Lecture 1:

Math (P)Review Part I:

Linear Algebra

Computer Graphics
CMU 15-462/15-662, Fall 2017



Homework 0.0 (Out today! Due Monday.)

m Exercises will generally be a bit harder / more rigorous than
what you will do for the rest of the class.

m Goalis to help you build strength for the upcoming journey.
m We are here to help!

1 Linear Algebra

1.1 Basic Vector Operations

Exercise 1. Letting u := (4,3), v:=(4,3),a := 7and b := 7, calculate the following quantities:
(a) u+v
(b) bu

(c) au — bv

Exercise 2. Letting u:= (8,2,7) and v := (8,7,3), calculate the following quantities:
1 u-—v

2, u+t6v

Exercise 3. So far we have been working with vectors in R? and R, but it is important to remember that
other objects, like functions, also behave like vectors in the sense that we can add them, subtract them, multiply
them by scalars, etc. Calculate the following quantities for the two polynomials p(x) := 8x* + 2x + 7 and
q(x) := 8x% + 7x + 3, and evaluate the result at the point x = 7:

1. p(x) —q(x)
2. p(x) +6q(x) CMU 15-462/662, Fall 2017




Grading Policy for Quizzes
m Take-home quizzes will help you gauge your understanding
m Graded on a quantized scale:

» 100% — correct idea, details are correct

» 85% — correct idea, minor details are wrong

« 75% — rough idea, missing some major pieces
» 60% — good faith attempt, but clearly wrong
 35% — “l don't know, and here's what | didn't understand.”
«25% —“l don't know.”

» 0% — nothing handed in / too sloppy to read
m Takeaways:

- Cometo class!

- Turning in an“l don’t know” is better than turning in a
PERFECT answer with sloppy writing.

- It's not enough to be smart—/earn to communicate

(Source: Vermont traffic ticket)



Linear Algebra in Computer Graphics
m Today’s topic:

m Why s linear algebra important for computer graphics?

- Effective bridge between geometry, physics, etc., and
computation.

- In many areas of graphics, once you can express the
solution to a problem in terms of linear algebra, you're
essentially done: now ask the computer to solve Ax=b.

- Development of fast numerical linear algebra has made
modern computer graphics possible (image processing,
physically-based animation, geometry processing...)
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Vectors - Intuition

m Linearalgebra is the study of and
between them.

m First things first: what is a ?
m Intuitively, a vector is a little arrow:

A vector.

m |n computer glraphjcs we work with many types of data that
may not look like little arrows (polynomials, images,
radiance...). But they still behave like vectors. So, this little
arrow is still often a useful mental model.
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Vectors - What Can We Measure?

m What information does a vector encode?
m Fundamentally, just and

m Forinstance, a vector in 2D can be encoded by a length and an
angle relative to some fixed direction (“polar coordinates”).

m How else might we encode a vector?

*Traditionally, a vector does not include a “basepoint”; a vector with a basepoint is sometimes called a tangent vector.
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Vector in Cartesian Coordinates

m (an also measure components of a vector with respect to
some chosen coordinate system:

WY

René Descartes, Est. 1596 X

m WARNING; Can’t directly compare coordinates in different
systems! (Also shouldn't compare (r,0) to (x,y).)
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What Can We Do with a Vector?

m Two basic operations. First, we can add them “end to end”:

u+v

m What if we walk along v first, then u?
m Actually, it doesn’t seem to matter: u+v=v+u Niels Henrik Abel

m Language: vector addition is “commutative” or “abelian”
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What Else Can We Do with a Vector?

m Other basic operation? Scaling:

2u
u

m In general, can multiply any vector u by a number or “scalar” a
to get a new vector au.

m Multiplication behaves the way we would expect, based on
the geometric behavior of scaling “little arrows.” E.g.,

a(bu) = (ab)u
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Interaction of Addition & Scaling

m What if we try to add two scaled vectors? Or scale two vectors
that have been added together?

m Interesting—seems we get the same result either way:
a(u+v)=au+av
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Vector Space—Formal Definition

m If we keep playing around vectors, eventually we come up
with a complete set of “rules” that vectors seem to obey*:

For all vectors u, v, w and scalars a, b:

u+v=v-+u

u+ (v+w)=(u+v)+w

There exists a zero vector “0” suchthatv+0=04+v =1v
For every v there is a vector “—v” such that v+ (—v) =0
lv=wv

a(bv) = (ab)v

a(u+v) =au—+av

(a4 b)v=av+ bv

m These rules did not “fall out of the sky!” Each one comes from

the geometric behavior of “little arrows.” (Can you draw a
picture for each one?)

m Any collection of objects satisfying all of this properties is a
(even if they don't look like little arrows!)

