Digital Geometry Processing

Computer Graphics
CMU 15-462/15-662
Last time: Meshes & Manifolds

- Mathematical description of geometry
 - simplifying assumption: manifold
 - for polygon meshes: “fans, not fins”
- Data structures for surfaces
 - polygon soup
 - halfedge mesh
 - storage cost vs. access time, etc.
- Today:
 - how do we manipulate geometry?
 - geometry processing / resampling
Extend traditional digital signal processing (audio, video, etc.) to deal with geometric signals:
- upsampling / downsampling / resampling / filtering ...
- aliasing (reconstructed surface gives “false impression”)

Also ask some basic questions about geometry:
- What’s the closest point? Do two triangles intersect? Etc.

Beyond pure geometry, these are basic building blocks for many algorithms in graphics (rendering, animation...)

![Image of a cow model in different stages of geometry processing]

Digital Geometry Processing: Motivation

3D Scanning
Geometry Processing Pipeline

- Scan
- Process
- Print
Geometry Processing Tasks

- reconstruction
- filtering
- remeshing
- shape analysis
- parameterization
- compression
Geometry Processing: Reconstruction

- Given samples of geometry, reconstruct surface
- What are “samples”? Many possibilities:
 - points, points & normals, ...
 - image pairs / sets (multi-view stereo)
 - line density integrals (MRI/CT scans)
- How do you get a surface? Many techniques:
 - silhouette-based (visual hull)
 - Voronoi-based (e.g., power crust)
 - PDE-based (e.g., Poisson reconstruction)
 - Radon transform / isosurfacing (marching cubes)
Geometry Processing: Upsampling

- Increase resolution via interpolation
- Images: e.g., bilinear, bicubic interpolation
- Polygon meshes:
 - subdivision
 - bilateral upsampling
 - ...
Geometry Processing: Downsampling

- Decrease resolution; try to preserve shape/appearance
- Images: nearest-neighbor, bilinear, bicubic interpolation
- Point clouds: subsampling (just take fewer points!)
- Polygon meshes:
 - iterative decimation, variational shape approximation, ...
Geometry Processing: Resampling

- Modify sample distribution to improve quality
- Images: not an issue! (Pixels always stored on a regular grid)
- Meshes: *shape* of polygons is extremely important!
 - different notion of “quality” depending on task
 - e.g., visualization vs. solving equation

Q: What about aliasing?
Geometry Processing: Filtering

- Remove noise, or emphasize important features (e.g., edges)
- Images: blurring, bilateral filter, edge detection, ...

- Polygon meshes:
 - curvature flow
 - bilateral filter
 - spectral filter
Geometry Processing: Compression

- Reduce storage size by eliminating redundant data/approximating unimportant data

- Images:
 - run-length, Huffman coding - lossless
 - cosine/wavelet (JPEG/MPEG) - lossy

- Polygon meshes:
 - compress geometry and connectivity
 - many techniques (lossy & lossless)
Geometry Processing: Shape Analysis

- Identify/understand important semantic features
- Images: computer vision, segmentation, face detection, ...
- Polygon meshes:
 - segmentation, correspondence, symmetry detection, ...

Extrinsic symmetry
Intrinsic symmetry
Enough overview—
Let’s process some geometry!
Remeshing as resampling

- Remember our discussion of aliasing
- Bad sampling makes signal appear different than it really is
- E.g., undersampled curve looks flat
- Geometry is no different!
 - undersampling destroys features
 - oversampling bad for performance
What makes a “good” mesh?

- One idea: good approximation of original shape!
- Keep only elements that contribute *information* about shape
- Add additional information where, e.g., *curvature* is large
Approximation of position is not enough!

- Just because the vertices of a mesh are very close to the surface it approximates does not mean it’s a good approximation!

- Need to consider other factors, e.g., close approximation of surface normals

- Otherwise, can have wrong appearance, wrong area, wrong…
What else makes a “good” triangle mesh?

- Another rule of thumb: triangle shape
 - “GOOD”
 - “BAD”

- E.g., all angles close to 60 degrees
- More sophisticated condition: Delaunay
- Can help w/ numerical accuracy/stability
- Tradeoffs w/ good geometric approximation*
 - e.g., long & skinny might be “more efficient”

*See Shewchuk, “What is a Good Linear Element”
What else constitutes a good mesh?

