v) C u w. |
T Y z
Consider rotation matrix: R R'=R'=|v, v, v.
_uaj VCE _WCU_ __WCU _Wy _WZ_
R—=lu v. —w Why is that the inverse?
y y y T B 7 T B 7] T
u V. —Ww. Ru:_u-u v-u —w-ul =1 0 0

T T

R'w=[uw v -w —W-W]

=0 0 —1]
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View frustum

View frustum is region the camera can see:

X Pinhole
Camera
(0,0)

- Top/bottom/left/right planes correspond to sides of screen
- Near/far planes correspond to closest/furthest thing we want to draw

(MU 15-462/662



Clipping

B Inreal-time graphics pipeline, “clipping” is the process of eliminating triangles that
aren’t visible to the camera

- Don't waste time computing pixels (or really, fragments) you can’t see!
- Even“tossing out” individual fragments is expensive (“fine granularity”)
- Makes more sense to toss out whole primitives (“coarse granularity”)

- Still need to deal with primitives that are partially clipped...
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Aside: Near/Far Clipping

B But why near/far clipping?

- Some primitives (e.g., triangles) may have vertices both in front & behind eye!
(Causes headaches for rasterization, e.g., checking if fragments are behind eye)

- Also important for dealing with finite precision of depth buffer / limitations on
storing depth as floating point values

near =10
far=10°

near=10"1
far=103

[DEMO]

43

‘8§ N O O I T ”Z_ﬁghting"

floating point has more “resolution” near zero—hence more precise resolution of primitive-primitive intersection
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Mapping frustum to unit cube

Before mapping to 2D, map corners of frustum to corners of cube:

zfar

Why do we do this? Perspective:
1. Makes clipping much easier!
- can quickly discard points outside range [-1,1]
- need to think a bit about partially-clipped triangles
2. Different maps to cube yield different effects
- specifically perspective or orthographic view Orthographic:
- perspective is transformation of homogeneous coords Set homogeneous coord to “1”

- for orthographic view, just use identity matrix! Distant objects remain same size

/-
Z

Set homogeneous coord to
Distant objects get smaller
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Review: homogeneous coordinates

*
*
*
*
*
*
*
*
*
’0
*

*
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*
*
*
‘0
*
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*
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*
*
‘Q
*

Many points in 2D-H correspond to same point in 2D
X and wX correspond to the same 2D point
(divide by 10 to convert 2D-H back to 2D)
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Perspective vs. Orthographic Projection

m Most basic version of perspective matrix:

_ 0
1 0 0 O X X
0O 1 0 O vy | |y |
0 01 0 z || z | 4
0 0 1 0|l w z 1

B Most basic version of orthographic matrix: obi

1 0 0 0 |] « X

O 1 0 O ]/ B y | >

O 0 1 O y4 Z

0 0 0 1] 1 1 1

bjects shrink

)

n distance

ects stay the
same size

...real projection matrices are a bit more complicated! :-)
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Matrix for Perspective Transform

Real perspective matrix takes into account
geometry of view frustum:

i u " o
0o 2 b 0
0 0 _j(ffj;ln) }Z_fn”
0 0 —1 0

left (1), right (r), top (t), bottom (b), near (n), far (f)

For a derivation: http://www.songho.ca/opengl/gl_projectionmatrix.htmli MU 15-462/662



Review: screen transform

After divide, coordinates in “clip space” [-1,1] have to be stretched to fit the screen
Example:

All points within (-1,1) to (1,1) region are on screen

(1,1) in normalized space maps to (W,0) in screen

Normalized coordinate space: Screen (W x H output image) coordinate space:
(0,0) W
H (W,H)

Step 1: reflect about x-axis
Step 2: translate by (1,1)
Step 3: scale by (W/2,H/2)

(MU 15-462/662



Transformations: From Objects to the Screen

[WORLD COORDINATES] [VIEW COORDINATES] [CLIP COORDINATES]
& (1,1,1)
view projection g
transform transform =
Al
(-1,-1,-1)
original description all positions now expressed everything visible to the
of objects relative to camera; camera camera is mapped to unit
is sitting at origin looking cube for easy “clipping”
down -z direction
l perspective
divide
[WINDOW COORDINATES] [NORMALIZED COORDINATES]
(w, h) (1,1)
primitives are now 2D « =
and can be drawn via
rasterization % screen %
transform
(0,0) (0,0)
Screen transform: unit cube mapped to unit
objects now in 2D screen coordinates square via perspective divide
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Coverage(x,y)

In lecture 2 we discussed how to sample
coverage given the 2D position of the C
triangle’s vertices.