*this will NOT be on the test!
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Euclidean Vector Space

Most common example: Euclidean n-dimensional space
Typically denoted by IR", meaning “n real numbers”

E.g.,(1.23,4.56, m/2) is a point in R>

Why such a common example?

- Looks a lot like the space we live in!

- That’s what we can easily encode on a computer (a list of

floating-point numbers).

R

]R2

]R3
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Functions as Vectors

m Another very important example of vector spaces in computer
graphics are spaces of functions.

m Why? Because many of the objects we want to work with in
graphics are functions! (Images, radiance from a light source,
surtfaces, modal vibrations, ...)
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Vector Operations on Functions

m Do functions exhibit the same behavior as “little arrows?”

m Well, we can certainly add two functions:

| f(x)

g (x)

X
m We can also scale a function:
[ f(x)

(f +8)(x) := f(x) +8(x)

A
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Vector Operations on Functions

m What about the rest of these properties?

For all vectors u, v, w and scalars a, b:

u+v=v-+u

u+ (v+w)=(u+v)+w

There exists a zero vector “0” suchthatv4+0=0+v =v
For every v there is a vector “—v” such that v+ (—v) =0
lv=v

a(bv) = (ab)v

a(u+v) =au+ bv

(a4 b)v=av+ bv

m Tryitoutat home!
m E.g., the“zero vector”is the function equal to zero for all x.

m Short answer: yes, functions are vectors! (Even if they don’t
look like “little arrows".)
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Manipulating Vectors in Coordinates

m So far, we've only drawn our vector operations via pictures.
m How do we actually compute with vectors?
m Return to our coordinate representation:

u-+v=(54)
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0k, so we came up with some
rule for adding pairs of numbers.

How can we check that it faithfully encodes
geometric behavior of “little arrows?”



From Geometry to Algebra

m Just check that it agrees with our list of rules that we know

(from reasoning geometrically) “little arrows” must obey:

For all vectors u, v, w and scalars 4, b:

u+v=v-+u

u+(v+w)=(u+v)+w

There exists a zero vector “0” suchthatv4+0=0+v =v
For every v there is a vector “—v” such that v+ (—v) =0
lv =%

a(bv) = (ab)v

a(u+v) =au+av

(a4+Db)v=av+ bv

® 6 0 o ¢

m II:or instance, for any two vectors u := (uy,u;) and v :=(vy,v;) we
ave

u+v= (uy,up)+ (v1,v2) = (g +v1,up +vp) =
(01 + Uy, 02 +up) = (v1,02) + (U1, up) = v+ u.
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Turning geometric observations into algebraic
rules is convenient for symbolic manipulation &
numerical computation.

Always ask: where does this rule come from?
What does it mean geometrically?
(Can you draw a picture?)
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Scaling Vectors in Coordinates

m We'dalso like to be able to scale vectors using coordinates.
m Anyideas?

u

N[ Q9

3(4,2)

4.3/2,2-3/2)

(
™ (12/2,6/2)
/ (6,3)

(From here, check the rest of the properties...)
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Computing the Midpoint

m As we start to combine vector operations, we build up
operations needed for computer graphics.

m E.g., how would | compute the midpoint m of a =(3,4)

and b=(7,2)?

m = ;(a+Db)

(3,4) +

3
;(10,6)
(5,3)

(7,2))
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Measuring Vectors

m Earlier we asked, “what information does a vector encode?”
m (A:Orientation and magnitude.)
m How do we actually measure these quantities?

CMU 15-462/662, Fall 2017



Norm of a Vector

m Let’s start with magnitude—for a given vector v, we want to
assignita number?v| called its or or

m Intuitively, the norm should capture how “big” the vector is.

wiou jjews

large norm

waou ahaej

=V

small norm
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Natural Properties of Length—~Positivity

m What properties might you expect the norm (or length) of a

vector to satisfy?

m For one thing, it probably shouldn’t be negative!

u| >0

m And probably it should be zero only for the zero vector:
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Natural Properties of Length, Continued

m Also, if we scale a vector by a factor ¢, its norm will of course
scale by the same amount:

—

cu| = c|u]

m Finally, we know that the shortest path between two points is
always along a straight line:

0
U
A ul +[v] > Jutv
-+ 0

U

/|

m (This final prqpert)“is sometimes called the “pentagon
Inequality,” since the diagram looks like a pentagon.)
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Norm—~Formal Definition

m Anorm is any function that assigns a number to each vector
a“d saltlsﬁes the following properties for all vectors u, v, and
all scalars a:

e v| >0
o V| = — v=0
o |av| = |a||v|

m As before, you should be able to associate each of these
roperties with a concrete, geometric interpretation.
FVlsuallze in your head the picture associated with each one.)
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Euclidean Norm in Cartesian Coordinates

m Astandard normis the so-called Euclidean norm of n-vectors:

| = (w1, )] = \/Zu

Example: u = (4,2)
u| = /42 + 22
— 2+/5

= (4,2) Q: Does this formula satisfy all the
- natural, geometric properties of a norm?
(Answer in the slide comments!)
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L2 Norm of Functions

m Less familiar idea, but same basic intuition: the so-called L
norm measures the total magnitude of a function.

m Consider real-valued functions on the unit interval [0,1]
whose square has a well-defined integral. The L2norm s

defined as:
1
I£1] = \/ | f(x)2 dx

m Not too different from the Euclidean norm, actually: just
replaced a sum with an integral (which is kind of like a sum...).

t £y b F(y Q: Does the formula
f(¥) f ) above exactly satisfy all

our desired properties
for a norm?

large L2 norm small L2 norm X
(MU 15-462/662, Fall 2017



L2 Norm of Functions—ExampIe

m Consider the function f(x) := = xv/
defined over the unit interval [0 1] £l = \/ / F(x)2 dx

m Q:Whatisits L2norm?
m A

1 1
|\f||2=/3x2dx: Yl =12-0° =1

0 o
" = ||f|| = vV1=1.

Note: for clarity we will use || - || for the norm of a
function, and | - | for the norm of a vector in R™.
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Inner Product—Motivation

m What else can we measure? In addition to magnitude, said
that vectors have orientation. Just as norm measured length,
inner product measures how well vectors “line up.”

A\

(fairly similar)

(quite different)

(fairly similar)
(MU 15-462/662, Fall 2017



Inner Product—Symmetry

m Will write inner product (also sometimes called the
“or ) using the notation <u,v> (some folks
also write it as u-v).

m When measuring the alignment of two vectors u,v, what are
some natural properties you might expect?

m One“obvious” groperty: order shouldn’t matter, since u is just
as well-aligned with vas v is with u:

\Y u

(u,v) = (v, u) u v

_ E%uivalently, siml)ly re-naming the vectors should have no
effect on how well-aligned they are!
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Inner Product—Projection & Scaling

m For unit vectors \u|=\v,=1, an inner product measures the
extent of one vector along the direction of the other:

\y.£

\‘ u
I\ #

Q: Is this property symmetric?
/ l.e., is the length of v along u the

(u, V) same as the length of u along v?

m [f we scale either of the vectors, the inner product also scales:

\%
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Inner Product—~Positivity

m Also, a vector should always be aligned with itself, which we
can ex%ress bgl saying that the inner product of a vector with
itself should be positive (or at least, non-negative):

/u <11,11> 20

m Infact, if we continue to think of the inner ﬁroduct of a vector
as the iength of one vector along another then for unit-length
vectors we must have

(u,u) =1

m Q:Ingeneral, then, what must <u,u> be equal to?
m A:letting G := u/|u|, we have

(w,u) = ([u|, [u@) = [ul*(q,a) = [u]* 1= |[uf
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Inner Product—Formal Definition

m Aninner product is any function that assigns to any two vectors
u,v a number <u,v> satisfying the following properties:

¢ (u,v) = (V,u)

e (u,u) >0

¢ (uuy=0 <= u=0
e (au,v) =a(u,v)

e (u+v,w)=(uw)+ (v,w)

m (Q: Which of these properties didn’t we talk about? Can you
argue that they make sense geometrically? (Discuss online!)
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Inner Product in Cartesian Coordinates

m Astandard inner product is the so-called Euclidean inner
product, which operates on a pair of n-vectors:

(u,v) = ((u1,...,un), (v1,...,04)) := iuivi

Example:
u=(4,1)
v =(1,3)

v=(1,3)

(u,v) =4-14+1-3=7
u=(4,1)
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L2 Inner Product of Functions—Example

m Just like we had a norm for functions, we can also define an
inner product that measures how well two functions “line up”.

m E.g., for square-integrable functions on the unit interval:

(80 = [ () d
g(x)

Example: f(x) := x?, = (1 — x)?