- Another rule of thumb: *regular vertex degree*
- E.g., valence 6 for triangle meshes (equilateral)

“GOOD”

“OK”

“BAD”

- Why? Better polygon shape, important for (e.g.) subdivision:

- FACT: Can’t have perfect valence everywhere! (except on torus)
How do we upsample a mesh?
Upsampling via Subdivision

- Repeatedly split each element into smaller pieces
- Replace vertex positions with weighted average of neighbors

Main considerations:
- interpolating vs. approximating
- limit surface continuity (C^1, C^2, ...)
- behavior at irregular vertices

Many options:
- Quad: Catmull-Clark
- Triangle: Loop, Butterfly, Sqrt(3)
Catmull-Clark Subdivision

- Step 0: split every polygon (any # of sides) into quadrilaterals:

- New vertex positions are weighted combination of old ones:

STEP 1: Face coords

\[p_i \]

\[\frac{1}{n} \sum_i p_i \]

STEP 2: Edge coords

\[(a+b+c+d)/4 \]

STEP 3: Vertex coords

\[\frac{Q + 2R + (n-3)S}{n} \]

New vertex coords:

- \(n \) – vertex degree
- \(Q \) – average of face coords around vertex
- \(R \) – average of edge coords around vertex
- \(S \) – original vertex position
Catmull-Clark on quad mesh

Good normal approximation almost everywhere:

- smooth reflection lines
- smooth caustics

(very few irregular vertices)
Catmull-Clark on triangle mesh

(huge number of irregular vertices!)

Poor normal approximation almost everywhere:

jagged reflection lines

jagged caustics

ALIASING!
Loop Subdivision

- Alternative subdivision scheme for triangle meshes
- Curvature is continuous away from irregular vertices ("C^2")

Algorithm:
- Split each triangle into four
- Assign new vertex positions according to weights:

\[\begin{align*}
 u & : \frac{3}{16} \text{ if } n=3, \frac{3}{8n} \text{ otherwise} \\
 1-nu & \\
 \frac{1}{8} & \\
 \frac{3}{8} & \\
 \frac{3}{8} & \\
 \frac{1}{8} &
\end{align*} \]
Loop Subdivision via Edge Operations

- First, split edges of original mesh in *any* order:

- Next, flip new edges that touch a new & old vertex:

 (Don’t forget to update vertex positions!)

Images cribbed from Denis Zorin.
What if we want *fewer* triangles?
Simplification via Edge Collapse

- One popular scheme: iteratively collapse edges
- Greedy algorithm:
 - assign each edge a cost
 - collapse edge with least cost
 - repeat until target number of elements is reached
- Particularly effective cost function: *quadric error metric*

invented here at CMU! (Garland & Heckbert 1997)
Quadric Error Metric

- Approximate distance to a collection of triangles
- Distance is sum of point-to-plane distances
 - Q: Distance to plane w/ normal N passing through point p?
 - A: $d(x) = N \cdot x - N \cdot p = N \cdot (x - p)$
- Sum of distances:

$$d(x) := \sum_{i=1}^{k} N_i \cdot (x - p)$$
Quadric Error - Homogeneous Coordinates

- Suppose in coordinates we have
 - a query point \((x,y,z)\)
 - a normal \((a,b,c)\)
 - an offset \(d := -(p,q,r) \cdot (a,b,c)\)

- Then in homogeneous coordinates, let
 - \(u := (x,y,z,1)\)
 - \(v := (a,b,c,d)\)

- **Signed** distance to plane is then just \(u \cdot v = ax + by + cz + d\)
- **Squared** distance is \((u^Tv)^2 = u^T(vv^T)u =: u^TKu\)

- Key idea: matrix \(K\) encodes distance to plane
- \(K\) is symmetric, contains 10 unique coefficients (small storage)
Quadric Error of Edge Collapse

- How much does it cost to collapse an edge?
- Idea: compute edge midpoint, measure quadric error

- Better idea: use point that minimizes quadric error as new point!
- Q: Ok, but how do we minimize quadric error?
Review: Minimizing a Quadratic Function

- Suppose I give you a function \(f(x) = ax^2 + bx + c \)
- Q: What does the graph of this function look like?
- Could also look like this!
- Q: How do we find the minimum?
- A: Look for the point where the function isn’t changing (if we look “up close”)
- I.e., find the point where the derivative vanishes

\[
f'(x) = 0
\]

\[
2ax + b = 0
\]

\[
x = -b/2a
\]

(What about our second example?)
Minimizing a Quadratic Form

- A quadratic form is just a generalization of our quadratic polynomial from 1D to nD.
- E.g., in 2D: \(f(x,y) = ax^2 + bxy + cy^2 + dx + ey + g \)
- Can always (always!) write quadratic polynomial using a symmetric matrix (and a vector, and a constant):

\[
\begin{align*}
 f(x, y) &= \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} d & e \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + g \\
 &= x^T Ax + u^T x + g
\end{align*}

(\text{this expression works for any } n!)