(MU 15-462/662



Consider sampling color(x,y)

C
blue [0,0,1]

b
green[0,1,0]

A
red [0,0,1]

What is the triangle’s color at the point x ?
Standard strateqy: interpolate color values at vertices.

CMU 15-462/662



Linear interpolation in 1D

Suppose we've sampled values of a function f(x) at points x;, i.e., fi :=f(x;)
Q: How do we construct a function that “connects the dots” between x; and X;.1?

f(x)t
®
fit /e »
® . ‘ ........... fl—l—l
X, Xi -

b= (x —x;)/(Xiy1 — x;) € [0,1]
f(t) = fi+t(fiy1—fi) = A= t)fi + tfira

CMU 15-462/662



Linear interpolation in 2D

Suppose we've likewise sampled values of a function f(x) at points x; i Xiin 2D
Q: How do we “connect the dots” this time? E.g., how do we fit a plane?

CMU 15-462/662



Linear interpolation in 2D

m Want to fit a linear (really, affine) function to three values
® Any such function has three unknown coefficients a, b, and c:

F(x,y) = ax + by +c

m To interpolate, we need to find coefficients such that the
function matches the sample values at the sample points:

f(xp,yp) = fp, p € {i,] K}
m Yields three linear equations in three unknowns. Solution?

SN

1 _ j{igyk—?/ji “?‘Eyi—yki “;kéyj_yi))
¢ B (xjyi — xz']/j) + (xkl/j — le/k) + (XY — XxYi) _ fi(xkyjl— ;C].yk)kJrfj gcil/i _ x;yi) —I—kfkl(x]-yi]— xi]/]‘) _

There has to be a better way to think about this. :-)
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1D Linear Interpolation, revisited

B Let’s think about how we did linear interpolation in 1D:

f(t) = (1 —=t)f; +1tf,

B (Can think of this as a linear combination of two functions:

m Aswe move closer to t=0, we approach the value of f at x;
m As we move closer to t=1, we approach the value of f at x;

(MU 15-462/662



2D Linear Interpolation, revisited

m We can construct analogous functions for a triangle

m Fora given point x, measure the distance to each edge; then
divide by the height of the triangle:

X I
0

Interpolate by taking linear combination: / (x) = fi¢; + fip; + fidx
Q: Is this the same as the (ugly) function we found before?




2D Interpolation, another way

B | claim that we can get the same three basis functions as a
ratio of triangle areas:

area(x, Xj, Xy )

area(Xx;, X;, Xi)

Q: Do you buy it? :-)

CMU 15-462/662



Barycentric Coordinates

®  No matter how you compute them, the values of the three functions
@i(x), Pi(x), d(x) for a given point are called barycentric coordinates

m  (an be used to interpolate any attribute associated with vertices (color,
texture coordinates, etc.)

m [mportantly, these same three values fall out of the half-plane tests
used for triangle rasterization! (Why?) j

B Hence, get them for “free” during rasterization

color(x) = color(x;)¢; + color(x;)¢; + color(xx )Py

Note: we haven't explained yet how to
encode colors as numbers! We'll talk
about that in a later lecture... ]



Perspective-incorrect interpolation

Due to perspective projection (homogeneous divide), barycentric interpolation of values
on a triangle with different depths is not an affine function of screen XY coordinates.

Attribute values must be interpolated linearly in 3D object space.

CMU 15-462/662



Example: perspective incorrect interpolation

Good example is quadrilateral split into two triangles:

i A

Flat Affine Correct

If we compute barycentric coordinates using 2D (projected)
coordinates, can lead to (derivative) discontinuity in
interpolation where quad was split.

CMU 15-462/662



Perspective Correct Interpolation

m  Basicrecipe:

- To interpolate some attribute ...
- Compute depth z at each vertex

- Evaluate Z := 1/z and P := ¢p/z at each vertex
- Interpolate Z and P using standard (2D) barycentric coords

- At each fragment, divide interpolated P by interpolated Z
to get final value

For a derivation, see Low, “Perspective-Correct Interpolation”
CMU 15-462/662



Texture Mapp
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Many uses of texture mapping

Define variation in surface reflectance

Ty /, "'

.-I IL
- N
i
h
5

Pattern on ball Wood grain on floor

CMU 15-462/662



Describe surface material properties

Multiple layers of texture maps for color, logos,
scratches, etc.