(fr 80 :/1x2(1—x)2dx — =L

0 30 \
| f(x) lg(x) |f(x)g(x)

small number;
functions don’t
“line up” much!

d

0 1 x 0 1 x 0 1 X CMU 15-462/662, Fall 2017




Measuring Images, Other Signals?

Many ways to measure “how big” a signal is Snorm) or “how
well-aligned” two signals are (inner product).

Choice depends on application.
Often, looks just like L2: integrate square over the domain.

Could look quite different—for instance, measure norm of
derivative (e.qg., if interested in the edges of an image).

CMU 15-462/662, Fall 2017



Linear Maps

At the beginning6 said linear algebra was study of
and etween them.

Have a pretty good handle on vector (and inner product) spaces.
But what’s a linear map? And why is it useful for graphics?

We'll get to the 1st question in a moment. As for the 2nd
question, a few reasons:

- Computationally, easy to solve equations involving linear
maps.

- Basic transformations (rotation, translation, scaling) can be
expressed as linear maps. (Will see this in a later lecture!)

- Qver ashort distance, or a small amount of time, all maps can
be approximated as linear maps. (Taylor’s theorem). This
approximation is used all over geometry, animation,
rendering, image processing...
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Linear Maps—Geometric Defi

m Whatis a linear map?

m Especially in graphics, can think about them visually.

nition

m Example:
\ned! i lj

@ 4

<

OI)/ihea r map

\ /,\qk

4

Key idea: linear maps take lines to lines

*...While keeping the origin fixed.
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Linear Maps—Algebraic Definition

m Amapfis if it maps vectors to vectors,
and if for all vectors u,v and scalars a we have

Flu+v) = f(u) + f(v)
f(au) = af (u)

m Inother words: if it doesn't matter whether we add the
vectors and then apply the map, or apply the map and then
add the vectors (ditto for scaling):

add first

X,y XT+Yy
a =
= —
= o
—ny =]
fFO)+f(y)
then add =

F(x), f(y) — f(x+Y)
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Linear Maps—Coordinate Definition

m For maps between R™ and R".(eag. a map from 2D to 3D), we
can give an even more explicit definition.

m Amapis linearif it can be expressed as

m
f(ul, e ,um) — Z U;a;
1=1

m Inother words, if it is a linear combination of a fixed set of
vectors a;:

A RZ RB

—— -_ >
U — (1/[{;1/!2) a’ 4f( = uia1 + uray

d]
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Q:Is f(x) := ax + b a linear function?
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Linear vs. Affine Maps

m No! Butit’s easy to be fooled, since the graph looks like a line:
tf(x) =ax+0b

|
b
a

m However, it’s not a line through the origin, i.e., f(0) = 0.
m Another way to see it’s not linear? Doesn’t preserve sums:

f(xl ™ .’sz) — a(xl + x2) 1+ b = axq1 -+ axo
f(x1)+f(x2) = (ax1+b) 4+ (axa+b) = ax;+ax,%2b

m Yet another way: not (just) a linear combination of fixed a’s.

m Important computer graphics magic trick: turn affine
transformations (e.g., translation) into linear ones via
projective coordinates (will see later on!)
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More interesting question:

1

Q:ls f(u) ::/O u(x) dx alinear map?

(Think about it—it will be
part of your homework!)



Span
Q: Geometrically, what is the span of two vectors u, v?

A: The span is the set of all vectors that can be written as a
linear combination of u and v, i.e., vectors of the form

au -+ bv

for any two numbers a, b.

k
More generally: span(ug, ..., uy) = {x cVix= Zaiui, ai, ..., A € ]R}

Vv

L
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Span & Linear Maps

m Just a bit of language—can connect “span” and “linear map”:

m “The of any linear map is the span of some collection of
vectors.”
, #
R R?
== - >
u=— Uy, u
( Ly 2) 2 Af(w) = uja; + uzay
d1
B
> 2

Q: What's the of a function?
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Basis

m Spanis also closely related to the idea of a basis.
m In particular, if we have exactly n vectors ey, ..., e, such that

span(eq,...,e,;) = R”"

m Then we say that these vectors are a for R".
m Note: many different choices of basis!
m Q: Which of the following are bases for the 2D plane (n=2)?

NN AT
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Orthonormal Basis

m Most often, it is convenient to have to basis vectors that are (i)
unit length and (ii) mutually orthogonal.

m Inotherwords, if ey, ..., @, are our basis vectors then

1, 1=
e, e;) = .
(e / ) 0, otherwise.

m This way, the.ct)gometric meaning of the sum uq? +...4+u,?is
maintained: it is the length of the vector u.