Q: How do we find a critical point (min/max/saddle)?

A: Set derivative to zero!

\[
2Ax + u = 0
\]

\[
x = -\frac{1}{2} A^{-1} u
\]

(Can you show this is true, at least in 2D?)
Positive Definite Quadratic Form

- Just like our 1D parabola, critical point is not always a min!
- Q: In 2D, 3D, nD, when do we get a minimum?
- A: When matrix A is positive-definite:

$$x^T A x > 0 \quad \forall x$$

- 1D: Must have $xax = ax^2 > 0$. In other words: a is positive!
- 2D: Graph of function looks like a “bowl”:

Positive-definiteness is extremely important in computer graphics: it means we can find a minimum by solving linear equations. Basis of many, many modern algorithms (geometry processing, simulation, ...).
Minimizing Quadratic Error

- Find "best" point for edge collapse by minimizing quad. form
 \[\min_u u^T K u \]

- Already know fourth (homogeneous) coordinate is 1!

- So, break up our quadratic function into two pieces:

 \[
 \begin{bmatrix}
 x^T & 1
 \end{bmatrix}
 \begin{bmatrix}
 B & w \\
 w & d^2
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 1
 \end{bmatrix}
 \]

 \[= x^T B x + 2w^T x + d^2 \]

- Now we have a quadratic form in the 3D position \(x \).

- Can minimize as before:

 \[2Bx + 2w = 0 \quad \iff \quad x = -B^{-1}w \]

(Q: Why should \(B \) be positive-definite?)
Quadric Error Simplification: Final Algorithm

- Compute K for each triangle (distance to plane)
- Set K at each vertex to sum of Ks from incident triangles
- Set K at each edge to sum of Ks at endpoints
- Find point at each edge minimizing quadric error
- Until we reach target # of triangles:
 - collapse edge (i,j) with smallest cost to get new vertex m
 - add K_i and K_j to get quadric K_m at m
 - update cost of edges touching m
- More details in assignment writeup!
Quadric Simplification—Flipped Triangles

- Depending on where we put the new vertex, one of the new triangles might be “flipped” (normal points in instead of out):

- Easy solution: check dot product between normals across edge
- If negative, don’t collapse this edge!
What if we’re happy with the number of triangles, but want to improve quality?
How do we make a mesh “more Delaunay”?

- Already have a good tool: edge flips!
- If $\alpha + \beta > \pi$, flip it!

FACT: in 2D, flipping edges eventually yields Delaunay mesh

Theory: worst case $O(n^2)$; no longer true for surfaces in 3D.

Practice: simple, effective way to improve mesh quality
Alternatively: how do we improve degree?

- Same tool: edge flips!
- If total deviation from degree-6 gets smaller, flip it!

- FACT: average valence of any triangle mesh is 6
- Iterative edge flipping acts like “discrete diffusion” of degree
- Again, no (known) guarantees; works well in practice
How do we make a triangles “more round”?

- Delaunay doesn’t mean triangles are “round” (angles near 60°)
- Can often improve shape by centering vertices:

![Diagram showing triangle smoothing](image)

- Simple version of technique called “Laplacian smoothing”.
- On surface: move only in *tangent* direction

See Crane, “Digital Geometry Processing with Discrete Exterior Calculus” http://keenan.is/ddg
Isotropic Remeshing Algorithm

- Try to make triangles uniform shape & size
- Repeat four steps:
 - Split any edge over 4/3rds mean edge length
 - Collapse any edge less than 4/5ths mean edge length
 - Flip edges to improve vertex degree
 - Center vertices tangentially

Based on: Botsch & Kobbelt, “A Remeshing Approach to Multiresolution Modeling”
What can go wrong when you resample a signal?
Danger of Resampling

(Q: What happens with an image?)
But wait: we have the original mesh. Why not just project each new sample point onto the closest point of the original mesh?
Next Time: Geometric Queries

- Q: Given a point, in space, how do we find the closest point on a surface? Are we inside or outside the surface? How do we find intersection of two triangles? Etc.

- Q: Do implicit/explicit representations make such tasks easier?

- Q: What’s the cost of the naive algorithm, and how do we accelerate such queries for large meshes?

- So many questions!