RYSE

CMU 15-462/662



Normal & Displacement Mapping

normal mapping

displacement mapping

Use texture value to perturb surface normal to dice up surface geometry into tiny triangles &
“fake” appearance of a bumpy surface offset positions according to texture values
(note smooth silhouette/shadow reveals that (note bumpy silhouette and shadow boundary)

surface geometry is not actually bumpy!)

CMU 15-462/662



Represent precomputed lighting and shadows

Original model With ambient occlusion Extracted ambient occlusion map

Grace Cathedral environment map

Environment map used in rendering CMU 15-462/662



Texture coordinates

“Texture coordinates” define a mapping from surface coordinates (points on triangle)
to points in texture domain.

(0.0, 1.0) (0.5,1.0) (1.0, 1.0)
¢

(0.0, 0.5) (1.0, 0.5)

| myTex(u,v) is a function defined

(0.0,0.0) (0.5,0.0) (1.0,0.0) on the [0,1]2 domain
(represented by 2048x2048 image)

Final rendered result (entire cube

Eight triangles (one face of cube) with shown).
surface parameterization provided as per- : - : : : "
P ] P P Location of highlighted triangle Location of triangle after projection
vertex texture coordinates. . : .
in texture space shown in red. onto screen shown in red.

(We'll assume surface-to-texture space mapping is provided as per vertex values) MU 15.462/662



Visualization of texture coordinates

Texture coordinates linearly interpolated over triangle

(0.0,1.0) (green)

(0.0, 0.0) (1.0,0.0) (red)

CMU 15-462/662



More complex mapping

Visualization of texture coordinates vV Triangle vertices in texture space
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Each vertex has a coordinate (u,v) in texture space.
(Actually coming up with these coordinates is another story!)
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Texture mapping adds detail

Rendered result V Triangle vertices in texture space

Fa -I-." it

CMU 15-462/662



Texture mapping adds detail

rendering without texture rendering with texture texture image

Z200Mm

Each triangle “copies” a piece of the image back to the surface.

CMU 15-462/662



Another example: Sponza

Notice texture coordinates repeat over surface.

CMU 15-462/662



Textured Sponza

CMU 15-462/662



Example textures used in
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Texture Sampling 101

m Basicalgorithm for mapping texture to surface:
- Interpolate U and V coordinates across triangle
- For each fragment
- Sample (evaluate) texture at (U,V)
- Set color of fragment to sampled texture value

...sadly not this easy in general!

CMU 15-462/662



Texture space samples

Sample positions in XY screen space Sample positions in texture space

V
Sample positions are uniformly distributed in screen space Texture sample positions in texture space (texture
(rasterizer samples triangle’s appearance at these locations) function is sampled at these locations)

CMU 15-462/662



Recall: aliasing
Undersampling a high-frequency signal can result in aliasing

set®
gt

fug .-l.. S e - 1Dexample

2D examples:
Moiré patterns, jaggies
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Aliasing due to undersampling texture

No pre-filtering of texture data Rendering using pre-filtered texture data
(resulting image exhibits aliasing)

V

‘i

CMU 15-462/662



Aliasing due to undersampling (zoom)

No pre-filtering of texture data Rendering using pre-filtered texture data
(resulting image exhibits aliasing)

V v

CMU 15-462/662



Filtering textures

B Minification:

- Area of screen pixel maps to large region of texture (filtering required -- averaging)

i —
.F—I-'-

A —
IVIIT I BN AR I

i
L+

Magnification

- One texel corresponds to far less than a pixel on screen
- Example: when scene object is very far away

m Magnification:

- Area of screen pixel maps to tiny region of texture (interpolation required)
- One texel maps to many screen pixels

- Example: when camera is very close to scene object (need higher resolution texture map)

Figure credit: Akeley and Hanrahan

CMU 15-462/662



Filtering textures

_u,

Actual texture: 700x700 image
(only a crop is shown) Texture minification

V
L

Actual texture: 64x64 image

Texture magnification

CMU 15-462/662



Mipmap (L. Williams 83)
V

U I
Level 0 = 128x128 Level 1 = 64x64 Level 2 =32x32 Level 3 = 16x16
Level 4 = 8x8 Level 5 = 4x4 Level 6 = 2x2 Level 7 = 1x1

Idea: prefilter texture data to remove high frequencies
Texels at higher levels store integral of the texture function over a region of texture space (downsampled images)

Texels at higher levels represent low-pass filtered version of original texture signal
(MU 15-462/662



Mipmap (L. Williams 83)

G

Williams’ original proposed

mip-map layout “Mip hierarchy”

level =d

What is the storage overhead of a mipmap?