Common bug: projecting

a vector onto a basis that is
NOT orthonormal while
continuing to use standard
norm/ inner product.
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Gram-Schmidt

m Given a collection of basis vectors a1, ... a,, how do we find an

basiseq, ... ep,?

m Gram-Schmidt algorithm (or “process”):

normalize the first vector (i.e., divide by its length)
subtract any component of the 1st vector from the 2nd one
normalize the 2nd one

subtract any component of the first two from the 3rd one

us

y:ul/ul
\/~1/ > :

*WARNING: for large number of vectors / nearly parallel vectors, not the best algorithm...
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Gram-Schmidt—Example

m Common task in graphics: have a triangle in 3D, need
orthonormal basis for the plane containing the triangle

m Strategy: apply Gram-Schmidt to (any) pair of edge vectors

u:=p; — vo
A V.= P2 — Po
e; :=u/|u

~J

Vi=v—(v,e1)e

€ .= V/lff‘

u Food for thought: in 3D, does the order
of bases matter? l.e., (e1,€2) vs. (e2,€1)?
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Orthonormal Basis for Functions
m Functions are also vectors. Can we also decompose them into

/]

orthogonal “components?”

m Surprisingly, the answer is “YES!”

m Simple example: square-integrable 2n-periodic functions
(i.e., f(x) = f(x+2km) for all integers k)

S ()

——- ——- + X

—27T 0 27T 47T
m Orthogonal basis given by sinusoids: cos(nx),sin(mx), m,n€IN

m Easy to normalize, but why are these bases orthogonal?

cos(nx) cos(max) cos(nx)

VRV Y EY:
v \Q/ v\ \Q/ %
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Projection of Function onto Sinusoids

m Projection onto bases works just like vectors in R™

i := ({f(x), cos(kx)))
Sk 1= <<f(X)lsin(kX)>>

= f(x) = Y  crcos(kx) + si sin(kx)
kelN .

> X

27(

27T
o o ° C1 - — COS
m Decomposes signal into “frequencies”: /

S~

lots of low- and mid-frequency oscillation

. / not as much high-frequency oscillation

0 21 CMU 15-462/662, Fall 2017




Frequency Decomposition of Signals

m More generally, this idea of projecting a signal onto different
“frequencies” Is known as

m (an be applied to all sorts of signals; basic tool used across,
image processing, rendering, geometry, physical simulation...

.\'

m Will have plenty more to say as course goes on!
\

.\.

o \ "
' f\ f\ > f N 451
—)m=40 anQO() l)m=500 J1=1000
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Systems of Linear Equations

m Extremely common task in computer graphics algorithms:

solve large systems of

Represent everything from light bouncing around a scene, to
time evolution of physical phenomena ((ﬂmds, tissue,

rubber...), to basic geometric problems (e.g., making a flat
map of a curved surface).

- Typically, very “sparse” systems, meaning many, many
variables, but each variable appears in only a small number
of equations.

- Often the computational bottleneck in graphics
algorithms.

- Only last ~10 years or so people even willing to solve such
big systems.

- Use specialized libraries for sparse numerical linear
algebra.
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System of Linear Equations

m Asystem of linear equations is exactly what it sounds like: a
bunch of equations where left-hand side is a linear function,
right hand side is constant. E.g.,

X + 2y
dx + Oy

3
6

m Unknown values are sometimes called “degrees of
freedom” (DOFs); equations sometimes called “constraints”

m Goal: solve for DOFs that simultaneously satisfy constraints:

X =3—2y
4(3 —2y) +5y =6
y =2

x = —1
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What does solving a linear system mean?
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Linear System, Visualized

m Of course, a linear system can be used to represent many
different practical tasks (simulation, processing, etc.).

m But for any linear system, there are some good mental models

to visualize:
""""" Findthepointwhere ~ GIVENapointh, FINDthe
two lines meet: point X that maps to it:
o !
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Uniqueness, Existence of Solutions

m Of course, not all linear systems can be solved! (And even
those that can be solved may not have a unique solution.)

A A

NO SOLUTION MANY SOLUTIONS
equations disagree any point along the line
A A ob
f

X?7?7?

NO SOLUTION

not every point can be “reached” by f
(MU 15-462/662, Fall 2017



Bilinear & Quadratic Forms

m In homework, you will take a look at bilinear and quadratic forms.

m (Coreidea in graphics, since many modern algorithms are
formulated in terms of energy minimization, often involving

quadratic form.
m Already familiar with one example: inner product / norm!

Q(x)] u1
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Wait, what about matrices?!
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Matrices in Linear Algebra

Linear algebra often taught from the perspective of matrices,
i.e., pushing around little blocks of numbers.

But linear algebra is not fundamentally about matrices.

As you've just seen, you can understand almost all the basic
concepts without ever touching a matrix!

Likewise, matrices can interfere with understanding / lead to
confusion, since the same obge.ct (a block of numbers) is used
to represent many different things (linear map, quadratic
form, ...) in many different bases.

still, VERY useful! 1 7 3
- symbolic manipulation 4 9 2
- numerical computation 0 1 1

What does this thing mean/
encode/do/represent?
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Representing Linear Maps via Matrices
m Key example: suppose | have a linear map

How do | encode as a matrix?

f(u) =uja; + uza

A

u = (uy,up)

O'
’
’
’

Easy: “a” vectors hecome matrix columns:

A :

1 x U2 x
A1,y 42y
1z U2z

m Now, matrix-vector multiply recovers original map:

01 x
al,y
11z

U2 x
lely
an ~

d1,xU1
&leyul T

2 x U2
a2,y U2

1 U1 T dp xU?

— Uqaq + Urap
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Don’t worry: if you love matrices, there will
be plenty of them in your homework!



QUIZ[1]

Since you already have plenty of exercises related to today’s material (in your
homework), today’s quiz is to

Post a question or comment on the course slides.

Two-word comments like “Cool, man!” will not receive any credit—
and remember to write legibly! ;-)

To keep you coming to class (and to make grading easier...), please
print out the slide you commented on and bring it to the next lecture.

| l lO * . \% cant you LK! eax the & Igrrthm mwokin {'LTFZ]P[’\')[‘Y“MF\E .zlnng thelinesotr itor ! 1=0; |
ncaemental line rasterization shhhhadoycgs  <UZ-T: 4 ){dIraw | 14, rounclVIH{I®)}
m Letssaya limeis represented with integer endpoints: (u1,v7), (u2,v2) Prompe Edk Doiete Archive (@ Upvate Dowevots |
m Slope of line: s = (v2-v1)/ (u2-u1) u
m  Consider avery easy spedial case: : o . , , - S

keanan a dayagn Are there any methods that can Greck the ine up into sections (especiolly for high rzscfution

- mi<ue,vi<v "me pointstowatd uppel-riqht) Assume Integer coerdinatas
- D<s<1(morechangeinxthany are at pixsd conters

ouputs 7

CanT you just tweak the algcnthm to work \n paral'el? Somethirg along the I'nes of jar | |
(1< uZ-41 14+ ) { draw (LT L raumd(zi+iI%<)) ) }

v - vl; v2

for{ u=ul; a<wa2; uétd ) | -

( | ]

$a . " | ; " g
X ®i )% il | 1 in para lel va an sligerithm like ke ornes Al lock ot wher we tak about rasterization,
druw( u, round(v) ) vl r ' .

} i 1 1 Of cours2 thet leaves the QUESTION Wy do all thewcrk of ren Zj&”ﬂg a ine estwo trie nges,

when It seems much simplar 1o have a spedalizec algoritam for knes” The arswver i5; because If

Yes, in “oct 3 modarn way to render lines (strange &5 it may zecem ot first) is to render @

' 3 ih itzclf is s drawn by ¢ achicz hardwars 3z : glas
quadrilateral, which itsclf is actually drawn by the graphics hasdware as 3 par of triangles
imagine splitting the quad along its diagonal, From there, the triangles are efficiertly rendered

you can decompose 3b of your diaw vperalicns into one alarmic operation (in this case,

u1 uz drawing trierng es), Fenyoa can make he hardwerz much smpler, Awd lror there, you tan
Comman Dmimization: rewrite dgafithm to usemly really make things Ny (e, by duslicating the units hek drew tria x;;l:‘.s many Jimes, and
. . . . optimizing the heck out of them) If you need special zz2d algorithms for eech type cf privitive
integer arithmetic (Bresenham algorithm) SRR SR

you have o share space on the chpg with 1ots cf different algorithms, many of which may not
be used vuch [lines are far kess cammon than triargles in vadem agplications).
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Next time: Math (P)Review Part |

m Eigenvalue problems
m Vector calculus

m Complex numbers

............

\\\\\\\\\\\\\

Ve - - ~— ~ >~ ~ N

......

div X curl Y
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