Slide credit: Akeley and Hanrahan CMU 15-462/662



Computing Mip Map Level

Compute differences between texture coordinate values of neighboring screen samples

Screen space Texture sbace

CMU 15-462/662



Computing Mip Map Level

Compute differences hetween texture coordinate values of neighboring fragments

du/dx = u19-Uoo
du/dy = uo1-uoo

dv/dx = V10-Voo
dv/dy = vo1-voo

L. =max

EREEE

: ( dv
+ —
dy

mip-map d = log: L

|

5\

/

CMU 15-462/662
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Sponza (bilinear resampling at level 2)

CMU 15-462/662




Sponza (bilinear resampling at level 4)

CMU 15-462/662



Visualization of mip-map level
(bilinear filtering only: d clamped to nearest level)

CMU 15-462/662
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lerp(t,v,,v,)=v, +HVv,—V,) SRS RERERS NSRS

-------
-----------------------------------------------------------------

Bilinear resamp"ng: :_,_.,., ....... T . ....... .. .......
four texel reads 0.0 . Q:®:0:0:0:0:

3 lerps (3 mul + 6 add) .....“‘
Trilinear resampling: ....... ....... ....... .......
eight texel reads 00 : @ : 00 ®:
7 lerps (7 mul + 14 add)

------------------------------------------------------------------

mip-map texels: level d

Figure credit: Akeley and Hanrahan CMU 15-462/662



Visualization of mip-map level
(trilinear filtering: visualization of continuous d)

CMU 15-462/662



Pixel area may not map to isotropic region in texture

Proper filtering requires anisotropic filter footprint

v=.75

[

u=.25 u=.5 u=.75

u Texture space: viewed from
camera with perspective

Overblurring in
u direction

|

1] l n \ N om | n \
3 28 4 28
. L s o | . L e >
momM o /mmEm -
Trilinear (Isotropic)  Anisotropic Filtering
Filtering

(Modern solution:
Combine multiple
mip map samples)

CMU 15-462/662



Summary: texture filtering using the mip map

m Small storage overhead (33%)
- Mipmap is 4/3 the size of original texture image

m For each isotropically-filtered sampling operation
- Constant filtering cost (independent of mip map level)

- Constant number of texels accessed (independent of mip map level)

m Combat aliasing with prefiltering, rather than supersampling
- Recall: we used supersampling to address aliasing problem when sampling coverage

m Bilinear/trilinear filtering is isotropic and thus will “overblur” to

avoid aliasing

- Anisotropic texture filtering provides higher image quality at higher compute and
memory bandwidth cost (in practice: multiple mip map samples)

CMU 15-462/662



“Real” Texture Sampling

. Compute u and v from screen sample x,y (via evaluation of attribute equations)

. Compute du/dx, du/dy, dv/dx, dv/dy differentials from screen-adjacent samples.

. Compute mip map level d

. Convert normalized [0,1] texture coordinate (u,v) to texture coordinates U,Vin [W,H]
. Compute required texels in window of filter

Load required texels (need eight texels for trilinear)

.\l.c\u'l-thd

Perform tri-linear interpolation according to (U, V, d)

Takeaway: a texture sampling operation is not just an image pixel
lookup! It involves a significant amount of math.

For this reason, modern GPUs have dedicated fixed-function hardware
support for performing texture sampling operations.

CMU 15-462/662



Texturing summary

Texture coordinates: define mapping between points on triangle’s surface (object
coordinate space) to points in texture coordinate space

Texture mapping is a sampling operation and is prone to aliasing
- Solution: prefilter texture map to eliminate high frequencies in texture signal

- Mip-map: precompute and store multiple multiple resampled versions of the
texture image (each with different amounts of low-pass filtering)

- During rendering: dynamically select how much low-pass filtering is required
based on distance between neighboring screen samples in texture space

- Goal is to retain as much high-frequency content (detail) in the texture as
possible, while avoiding aliasing

CMU 15-462/662





